CURS 3. Modelare cu Retele Petri
|
|
- Τιμόθεος Παπαϊωάννου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 CURS 3 Modelare cu Retele Petri
2 Sisteme cu Evenimente Discrete Un Sistem cu Evenimente Discrete (SED) este un sistem cu stari discrete, care evolueaza prin evenimente, adica evolutia sa depinde in intregime de aparitia asincrona a unor evenimente discrete. s 6 s 5 s 4 s 3 s 2 s 1 t 1 t 2 t 3 t 4 t 5 t 6 t 7 e 1 e 2 e 3 e 4 e 5 e 6 e 7 2
3 Obiective ale studiului sistemelor (1) Modelare si analiza: Se dezvolta un model pentru a verifica daca poate reproduce comportamentul pertinent al sistemului fizic corespunzator. Daca modelul este corect, atunci el permite analiza functionarii sistemului fizic in diferite conditii de lucru. Proiectare si sinteza: Se utilizeaza tehnici de modelare deja verificate pentru construirea de sisteme care sa aiba un anumit comportament dorit. Pentru acesta se combina diverse componente si se dau valori anumitor parametri. Conducere: Scopul activitatii de conducere este de a determina functiile de intrare care vor asigura un comportament dorit al sistemului condus in contextul unor conditii de operare variate si uneori posibil adverse. Este necesar un model al sistemului condus, precum si existenta unor tehnici care sa permita testarea a diferite metode de conducere. 3
4 Obiective ale studiului sistemelor (2) Evaluarea performantelor: Se poate ca mai multe tehnici de conducere sa permita obtinerea comportamentului dorit al sistemului condus. Trebuiesc stabilite criterii si tehnici de comparatie ale acestor tehnici, in vederea selectarii celei mai eficiente. Optimizare: Determinarea performantelor optime ale sistemului condus - necesita tehnici specializate si de regula euristice. 4
5 Exemple de SED Retele de calculatoare Sisteme de comunicatii Sisteme de Fabricatie Sisteme de Trafic Baze de date complexe Sisteme software orice sistem complex, condus prin calculator 5
6 Modelare SED Concluzie Evolutia unui sistem poate fi reprezentata in termeni de stari/ conditii si evenimente Formalisme disponibile: Automate (stari/ evenimente) Retele Petri (variabile de stare/ evenimente) Lanturi Markov, cozi de asteptare 6
7 Retele Petri notiuni de baza O retea Petri (PN) e un graf bipartit, compus din: - doua tipuri de noduri Pi (1 i 5) pozitii Tj (1 j 5) tranzitii - arce orientate (unesc doua tipuri diferite de noduri). Fiecare pozitie poate contine un numar intreg de jetoane sau marcaje. Numarul de jetoane dintr-o pozitie s.n. marcaj. Marcajul lui Pi: m(pi) or mi P 1 T 1 P 2 P 4 T 2 P 3 P 5 T 3 T 5 T 4 7
8 Comentarii Un nod i poate fi, pentru un nod j, : intrare: daca exista un arc directionat de la nodul i la nodul j (i j) iesire: daca exista un arc directionat de la nodul j la nodul i (j i) O tranzitie fara intrari = sursa O tranzitie fara iesiri = capcana Marcajul retelei M este definit ca un vector al marcajelor pozitiilor M = [m(p 1 ) m(p 2 ) m(p 3 ) m(p 4 ) m(p 5 )] T si defineste starea retelei la un moment dat. 8
9 Semnificatii pozitii Mediu de comunicare (linie telefonica, intermediar, retea de comunicatie) Buffer (cutie postala, stoc, depozit) Locatie geografica (locatie intr-un depozit, oficiu sau spital) Stare a unei componente sau valoarea unei conditii (etajul la care se afla un lift, conditia ca un specialist sa fie disponibil). 9
10 Semnificatii tranzitii Eveniment (inceputul sau sfarsitul unei operatii, decesul unui pacient, schimbarea culorii unui semafor) Transformarea unui obiect (modificarea/adaptarea unui produs, reactualizarea unei baze de date, reactualizarea unui document) Transportul unui obiect (transportul bunurilor, expedierea unui mesaj sau a unui fisier) 10
11 Semnificatii jetoane Obiect fizic (produs, componenta, medicament, persoana) Obiect informational (mesaj, semnal, raport, fisier) Colectie de obiecte (camion cu bunuri, depozit cu componente, fisier cu adrese) Indicator de stare (indicator al starii unui proces, starea unui obiect) Indicator al indeplinirii unei conditii. 11
12 Marcaje, stari si evolutii Marcajul retelei M este definit ca un vector al marcajelor pozitiilor retelei si reprezinta starea modelului la un moment dat. Evolutia sistemului corespunde evolutiei marcajelor. Evolutia se face prin executia tranzitiilor. 12
13 Executia unei tranzitii O tranzitie se numenste valida (executabila) daca toate pozitiile sale de intrare contin cate cel putin un jeton de marcaj. Nota: O tranzitie sursa este totdeauna valida. Executia unei tranzitii: se retrage (consuma) cate un jeton din fiecare pozitie de intrare se depune (produce) cate un jeton in fiecare pozitie de iesire Ipoteze: executia unei tranzitii are durata nula si este indivizibila intr-un sistem SED poate sa aiba loc numai un 13 eveniment la un moment dat
14 Structuri particulare (1) Graf de stari: fiecare tranzitie are exact o pozitie de intrare si o pozitie de iesire DA NU OR 14
15 Structuri particulare (2) Conflict structural: o pozitie cu cel putin doua tranzitii de iesire: K=< P 1, {T 1, T 2 }> Fara conflicte: fiecare pozitie are max. o tranzitie de iesire P 1 T 1 T 2 OR 15
16 Structuri particulare (3) RP simple: fiecare tranzitie e implicata in cel mult un conflict 16
17 Structuri particulare (4) RP pura: o RP fara auto-buclare (autobuclare o pereche pozitie P i + tranzitie T j - in care P i este si intrare si iesire pentru T j ) OR 17
18 Abrevieri si Extensii Abrevieri: reprezentari simplificate pentru care exista intotdeauna o RP ordinara echivalenta Extensii: modele cu reguli functionare suplimentare si cu putere de modelare superioara Nota: Toate proprietatile unei RP se mentin pentru abrevieri; acest lucru NU este valabil in mod obligatoriu pentru extensii. 18
19 RP generalizate RP generalizate = arcurile au asociate ponderi (intregi); pe un arc circula numai pachete de jetoane de marcaj al caror numar e egal cu ponderea arcului Roti de masina 4 Caroserii Masini Exemplu de asamblare 19
20 RP cu capacitati RP cu capacitati = pozitiile au asociate capacitati fixe (intregi pozitivi); o tranzitie NU poate fi executata daca prin aceasta se depaseste capacitatea vreunei pozitii P 1 P 1 T 1 T 1 P 2 cap(p 2 )=2 P 2 P 2 T 2 T 2 20
21 Modelarea anumitor concepte (1) Cauzalitate 21
22 Modelarea anumitor concepte (2) Paralelism 22
23 Modelarea anumitor concepte (3) Paralelism AND-split (sincronizarea inceputului) 23
24 Modelarea anumitor concepte (4) Paralelism AND-join (sincronizarea sfasitului) 24
25 Modelarea anumitor concepte (5) Alternativa XOR-split (la inceput) 25
26 Modelarea anumitor concepte (6) Alternativa XOR-join (la final)
27 Modelarea anumitor concepte (7) Iteratie (cel putin o data) 27
28 Modelarea anumitor concepte (8) Iteratie (0 sau mai multe ori) 28
29 Modelarea anumitor concepte (9) Capacitate limitata 29
30 Modelarea anumitor concepte Excludere mutuala (partajare resurse) 30
31 Modelarea anumitor concepte Alternanta 31
32 Proprietati ale RP (1) Notatii si definitii marcaj initial: M 0 din marcajul M, prin executia tranzitiei T 1 se ajunge in M 1 : M T 1 >M 1 m i (P j ) numarul de jetoane din pozitia P j corespunzator marcajului M i. multimea marcajelor accesibile din M 0 : M 0 * secventa de executii: S = T 1 T 2 32
33 Proprietati ale RP (2) Dandu-se doi vectori de marcaj de aceeasi dimensiune, M 1 si M 2, vectorul M 1 este superior lui M 2 (M 1 M 2 ) daca m 1 (P i ) m 2 (P i ) si exista un P j a.i. m 1 (P j ) > m 2 (P j ) pentru cel putin o componenta vectorul M 1 este strict superior lui M 2 (M 1 >M 2 ) daca m 1 (P i ) > m 2 (P i ) pentru orice pozitie P i. 33
34 Proprietati ale RP (3) 1. Marginire 2. Viabilitate 3. Blocaje 4. Conflicte 5. Reinitializabilitate 34
35 Marginire O pozitie P i este marginita pentru un marcaj initial M 0 daca exista un intreg pozitiv k a.i. pentru orice marcaj in M 0 * numarul de jetoane din P i nu depaseste k O RP este marginita pentru un marcaj initial m 0 daca toate pozitiile sale sunt marginite pentru M 0. O RP este sigura daca este 1-marginita. 35
36 Viabilitate O tranzitie T j este viabila pentru un marcaj initial M 0 daca pentru orice marcaj m i in M 0 * exista o secventa S care sa contina T j. O RP este viabila pentru un marcaj initial M 0 daca toate tranzitiile sale sunt viabile pentru M 0. O tranzitie T j este quasi-viabila pentru un marcaj initial M 0 daca exista macar o secventa S din M 0 care sa contina T j 36
37 Blocaje (deadlock) Un blocaj este un marcaj din care nu mai exista nici o tranzitie valida. O RP este fara blocaje pentru marcajul initial M 0 daca nici un marcaj din M 0* nu este un blocaj. Nota: Daca o RP are macar un blocaj, atunci nu poate fi viabila. 37
38 Observatii Proprietatile de marginire, viabilitate, blocaje - depind de marcajul initial al retelei. Toate proprietatile de pana acum se pot aplica la abrevieri si pot fi generalizate pentru extensii 38
39 Conflicte Intr-o RP ordinara, un conflict efectiv este o pereche formata dintr-un conflict structural K = <P i, {T 1, T 2,... }> si un marcaj M in care numarul de jetoane din P i este mai mic decat numarul de tranzitii de iesire ale acesteia, validate prin M. K E = <K, M>=< P i, {T 1, T 2,... }, M > 39
40 Componenta repetitiva O secventa repetitiva este o secventa S astfel incat M 0 S > M 0. O secventa repetitiva care contine toate tranzitiile retelei, este o secventa repetitiva completa. Daca T este o submultime a tranzitiilor retelei si S k o secventa repetitiva de tranzitii din T, atunci T este o componenta repetitiva. 40
41 Reinitializabilitate O RP poarta numele de reinitializabila daca pentru orice marcaj Mi exista o secventa S astfel incat M i S > M 0. 41
42 Metode de analiza a RP Clase de metode: graf de marcaje (arbore de acoperire) Graful de marcaje - poate fi utilizat numai pentru RP marginite si include toate evolutiile posibile ale acestora. algebra lineara 42
43 P 1 T 1 T 3 T 4 P 2 T 2 P 3 2 m 0 = 0 0 T 1 T 2 1 m 1 = 1 0 T 1 T 2 0 m 2 = 2 0 T 3 0 m 3 = 0 1 T 4 1 m 4 = 0 0 T 1 T 2 0 m 5 =
44 Algoritm de constructie Step 1: Din m 0, se determina toate tranzitiile valide si marcajele succesive corespunzatoare. Step 2. Pentru fiecare marcaj nou m i executa Step 2.1., Step 2.2 sau Step 2.3 Step 2.1. Daca exista un marcaj m j =m i pe drumul de la m 0 la m i, atunci m i nu are succesor. Step 2.2. Daca nu exista un marcaj m j pe drumul de la m 0 la m i, graful este completat prin adaugarea tuturor succesorilor lui m i. Salt la Step 2. Step 2.3 Daca pe calea de la m 0 la m i exista un marcaj m j astfel incat m i >m j (m i superior lui m j ), atunci pe pozitia/pozitiile de superioritate se inlocuieste valoarea numerica cu ω (simbol pentru nemarginire). Toate marcajele succesoare ale lui m i vor pastra valorile ω de pe pozitiile lui m i. 44
45 Exercitii (1) Se consideră un sistem circular de cale ferată format din 4 tronsoane (numerotate 1, 2, 3 şi 4) în care trenurile se pot deplasa într-un singur sens şi două trenuri (A şi B). Să se modeleze prin intermediul unei reţele Petri acest sistem ştiind că pe un tronson se poate afla maxim un tren şi că nu se face deosebire între trenuri. Se consideră un sistem circular de cale ferată format din 4 tronsoane (numerotate 1, 2, 3 şi 4) în care trenurile se pot deplasa într-un singur sens şi două trenuri (A şi B). Să se modeleze prin intermediul unei reţele Petri acest sistem ştiind că pe un tronson se poate afla maxim un tren şi că se face distincţia între trenuri. 45
46 Exercitii (2) Se consideră un sistem circular de cale ferată format din 4 tronsoane (numerotate 1, 2, 3 şi 4) în care trenurile se pot deplasa într-un singur sens şi două trenuri (A şi B). Să se modeleze prin intermediul unei reţele Petri acest sistem ştiind că pe un tronson se poate afla maxim un tren, pentru ca un tren să poată intra pe un tronson trebuie ca tronsonul ce urmează celui pe care vrea să intre să fie liber şi că nu se face deosebire între trenuri. Se consideră un sistem circular de cale ferată format din 4 tronsoane (numerotate 1, 2, 3 şi 4) în care trenurile se pot deplasa într-un singur sens şi două trenuri (A şi B). Să se modeleze prin intermediul unei reţele Petri acest sistem ştiind că un tronson de cale ferată se poate afla în una din următoarele stări: liber, ocupat, rezervat; pentru ca un tren să poată intra pe un tronson trebuie mai întâi să rezerve tronsonul şi că nu se face deosebire 46 între trenuri.
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Asist. Dr. Oana Captarencu. otto/pn.html.
Reţele Petri şi Aplicaţii p. 1/45 Reţele Petri şi Aplicaţii Asist. Dr. Oana Captarencu http://www.infoiasi.ro/ otto/pn.html otto@infoiasi.ro Reţele Petri şi Aplicaţii p. 2/45 Evaluare Nota finala: 40%
Curs 4. RPA (2017) Curs 4 1 / 45
Reţele Petri şi Aplicaţii Curs 4 RPA (2017) Curs 4 1 / 45 Cuprins 1 Analiza structurală a reţelelor Petri Sifoane Capcane Proprietăţi 2 Modelarea fluxurilor de lucru: reţele workflow Reţele workflow 3
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
Examen AG. Student:... Grupa:... ianuarie 2011
Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Examen AG. Student:... Grupa: ianuarie 2016
16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Geometrie computationala 2. Preliminarii geometrice
Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,
Să se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
Câmp de probabilitate II
1 Sistem complet de evenimente 2 Schema lui Poisson Schema lui Bernoulli (a bilei revenite) Schema hipergeometrică (a bilei neîntoarsă) 3 4 Sistem complet de evenimente Definiţia 1.1 O familie de evenimente
Laborator 1: INTRODUCERE ÎN ALGORITMI. Întocmit de: Claudia Pârloagă. Îndrumător: Asist. Drd. Gabriel Danciu
INTRODUCERE Laborator 1: ÎN ALGORITMI Întocmit de: Claudia Pârloagă Îndrumător: Asist. Drd. Gabriel Danciu I. NOŢIUNI TEORETICE A. Sortarea prin selecţie Date de intrare: un şir A, de date Date de ieşire:
FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4
FLUXURI MAXIME ÎN REŢELE DE TRANSPORT Se numeşte reţea de transport un graf în care fiecărui arc îi este asociat capacitatea arcului şi în care eistă un singur punct de intrare şi un singur punct de ieşire.
Curs 12. RPA (2017) Curs 12 1 / 65
Reţele Petri şi aplicaţii Curs 12 RPA (2017) Curs 12 1 / 65 Cuprins 1 Modelare utilizând HCPN 2 Reţele Petri colorate cu durate de timp 3 Reţele Petri imbricate RPA (2017) Curs 12 2 / 65 Modelare utilizând
CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE. MMIC Monolithic Microwave Integrated Circuit
CIRCUITE INTEGRATE MONOLITICE DE MICROUNDE MMIC Monolithic Microwave Integrated Circuit CUPRINS 1. Avantajele si limitarile MMIC 2. Modelarea dispozitivelor active 3. Calculul timpului de viata al MMIC
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.
liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Modelare şi simulare Seminar 4 SEMINAR NR. 4. Figura 4.1 Reprezentarea evoluţiei sistemului prin graful de tranziţii 1 A A =
SEMIR R. 4. Sistemul M/M// Caracteristici: = - intensitatea traficului - + unde Figura 4. Rerezentarea evoluţiei sistemului rin graful de tranziţii = rata medie de sosire a clienţilor în sistem (clienţi
2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey
Algoritmica grafurilor XI. Cuplaje in grafuri. Masuri de calitate. Numere Ramsey Mihai Suciu Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică Mai, 16, 2018 Mihai Suciu (UBB) Algoritmica
Sisteme liniare - metode directe
Sisteme liniare - metode directe Radu T. Trîmbiţaş 27 martie 2016 1 Eliminare gaussiană Să considerăm sistemul liniar cu n ecuaţii şi n necunoscute Ax = b, (1) unde A K n n, b K n 1 sunt date, iar x K
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.
Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,
Cursul 11. Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri.
Cuplaje. Sisteme de reprezentanti distincţi. Arbori de acoperire. Enumerarea tuturor arborilor cu număr fixat de noduri 17 decembrie 2016 Cuprinsul acestui curs Cuplaje Cuplaj perfect, maxim, maximal Cale
Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:
Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,
2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER
2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi
Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon
ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este
Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă
Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare
Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.
Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele
1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
Grafuri planare Colorarea grafurilor. Curs 12. Grafuri planare. Colorarea grafurilor. Polinoame cromatice. 23 decembrie 2016.
Grafuri planare Polinoame cromatice 23 decembrie 2016 Definiţii şi exemple Grafuri planare Un graf G este planar dacă poate fi desenat în plan astfel încât muchiile să nu se intersecteze decât în nodurile
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Curs 2 DIODE. CIRCUITE DR
Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
Codificatorul SN74148 este un codificator zecimal-bcd de trei biţi (fig ). Figura Codificatorul integrat SN74148
5.2. CODIFICATOAE Codificatoarele (CD) sunt circuite logice combinaţionale cu n intrări şi m ieşiri care furnizează la ieşire un cod de m biţi atunci când numai una din cele n intrări este activă. De regulă
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
2. Circuite logice 2.2. Diagrame Karnaugh. Copyright Paul GASNER 1
2. Circuite logice 2.2. Diagrame Karnaugh Copyright Paul GASNER Diagrame Karnaugh Tehnică de simplificare a unei expresii în sumă minimă de produse (minimal sum of products MSP): Există un număr minim
Principiul Inductiei Matematice.
Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei
Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
Platformă de e learning și curriculă e content pentru învățământul superior tehnic
Platformă de e learning și curriculă e content pentru învățământul superior tehnic Proiectarea Logică 24. Echivalenta starilor STARILE ECHIVALENTE DIN CIRCUITELE SECVENTIALE Realizarea unui circuit secvenţial
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri
Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015
Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu