C E N T R U L NAłIONAL DE EVALUARE ŞI E X A M I N A R E
|
|
- Μέλισσα Λούλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 C E N T R U L NAłIONAL DE EVALUARE ŞI E X A M I N A R E Evaluarea NaŃională pentru elevii clasei a VIII-a, în anul şcolar 00-0 la disciplina Matematică Introducere Evaluarea NaŃională pentru elevii clasei a VIII-a este un examen nańional şi reprezintă modalitatea de evaluare externă sumativă a competenńelor dobândite pe parcursul învăńământului gimnazial. În cadrul Evaluării NaŃionale pentru elevii clasei a VIII-a Matematica are statut de disciplină obligatorie. Structura probei de evaluare la disciplina Matematică Testele elaborate pentru proba scrisă la matematică contribuie la îndeplinirea funcńiilor evaluării urmărite prin examenul de Evaluare NaŃională. Fiecare test asigură o cuprindere echilibrată a materiei studiate având un grad de complexitate corespunzător competenńelor şi conńinuturilor programei de Evaluare NaŃională, care este inclusă în programa şcolară, şi poate fi rezolvat în timpul stabilit de ore. Testul pentru proba scrisă la disciplina Matematică este format din trei subiecte. Primul subiect conńine itemi de completare, subiectul al doilea şi subiectul al treilea conńin itemi de tip rezolvare de probleme. Testul conńine itemi care au un caracter aplicativ şi care solicită mai mult judecata bazată pe rańionament deductiv. Subiectele nu vizează conńinutul unui manual anume. Manualul şcolar reprezintă doar unul dintre suporturile didactice utilizate de profesori şi de elevi, care ajută la parcurgerea programei şcolare în vederea formării competenńelor prevăzute de aceasta. CompetenŃe de evaluat la disciplina Matematică Proba scrisă la disciplina Matematică, susńinută în cadrul examenului de Evaluare NaŃională 0, evaluează competenńe dezvoltate pe parcursul învăńământului gimnazial, în conformitate cu programele şcolare pentru clasele a V-a - a VIII-a, în vigoare pentru absolvenńii promońiei 0.
2 CompetenŃele de evaluat, asociate conńinuturilor programei pentru examenul de Evaluare NaŃională, în cadrul probei scrise la Matematică sunt:. Utilizarea nońiunii de număr real şi a relańiilor dintre mulńimile de numere studiate. Identificarea proprietăńilor operańiilor cu numere reale. Aplicarea operańiilor cu numere reale în calcule variate 4. Analizarea unor situańii practice cu ajutorul rapoartelor, procentelor, proporńiilor 5. Identificarea unor probleme care se rezolvă cu ajutorul ecuańiilor, inecuańiilor sau a sistemelor de ecuańii, rezolvarea acestora şi interpretarea rezultatului obńinut 6. Aplicarea în rezolvarea problemelor a elementelor de logică şi de teoria mulńimilor 7. Utilizarea elementelor de calcul algebric 8. Alegerea metodei adecvate de rezolvare a problemelor în care intervin dependenńe funcńionale sau calculul probabilităńilor 9. Aplicarea teoriei specifice funcńiei de forma ( ) f : R R, f x = ax+ b, unde a, b R 0. Utilizarea proprietăńilor figurilor geometrice şi a corpurilor geometrice în probleme de demonstrańie şi de calcul. Reprezentarea, prin desen, a unor figuri geometrice şi a unor corpuri geometrice utilizând instrumente geometrice. Transpunerea în limbaj matematic a enunńului unei situańii-problemă. Analizarea şi interpretarea rezultatelor obńinute prin rezolvarea unei probleme practice cu referire la figurile geometrice şi la unităńile de măsură 4. Investigarea valorii de adevăr a unor enunńuri şi construirea unor generalizări 5. Redactarea coerentă şi completă a soluńiei unei probleme Precizări privind evaluarea la disciplina Matematică Baremul de evaluare şi de notare este asociat sarcinilor concrete de lucru date elevilor şi pe baza acestuia se apreciază lucrările scrise. Baremul de evaluare şi de notare este elaborat cu grad înalt de obiectivitate şi aplicabilitate, astfel încât să reducă diferenńele de notare dintre corectori. Baremul de evaluare şi de notare a fost proiectat pe baza notării analitice. Aceasta implică determinarea principalelor performanńe (unităńi de răspuns) pe care elevul trebuie să le evidenńieze în rezolvarea fiecărui item. Notarea analitică are avantajul de a asigura rigurozitatea corectării, favorizând realizarea unei aprecieri obiective. Baremul de evaluare şi de notare, în cazul itemilor de tip rezolvare de probleme, include elemente ale răspunsului care sunt notate. În acest fel candidatul primeşte punctaj pentru rezolvări parńiale ale cerinńei itemului. Pentru o evaluare unitară, în
3 barem se regăsesc rezolvări complete ale itemilor. Se punctează corespunzător oricare altă metodă de rezolvare corectă a problemei. Testul şi baremul corespunzător, elaborate în vederea asigurării transparenńei şi informării persoanelor interesate, sunt prezentate ca modele pentru Evaluarea NaŃională.
4 Ministerul EducaŃiei, Cercetării, Tineretului şi Sportului EVALUARE NAłIONALĂ PENTRU ELEVII CLASEI a VIII-a Anul şcolar 00 0 Probă scrisă la MATEMATICĂ Toate subiectele sunt obligatorii. Se acordă 0 puncte din oficiu. Timpul efectiv de lucru este de ore. Model SUBIECTUL I - Pe foaia de examen scrieńi numai rezultatele. (0 de puncte) 5p. Dacă 7+ 9 x= 0, atunci numărul x este egal cu. 5p. Un biciclist urcă o pantă în 0 de minute. La coborârea aceleiaşi pante, biciclistul îşi dublează viteza. Timpul în care biciclistul coboară panta este de... minute. 5p. După o reducere cu 5%, un penar costă 4 lei. PreŃul inińial al penarului a fost de lei. 5p 4. Un dreptunghi cu lungimea de 9 cm şi lăńimea egală cu din lungime are aria egală cu... cm. 5p 5. Se consideră cubul ALGORITM din Figura. Măsura unghiului dintre dreptele AM şi LG este egală cu o. M T R I O G 5p A Figura 6. În graficul de mai jos sunt reprezentate rezultatele obńinute de tońi elevii unei clase la teza din semestrul al II-lea la matematică. Numărul elevilor din acea clasă este egal cu. L Numărul elevilor Nota obńinută la teză 4
5 Ministerul EducaŃiei, Cercetării, Tineretului şi Sportului SUBIECTUL al II-lea - Pe foaia de examen scrieńi rezolvările complete. (0 de puncte) 5p. DesenaŃi, pe foaia de examen, o piramidă patrulateră regulată care are baza ABCD şi vârful V. A= x R / x 4. EnumeraŃi elementele mulńimii A N. 5p. Se consideră mulńimea { } 5p. Din dublul unui număr necunoscut se scade 0,(). DiferenŃa obńinută se împarte la,4(6) şi se obńine rezultatul 0,(45). DeterminaŃi numărul necunoscut. 4. Se consideră funcńia f : R R, f ( x) = x+ 5. 5p a) ReprezentaŃi grafic funcńia f. 5p b) DeterminaŃi numărul real m pentru care punctul A( m, ) este situat pe graficul funcńiei f. 5p 5. ArătaŃi că numărul a= ( 5) ( + 5) este întreg. SUBIECTUL al III-lea - Pe foaia de examen scrieńi rezolvările complete. (0 de puncte). Un vas în formă de cub cu lungimea muchiei de m este plin cu apă. Se goleşte toată apa din vasul cubic într-un vas în formă de paralelipiped dreptunghic care are înălńimea de 0 dm, iar dimensiunile bazei de 5dm şi de 8dm. 5p a) CalculaŃi câńi litri de apă sunt în vasul cubic. 5p b) CalculaŃi aria laterală a vasului paralelipipedic. 5p c) CalculaŃi înălńimea la care se ridică apa în vasul paralelipipedic.. Figura reprezintă schińa unui rond de flori, circular, care se află în interiorul unei grădini CD ale grădinii în punctele M, respectiv dreptunghiulare şi care este tangent laturilor ( AB ) şi ( ) N. Se ştie că: AB= 9m şi BC= 6m. 5p a) CalculaŃi aria rondului. 5p b) VerificaŃi dacă aria porńiunii haşurate este mai mică decât aria rondului circular. (,4< π <,5 ) 5p c) ArătaŃi că, oriunde am planta doi copaci în zona haşurată a grădinii, distanńa dintre aceştia este mai mică decât m. D N C A M Figura B 5
6 Ministerul EducaŃiei, Cercetării, Tineretului şi Sportului EVALUARE NAłIONALĂ PENTRU ELEVII CLASEI a VIII-a Anul şcolar 00-0 Probă scrisă la MATEMATICĂ BAREM DE EVALUARE ŞI DE NOTARE Model SUBIECTUL I Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte. Nu se acordă punctaje intermediare. SUBIECTUL al II-lea şi SUBIECTUL al III-lea Nu se acordă fracńiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parńiale, în limitele punctajului indicat în barem. Pentru orice soluńie corectă, chiar dacă este diferită de cea din barem, se acordă punctajul maxim corespunzător. Total 00 de puncte din care 0 sunt din oficiu. Nota finală se calculează prin împărńirea punctajului obńinut la 0. SUBIECTUL I Barem de evaluare şi de notare 6 (0 de puncte). 5p. 0 5p. 40 5p p p 6. 5p SUBIECTUL al II-lea (0 de puncte). Desenează piramida Notează piramida 4p. 4 x 4 p x A N = 0,, p { } 6x. Se notează cu x numărul necunoscut; x 0,() =, 4(6) = 5 5 0,(45) = 6x 5 5 = x= 4. a) Alegerea corectă a două puncte care aparńin graficului 4p Trasarea graficului funcńiei b) A( m, ) G f f ( m) = p f ( m) = m+ 5 m+ 5= m=
7 5. = = ( 5) ( + 5) = 4 a= Z SUBIECTUL al III-lea Ministerul EducaŃiei, Cercetării, Tineretului şi Sportului p (0 de puncte). a) Lungimea muchiei cubului este egală cu 0dm p V cub = V = 000dm apă V = 000litri apă b) P b = 66dm p Aria laterală A = P h= 660dm p l b c) Notăm cu h înălńimea cerută şi astfel volumul apei este Vapă p = 5 8 h= 000 dm p h= 5dm p. a) Raza rondului este r= m p Aria rondului este egală cu π r b) Aria dreptunghiului este egală cu = 9π m p 54m Aria porńiunii haşurate este egală cu ( π) Justificarea faptului că 54 9π < 9π 54 9 m c) Cea mai mare distanńă dintre două puncte ale dreptunghiului este lungimea diagonalei [ AC ] Folosind teorema lui Pitagora se obńine p p p AC= 7 m p Finalizare: 7< = Barem de evaluare şi de notare 7
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
EVALUAREA NAłIONALĂ PENTRU ELEVII CLASEI A VIII-A Anul şcolar Probă scrisă la MATEMATICĂ 1
Ministerul EducaŃiei, Cercetării, Tineretului şi Sportului Centrul NaŃional de Evaluare şi Examinare EVALUAREA NAłIONALĂ PENTRU ELEVII CLASEI A VIII-A Anul şcolar 009 010 Probă scrisă la MATEMATICĂ Varianta
STRATEGII DE REZOLVARE A SUBIECTELOR DE LA SIMULAREA EVALUĂRII NAȚIONALE FEBRUARIE 2016
STRATEGII DE REZOLVARE A SUBIECTELOR DE LA SIMULAREA EVALUĂRII NAȚIONALE FEBRUARIE 016 Ștefănuț Ciochină 1 Aurora Valea 1 1. Tipuri de itemi Noțiunea de item presupune existența a trei factori esențiali:
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Subiectul I Pe foaia de examen scrieți numai rezultatele. 5p , , atunci numărul natural n este egal cu.
ȘCOLR JUDEȚEN H U N E D O R SIMULRE JUDEȚENĂ EXMENULUI DE EVLURE NȚIONLĂ 018 PENTRU ELEVII CLSEI VIII- N ȘCOLR 017-018 Matematică Toate subiectele sunt obligatorii. Timpul efectiv de lucru este de ore.
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare
Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu
este egal cu Rezultatul calculului : 5 este egal cu. 1. Rezultatul calculului 9 3: 3 este egal cu.
Evaluare Nationala clasa a VIII-a matematica 010-017 010 model 1 Rezultatul calculului 64 :8 + 8 este egal cu 010 spec 1 Rezultatul calculului 64 :3 este egal cu 011 model 01 model 1 Rezultatul calculului
Subiecte Clasa a VIII-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =
Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <
Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.
Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie
Evaluarea la disciplina Matematică în cadrul examenului naţional de bacalaureat 2010
Evaluarea la disciplina Matematică în cadrul eamenului naţional de bacalaureat Eamenul naţional de bacalaureat este modalitatea esenţială de evaluare a competenţelor, a nivelului de cultură generală şi
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
MATEMATICĂ. Clasa I. AlegeŃi răspunsul corect: 1. Vecinii lui 7 sunt: a)1 şi 3 ; b) 7 şi 9 ; c) 6şi 8 ; d) 6 şi 7 ; e) 8 şi 9.
MATEMATICĂ Clasa I AlegeŃi răspunsul corect: 1. Vecinii lui 7 sunt: a)1 şi ; b) 7 şi 9 ; c) 6şi 8 ; d) 6 şi 7 ; e) 8 şi 9.. Care dintre numerele următoare este un număr impar? a) 5 ; b) 8 ; c) 4 ; d) 1
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.
Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea
Să se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
C E N T R U L NAłIONAL DE EVALUARE ŞI E X A M I N A R E
C E N T R U L NAłIONAL DE EVALUARE ŞI E X A M I N A R E Evaluarea la disciplia Matematică î cadrul exameului ańioal de bacalaureat Programa M Itroducere Exameul ańioal de bacalaureat este modalitatea eseńială
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].
Miisterul EducaŃiei, Cercetării, Tieretului şi Sportului Cetrul NaŃioal de Evaluare şi Eamiare Eameul de bacalaureat ańioal 0 Proba E c) Matematică M_mate-ifo Filiera teoretică, profilul real, specializarea
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Precizări referitoare la testul de evaluare inińială la disciplina Chimie
Precizări referitoare la testul de evaluare inińială la disciplina Chimie Evaluarea inińială constituie o condińie hotărâtoare pentru reuşita unei activităńi de instruire, fiind menită să ofere posibilitatea
3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4
SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei
1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.
Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu,
Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Iaşi Repere metodice ale predării asemănării în gimnaziu
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Subiecte Clasa a V-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
Examen AG. Student:... Grupa: ianuarie 2016
16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Precizări metodologice cu privire la testul de evaluare inińială la disciplina Fizică din anul şcolar
Precizări metodologice cu privire la testul de evaluare inińială la disciplina Fizică din anul şcolar 011-01 Evaluarea inińială la disciplina Fizică are ca scop: identificarea nivelului de achizińii inińiale
EDITURA PARALELA 45. Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă. clasa a VIII-a. mate 2000 excelenţă
Maranda Linţ Dorin Linţ Rozalia Marinescu Dan Ştefan Marinescu Mihai Monea Steluţa Monea Marian Stroe Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă clasa a VIII-a mate 000
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
COMPETENłE GENERALE VALORI ŞI ATITUDINI
Şcoala cu clasele I - VIII Leiceşti - Argeş Responsabil Director, Matematică - Algebră clasa a VI - a ( ore pe săptămână) comisie metodică, L.S. Matematică - Geometrie clasa a VI - a ( ore pe săptămână)
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
ENUN URI ISJ Maramure] I. Nota\i cu A dac` considera\i propozi\ia adev`rat` ]i cu F dac` este fals`. 1. Solu\ia ecua\iei
ENUN URI Clasa a VIII-a ISJ Maramure] Varianta 1 I. Nota\i cu A dac` considera\i propozi\ia adev`rat` ]i cu F dac` este fals`. 1. Solu\ia ecua\iei. 1. 5 0 x x 5 9 este x.. Func\ia f ( x) x F:, 5 7 are
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
4. Ecuatia asimptotei orizontale la + a graficului functiei f : R R, 7 9x + 8x2 f(x) = 3x 2 + 2x + 5 este.
Copyright c 007 ONG TCV Scoala Virtuala a Tanarului atematician 1 inisterul Educatiei si Tineretului Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 14 iunie 007 Profilul real Timp
Examenul de bacalaureat nańional 2013 Proba E. d) Chimie organică (nivel I/ nivel II)
Examenul de bacalaureat nańional 2013 Proba E. d) Chimie organică (nivel I/ nivel II) MODEL Toate subiectele sunt obligatorii. Se acordă din oficiu. Timpul de lucru efectiv este de 3 ore. SUBIECTUL I Subiectul
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Ministerul EducaŃiei, Cercetării, Tineretului şi Sportului Centrul NaŃional de Evaluare şi Examinare
Eamenul de bacalaueat 0 Poba E. d) Poba scisă la FIZICĂ BAREM DE EVALUARE ŞI DE NOTARE Vaianta 9 Se punctează oicae alte modalităńi de ezolvae coectă a ceinńelo. Nu se acodă facńiuni de punct. Se acodă
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
Subiecte Clasa a VI-a
Clasa a VI Lumina Math Intrebari (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns
CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ
UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar
Ministerul Educa iei i Cercet rii Serviciul Na ional de Evaluare i Examinare
Timpul efectiv de lucru este de re. Testare Na inal - 007 Prb scris la Matematic Varianta 1 I. (3puncte) Pe faia de examen, scrie i rezultatul crect lâng num rul din fa a exerci iului. 1. Rezultatul calculului
Colec ia S UBIECTE P OSIBILE EDITURA PARALELA 45
olec ia S UIETE P OSIILE Lucrare elaborat conform programei colare în vigoare pentru Evaluarea Na ional, reconfirmat prin O.M.E.N. nr. 4793/31.08.2017, privind organizarea i desf urarea Evalu rii Na ionale
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1
Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se
14. Grinzi cu zăbrele Metoda secţiunilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR GRINZI CU ZĂBRELE METODA SECŢIUNILOR CUPRINS. Grinzi cu zăbrele Metoda secţiunilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele Metoda secţiunilor
OLIMPIADA DE MATEMATICĂ ETAPA LOCALĂ CLASA A V-A
OLIMPIAA E MATEMATICĂ 3 februarie 014 CLASA A V-A 1.) Ultima cifră a unui număr natural de patru cifre este 7. acă mutăm cifra 7 de pe locul unităţilor pe locul miilor, ob inem un număr cu 86 mai mare
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
Olimpiada de Fizică Etapa pe judeţ 20 februarie 2016 Subiecte
Pagina din 5 0 februarie 06 Problema. (0 puncte) F Q La oglindă D/ În laboratorul de fizică, elevii din cercul de robotică studiază mișcarea unei mașinuțe robot teleghidate. De la distanța D = 4m Fig.
VII.2. PROBLEME REZOLVATE
Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a
CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva
C E N T R U L NAłIONAL DE EVALUARE ŞI E X A M I N A R E
C N T R U L NAłIONAL D VALUAR ŞI X A M I N A R valuarea la disciplina Fizică în cadrul examenului nańional de bacalaureat 0 Introducere xamenul nańional de bacalaureat este modalitatea esenńială de evaluare
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
MATEMATICA a I -a. 4. Care şir, are numerele scrise de la cel mai mare la cel mai mic?
MATEMATICA a I -a 1. Ce figură geometrică urmează în şirul dat? E). A) B) C) D). Câte triunghiuri sunt în mulńimea figurilor geometrice? A) 1 B) 0 C) D) 4 E) 3 3. Câte elemente sunt în exteriorul mulńimii
Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, noiembrie Subiecte clasa a VII-a
Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, -3 noiembrie 0 Subiecte clasa a VII-a. Fie în exteriorul triunghiului ascuţitunghic ABC, triunghiurile dreptunghice ABP şi ACT cu ipotenuzele
ERORI ÎN CALCULUL NUMERIC
CALCUL NUMERIC. Erori în calculul numeric 1 ERORI ÎN CALCULUL NUMERIC 1. NUMERE APROXIMATIVE EROAREA ABSOLUTĂ ŞI RELATIVĂ Numărul a se numeşte aproximare a numărului A dacă valorile lor se deosebesc neînsemnat
GRADUL II 1995 CRAIOVA PROFESORI I
GRADUL II 1995 CRAIOVA PROFESORI I 1. Fie f : R R definită prin f(x) = x(1+e x ). a) Să se arate că f este indefinit derivabilă şi că f (n) (x) = a n e x +b n xe x, ( ) n 3, ( ) x R. Deduceţi că a n+1
Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra
ale numerelor complexe în geometrie, utilizând Geogebra Adevărul matematic, indiferent unde, la Paris sau la Toulouse, este unul şi acelaşi (Blaise Pascal) Diana-Florina Haliţă grupa 331 dianahalita@gmailcom
Evaluarea la disciplina Fizică în cadrul examenului naţional de bacalaureat 2010
Evaluarea la disciplina Fizică în cadrul examenului naţional de bacalaureat 00 Examenul naţional de bacalaureat este modalitatea esenţială de evaluare a competenţelor, a nivelului de cultură generală şi
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
Laborator 6. Integrarea ecuaţiilor diferenţiale
Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul
Concursul interjudeńean de matematica REGALUL GENERAłIEI XXI,, 13.x.2007,clasa a IV-a PROPUNATOR TACEA MARIA NINITA AlegeŃi varianta corectă:
xioma supliment matematic-nr. oncursul interjudeńean de matematica REGLUL GENERłIEI XXI,, 3.x.007,clasa a IV-a PROPUNTOR TE MRI NINIT legeńi varianta corectă:. Într-un microbuz sunt 8 persoane. Microbuzul
Examen AG. Student:... Grupa:... ianuarie 2011
Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a X-a, MAI 2010 CLASA A IV-A
Ediţia a X-a, 4 5 MAI 00 CLASA A IV-A I. Suma a două numere naturale este 75. Dacă adunăm de patru ori primul număr cu de trei ori al doilea număr obţinem 40. Aflaţi numărul cel mai mare. Eugenia Miron