Περιεχόµενα. 1 Ολοκληρώµατα ιπλό Ολοκλήρωµα... 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιεχόµενα. 1 Ολοκληρώµατα ιπλό Ολοκλήρωµα... 1"

Transcript

1 Περιεχόµενα Ολοκληρώµατα. ιπλό Ολοκλήρωµα i

2

3 Κεφάλαιο Ολοκληρώµατα. ιπλό Ολοκλήρωµα Ι. Πάνω σε ορθογώνιο Εστω f : R α, β] γ, δ] R µία ϕραγµένη συνάρτηση στο ορθογώνιο R. Ορίζουµε µία διαµέριση του ορθογωνίου R, ως εξής : P α, ξ, ξ,..., ξ n, β}, P γ, n, n,..., n n, δ}, µε α ξ < ξ <... < ξ n < ξ n β µε γ n < n <... < n n < n n δ διαµερίσεις των διαστηµάτων α, β], γ, δ], αντίστοιχα, δηλαδή α, β] Το σύνολο δ n m ξ i, ξ i ], γ, δ] n j, n j ] i j η j η j γ α ξ i ξ i β R ij : i n, j m},

4 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα όπου R ij ξ i, ξ i ] n j, n j ] είναι µία διαµέριση του ορθογωνίου R. Εστω και A(R ij ) : το εµβαδόν του R ij (ξ i, ξ i )(n j, n j ) M ij sup R ij f(, ), m ij inf R ij f(, ) Αν P µία τυχούσα διαµέριση του R, ορίζουµε : n m U(f, P ) : M ij A(R ij ) : άνω άθροισµα L(f, P ) : i j n i j m m ij A(R ij ) : κάτω άθροισµα Επίσης ορίζουµε (αποδεικνύεται ότι υπάρχουν) fd(a) : inf U(f, P ) : άνω ολοκλήρωµα της fστο R. R P fd(a) : sup L(f, P ) : κάτω ολοκλήρωµα της fστο R. R P Ορισµός Η f ϑα λέγεται ολοκληρώσιµη στο ορθογώνιο R, όταν fd(a) fd(a) R R Ο αριθµός R fd(a) R fd(a) λέγεται διπλό ολοκλήρωµα της f στο R και συµβολίζεται fd(a) ή f(, )dd R R Ιδιότητες του διπλού ολοκληρώµατος Εχει τις ίδιες ιδιότητες µε το (απλό) ορισµένο ολοκλήρωµα. π.χ. i. (λ f (, ) + λ f (, )) dd λ f (, )dd + λ f (, )dd

5 . ιπλό Ολοκλήρωµα 3 ii. f(, )dd f(, ) dd Αν l k k, k : κλ. ορθ., ανά δύο δεν έχουν κοινά εσωτερικά σηµεία, τότε f(, )dd ιαδοχικά ολοκληρώµατα Ορίζονται ως l k k f(, )dd β δ α γ δ β γ α f(, )dd f(, )dd β ] δ α γ f(, )d d δ ] β γ α f(, )d d µε την υπόθεση ότι υπάρχουν τα επιµέρους (απλά) ορισµένα ολοκλη- ϱώµατα. Θεώρηµα... Εστω f : α, β] γ, δ] R συνεχής τότε υπάρχουν : f(, )dd, β δ α γ f(, )dd, δ β γ α f(, )dd και είναι ίσα. ΙΙ. Σε ϕραγµένο υποσύνολο του R Εστω f : R R ϕραγµένη συνάρτηση, ορισµένη στο ϕραγµένο σύνολο R. Εστω R κλειστό ορθογώνιο του R τέτοιο ώστε R (το R υπάρχει, αφού ϕραγµένο). Θεωρούµε τη συνάρτηση f : R R όπου f(, ) f(, ), (, ), (, ) R δηλαδή η f είναι µία επέκταση της f στο R, προφανώς ϕραγµένη.

6 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα R Ορισµός Η συνάρτηση f λέγεται ολοκληρώσιµη στο όταν η f είναι ολοκλη- ϱώσιµη στο R και ορίζουµε f(, )dd R f(, )dd Αποδεικνύεται ότι το ολοκλήρωµα f(, )dd είναι ανεξάρτητο από το ορθογώνιο R. Θεώρηµα... Αν η f : R R είναι συνεχής, τότε είναι ολοκληρώσιµη στο R. Το διπλό ολοκλήρωµα παριστάνει γεωµετρικά τα εξής : (i) dd εµβαδόν του R R (ii) R f(, )dd όγκος του στερεού Σ(f, R), όπου Σ(f, R) είναι το στερεό : Παραδείγµατα ), ], 3], f(, ) + cos(π)

7 . ιπλό Ολοκλήρωµα 5 z f(, ) f(, )dd ( + 3 cos(π) ) dd + cos(π) ] 3 d ( ) cos(π) d ] π cos(π) ) Να ϐρεθεί ο όγκος του στερεού Σ(f, R), όπου, ], ], f(, ) + V f(, )dd ( + )d + ] 3. ( + )dd ] + d

8 6 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα Πολικές Συντεταγµένες Εστω O ο πόλος. Με αφετηρία το O σχεδιάζουµε τον πολικό άξονα, κατά αντιστοιχία µε τον ϑετικό ηµιάξονα στις Καρτεσιανές συντεταγµένες. Ενα τυχαίο σηµείο P του επιπέδου µπορεί να περιγραφεί απο ένα Ϲεύγος πολικών συντεταγµένων (r, θ), όπου το r δείχνει την κατευθυνόµενη απόσταση του P απο το O και το θ δείχνει την κατευθυνόµενη γωνία του OP µε τον πολικό άξονα (θ > όταν διαγράφεται αριστερόστροφα και θ < όταν διαγράφεται δεξιόστροφα). Συσχετισµός πολικών και καρτεσιανών συντεταγµένων r cos θ, r sin θ, + r, tan θ Ασκήσεις ) Να υπολογιστεί το ολοκλήρωµα : I ( + )dd :,

9 . ιπλό Ολοκλήρωµα 7 Εφαρµόζουµε τον πολικό µετασχηµατισµό : T : r cos θ, θ π r sin θ, r. I r rdrdθ r ] dθ dθ π 8. ) Να υπολογιστεί το ολοκλήρωµα : I + dd :, Αν ( ) + θ π T G r Εφαρµόζουµε τον πολικό µετασχηµατισµό : T : r cos θ r sin θ Η εξίσωση του ηµικυκλίου σε πολικές συντεταγµένες είναι : r r cos θ, δηλαδή r cos θ. Άρα θ π και r cos θ.

10 8 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα I 8 3 cos θ 8 3 sin θ rrdrdθ cos θ( sin θ)dθ 8 3 ] π 8 sin 3 ] π θ 3 3 r 3 ] cos θ dθ 8 3 cos θdθ cos 3 θdθ sin θd sin θ 3) Να υπολογιστεί το διπλό ολοκλήρωµα : dd, όπου (, ) :,, + } R που ϐρίσκεται στο πρώτο τεταρτηµόριο και περιέχεται µεταξύ των αξόνων O, O και της περιφέρειας του κύκλου +. Παρατηρούµε ότι το είναι απλό σύνολο, δηλαδή (, ) :, ] και } (, ) :, ] και } Ετσι έχουµε : dd dd Το πρώτο διαδοχικό ολοκλήρωµα υπολογίζεται ευκολότερα ως εξής : dd dd ] d 3 ] 3. ( )d

11 . ιπλό Ολοκλήρωµα 9 Σηµείωση: Ο υπολογισµός του ολοκληρώµατος d µπορεί να γίνει εάν ε- ϕαρµόσουµε το µετασχηµατισµό : t, t (, ) t ή sin t. + Θεώρηµα..3. Εστω f : R R συνεχής στο ( απλό) ή υπάρχουν πεπερασµένα σηµεία ασυνέχειας, τότε υπάρχουν τα : f(, )dd, β α Εφαρµογή φ () φ () f(, )dd και είναι ίσα. Να υπολογιστεί το ολοκλήρωµα cos dd, όπου είναι το υποσύνολο του R που ϐρίσκεται µεταξύ της παραβολής και της ευθείας +. Το είναι - απλό : (, ) :, ] και + } cos dd + sin( cos dd + ) sin sin ] + d ] d Ασκήσεις ) Να υπολογιστεί το ολοκλήρωµα : I + + dd, όπου (, ) R : + α, + β, } Εφαρµόζουµε τον πολικό µετασχηµατισµό : r cos θ T : r sin θ

12 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα Από + α r α r α + β r β r β Άρα α r β. Από r sin θ θ π. θ T π r cos θ r sin θ (r, θ) (, ) α β r α β + π + dd β α β α r cos θ + r sin θ r rdrdθ (cos θ + sin θ)drdθ (β α) ) Να ϐρεθεί το εµβαδόν A() του συνόλου που περικλείεται από την παραβολή και τις ευθείες,. Επίσης, να υπολογισθεί ο όγκος του στερεού Σ(f, ) όπου f(, ) (, )

13 . ιπλό Ολοκλήρωµα z Το σύνολο είναι -απλό : (, ) :, ] και } V A() dd 3 3 ] 3. ] 3 + dd 6 3 ( ] d dd ) ( ( ) d ) 3 + dd 6 d ) Να υπολογιστεί το εµβαδόν του συνόλου R που περιβάλλεται από τις καµπύλες µε εξισώσεις : e,,,. Επίσης, να υπολογιστεί και ο όγκος του στερεού Σ(f, ), όπου f : R R µε f(, ) + +. Το σύνολο είναι -απλό : (, ) :, e }.

14 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα A() e dd ] e e e 3 dd (e )d z f(, ) z ++ e V ( + + )dd e + 7e ] e e 5 d e ( + + )dd (e + e + e 3 )d ) Να υπολογιστεί το διπλό ολοκλήρωµα I dd όπου : (, ) :,, + 5, 3 + }.

15 . ιπλό Ολοκλήρωµα Το σύνολο είναι -απλό : (, ) : 3, 3 5 }. dd Αλλος τρόπος dd 3 (5 6 9 )d (75 5) 5. ] 5 d ] 3 3 Το είναι και στοιχειώδες σύνολο :, όπου (, ) :, 3 }, (, ) : 5, 5 } και απλό. Ετσι : dd dd + dd 3 dd dd 5) Να υπολογιστεί το ολοκλήρωµα I dd όπου είναι η καρδιοειδής (, ) R : + + }.

16 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα Για : + ± ( + ) ή Για : ± ( + ) ( ) ή ή Εφαρµόζουµε τον πολικό µετασχηµατισµό : r cos θ, θ 3 π r sin θ, r ( cos θ) 3 π ( cos θ) 3 π I r sin θdrdθ 8 ( cos θ) 3 d( cos θ) 3 8 ] 3 ( ( cos θ) π 8 ) ( + ) Ληµνίσκος: ( + ) ( ) Εφαρµόζουµε τον πολικό µετασχηµατισµό : r cos θ r sin θ

17 . ιπλό Ολοκλήρωµα 5 r r(cos θ sin θ) r cos θ Για : ± A() A( ) A( ) A() cos θ rdrdθ tan θ θ π cos θdθ sin θ] π. 6) Να υπολογιστεί το ολοκλήρωµα : I ( + + ) 3 dd όπου είναι το τετράγωνο : (, ) :, }. r

18 6 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα I I + I ( + + ) 3 dd + ( + + ) 3 dd I cos θ π : ( + cos θ r cos θ, θ π r sin θ, r cos θ ( + r ) 3 rdrdθ ) ] dθ d sin θ sin θ π arcsin sin θ ] π π arcsin + arcsin π π 6 π I π π sin θ ( + r ) 3 rdrdθ π ] sin θ dθ π ( + sin θ) + π + arcsin cos θ ] π Άρα π π π 6 π π I I + I π + π I π 6 ( + r ) ] cos θ dθ cos θ sin θ dθ ] ( + r ) d cos θ cos θ ] sin θ dθ 7) Να υπολογιστεί το ολοκλήρωµα : I e ( + ) dd Είναι + Εφαρµόζουµε τον πολικό µετασχηµατισµό : r cos θ r sin θ

19 . ιπλό Ολοκλήρωµα 7 Άρα + r και θ π I e r rdrdθ e r ] dθ (e )dθ e π π( e ) 8) Να υπολογιστεί το ολοκλήρωµα : I e dd Είναι +

20 8 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα Άρα I e dd e ( ) ( ) d e e ] (e8 ) ] d 9) Υπολογίστε το εµβαδόν του επιπέδου χωρίου που ϐρίσκεται στο ε- σωτερικό του Ληµνίσκου : ( + ) α( ) Εφαρµόζουµε τον πολικό µετασχηµατισµό : r cos θ r sin θ r α r cos θ r α cos θ Είναι α cos θ A() rdrdθ α cos θdθ α sin θ] π α. ) Να αποδείξετε ότι ισχύει : 3 e dd 3 e, όπου (, ) :, + }. Είναι + + e e e + e e e e e Είναι + e dd + dd + dd ( + )d + 3 ] + d ] 3

21 . ιπλό Ολοκλήρωµα 9 Και + e dd + e dd + e dd e ] + d e ( + )d ] e + 3 e 3 ηλαδή 3 e dd 3 e ) Να υπολογίσετε το επικαµπύλιο ολοκλήρωµα : I α α ( α ) 3 dd α Υπολογίζεται µε αλλαγή τάξης ολοκλήρωσης Αν απλό τότε υπολογίζεται δύσκολα. Αν απλό τότε : (, ) : α, α }.

22 ΚΕΦΑΛΑΙΟ Ολοκληρώµατα I Είναι α α ( α ) 3 α dd α α ( α ) ] 3 α d ( α ) d (α + α )d α α 3 α 5 + α5 5 3 α5 8α5 5. ] α

Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 00 Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Στην παράγραφο αυτή θα δούµε πως µπορεί να χρησιµοποιηθεί το θεώρηµα Fubini για τον υπολογισµό τριπλών ολοκληρωµάτων. Ξεκινούµε µε την διατύπωση

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα. Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 4.. Ορισµοί-Ιδιότητες Έστω f : R είναι µία φραγµένη συνάρτηση πάνω σε µία κλειστή ορθογώνια περιοχή Εστω (, y ) { } R =,y :a b, c y d. = είναι µια διαµέριση της ορθογώνιας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής . Ορισµοί-Ιδιότητες ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Έστω f : R είναι µία φραγµένη συνάρτηση πάνω σε µία κλειστή ορθογώνια περιοχή Εστω (, y ) { } R =,y :a b, c y d. = είναι µια διαµέριση της ορθογώνιας περιοχής

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

Ασκήσεις στα Ολοκληρώματα, Αόριστο Ολοκλήρωμα, Ορισμένο Ολοκλήρωμα, Πολλαπλά Ολοκηρώματα για τα Γενικά Μαθηματικά ΙΙ, Τμήματος Χημείας Διδάσκων: Μιχάλης Ξένος, email : menos@cc.uoi.gr Μαρτίου. Να υπολογιστούν

Διαβάστε περισσότερα

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως Καµπύλες στον R 9. Ορισµός Μια καµπύλη στον R είναι µια συνεχής συνάρτηση σ : Ι R R όπου Ι διάστηµα ( συνήθως κλειστό και φραγµένο ) στον R. Συνήθως φανταζόµαστε την µεταβλητή t Ι ως τον χρόνο και την

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

Κεφάλαιο 9. Εφαρµογές του ορισµένου ολοκληρώµατος

Κεφάλαιο 9. Εφαρµογές του ορισµένου ολοκληρώµατος 9. Εµαδόν χωρίου Κεφάλαιο 9 Εφαρµογές του ορισµένου ολοκληρώµατος Στο 7 0 Κεφάλαιο είδαµε ότι αν f είναι µια συνάρτηση συνεχής στο κλειστό και φραγµένο διάστηµα [α,] (α

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΠΑΡΑΔΕΙΓΜΑΤΑ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 3 Πολλαπλά Ολοκληρώματα

Κεφάλαιο 3 Πολλαπλά Ολοκληρώματα Κεφάλαιο Πολλαπλά Ολοκληρώματα Διπλά Ολοκληρώματα. Έστω ότι η f ( είναι, ) ορισμένη σε ένα ορθογώνιο χωρίο : a b, c d d ΔA (, ) Δ c Δ a b Το οποίο διαμερίζουμε σε ορθογώνια υποχωρία (, ). Σχηματίζουμε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διπλά Ολοκληρώματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Ορθογώνια Χωρία Ορισμός n f( x, y) da lim f( x, y ) = Α Α 0 k

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Προσεγγίστε τo ολοκλήρωμα ( + ) I d d με αθροίσματα iemann χωρίζοντας το πεδίο ολοκλήρωσης σε ίσα ορθογώνια.

Διαβάστε περισσότερα

Λύσεις στο επαναληπτικό διαγώνισμα 3

Λύσεις στο επαναληπτικό διαγώνισμα 3 Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή

Διαβάστε περισσότερα

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος

Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παραδείγματα διπλών oλοκληρωμάτων Γ. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί με τρόπους το ολοκλήρωμα I d d 0 Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω στο ορθογώνιο χωρίο R 0,,

Διαβάστε περισσότερα

Ασκήσεις Διανυσματικής Ανάλυσης

Ασκήσεις Διανυσματικής Ανάλυσης Ασκήσεις Διανυσματικής Ανάλυσης ) Το ύψος h σε χιλιόμετρα ενός βουνού δίνεται από την σχέση h 4 == 4. α) Ένας πεζοπόρος βρίσκεται στο σημείο (,,) και κινείται προς την διεύθυνση της μεγίστης κατάβασης.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017 Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί

Διαβάστε περισσότερα

( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1

( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1 76 Παραδείγµατα και εφαρµογές )Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα C ) καµπύλη Αποδείξτε ότι το εµβαδόν Α ( D) του D δίνεται από τους τύπους Α D = d = d Απόδειξη (Ι)

Διαβάστε περισσότερα

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx. ΟΛΟΚΛΗΡΩΜΑΤΑ ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ( ) 6e ) ( + ) ) 3) ( + ) 3 + + ( 5) 3 5 ) + 3 6) + 3 ( + ) Ασκηση. Να υπολογισθούν τα ολοκληρώματα: ) cos sin ) cos ( 3) cos sin

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Ολοκληρώµατα ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 85 3 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των ολοκληρωµάτων πραγµατικών συναρτήσεων

Διαβάστε περισσότερα

12 Το αόριστο ολοκλήρωµα

12 Το αόριστο ολοκλήρωµα Το αόριστο ολοκλήρωµα. Αντιπαράγωγοι Εστω ότι η y = f ( ορίζεται στο διάστηµα I, οποιουδήποτε τύπου. Αν µια δεύτερη συνάρτηση y = F(, που ορίζεται στο ίδιο διάστηµα I, έχει την ιδιότητα F ( = f (, για

Διαβάστε περισσότερα

Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος

Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί το ολοκλήρωμα I = x e + z dv όπου = [, ] [,] [,] Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω

Διαβάστε περισσότερα

ιαµέριση (Partition) ορισµένη στο διάστηµα I = [a, b]

ιαµέριση (Partition) ορισµένη στο διάστηµα I = [a, b] ιαµέριση (Prtition) ορισµένη στο διάστηµα I = [, b] P = {x 0,x 1,x 2,...,x n } = x 0

Διαβάστε περισσότερα

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων 8 Το θεώρηµα λλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων Όως έχουµε ήδη αναφέρει η δεύτερη βασική µέθοδος υολογισµού ολλαλών ολοκληρωµάτων είναι αυτή της αλλαγής µεταβλητής, την οοία έχουµε

Διαβάστε περισσότερα

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το

Διαβάστε περισσότερα

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1.

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1. ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο -7 Ασκήσεις Αποδείξτε την ανισότητα Cuch-Schwr Για R Δείξτε ότι η ισότητα ισχύει αν και μόνο αν τα διανύσματα και είναι συγγραμμικά Αποδείξτε την τριγωνική ανισότητα

Διαβάστε περισσότερα

Κεφάλαιο 5 Πολλαπλά Ολοκληρώματα

Κεφάλαιο 5 Πολλαπλά Ολοκληρώματα Κεφάλαιο 5 Πολλαπλά Ολοκληρώματα 5. Διπλά Ολοκληρώματα σε ορθογώνιο χωρίο. 5.. Εισαγωγή Έστω ότι η f (, ) είναι ορισμένη σε ένα ορθογώνιο χωρίο : a b, c d d (, ) A c a b Το οποίο διαμερίζουμε σε ορθογώνια

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

DIPLA KAI TRIPLA OLOKLHRWMATA

DIPLA KAI TRIPLA OLOKLHRWMATA Kefˆlio 8 IPLA KAI TRIPLA OLOKLHRWMATA Σημειώσεις Γ. Γεωργίου, ΜΑΣ. 8. iplˆ oloklhr mt 8.. iplì olokl rwm se orjog nio Ορίζουμε πρώτα το διπλό ολοκλήρωμα (double integrl), R[,b]X[,d] d f(, ) da R πάνω

Διαβάστε περισσότερα

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010 Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3//00 Θέµα ( µονάδα) Θεωρούµε το σύνολο B = {x Q : x < 5}. είξτε ότι sup B = 5. Απάντηση : Για να δείξουµε ότι sup B = 5 αρκεί να δειχθεί ότι α) Το 5 είναι

Διαβάστε περισσότερα

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ- Απειροστικός Λογισμός ΙΙ Ολοκληρώματα Εφαρμογές Ολοκληρωμάτων Υπολογισμός μήκους Υπολογισμός εμβαδού Υπολογισμός όγκου Χρήση σε Τύπους/Μετρικές Φυσική Πιθανότητες Γραφική Θέματα Αναγνώρισης προτύπων

Διαβάστε περισσότερα

Σύντομη μαθηματική εισαγωγή

Σύντομη μαθηματική εισαγωγή Σύντομη μαθηματική εισαγωγή (ή πώς να γίνουν ομοιογενείς 250 φοιτητές από 130 διαφορετικά Σχολεία δύο διαφορετικούς δασκάλους ο καθένας) με δύο http://www.cc.uoa.gr/~ctrikali http://eclass.uoa.gr Α. Καραμπαρμπούνης,

Διαβάστε περισσότερα

k ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π

k ) 2 P = a2 x 2 P = 2a 2 x y 2 Q = b2 y 2 Q = 2b 2 y z 2 R = c2 z 2 R = 2c 2 z P x = 2a 2 Q y = 2b 2 R z = 2c 2 3 (a2 +b 2 +c 2 ) I = 64π Γενικά Μαθηματικά ΙΙΙ Πέμπτο σετ ασκήσεων, Λύσεις Άσκηση 1 Το θεώρημα Gauss γενικά διατυπώνεται ως: F dv = ( F η)dσ (1) V Για την άσκηση όπου μας δίνεται η σφαίρα x + y + z 4 = Φ, το κάθετο διάνυσμα η,

Διαβάστε περισσότερα

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi 18 Αλλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (1), Β= g Α Α n όου Α, Β R Jodan µετρήσιµα

Διαβάστε περισσότερα

b proj a b είναι κάθετο στο

b proj a b είναι κάθετο στο ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις. Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78

Διαβάστε περισσότερα

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων

4.3 Παραδείγµατα στην συνέχεια συναρτήσεων 5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι

Διαβάστε περισσότερα

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο

Διαβάστε περισσότερα

ΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. n S f x, y,z ΔV (1) n i i i i i 1

ΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. n S f x, y,z ΔV (1) n i i i i i 1 ΚΕΦΑΛΑΙΟ 5 ο ΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Τα τριπλά ολοκληρώματα ορίζονται με τρόπο ανάλογο με τα διπλά ολοκληρώματα. Ισχύουν ανάλογα θεωρήματα ολοκληρωσιμότητας και ανάλογες ιδιότητες. Θεωρούμε μια συνάρτηση f,,

Διαβάστε περισσότερα

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi 8 λλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (), Β= g n όου, Β Jodan µετρήσιµα υοσύνολα

Διαβάστε περισσότερα

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 8: Τεχνικές ολοκλήρωσης Α Οµάδα. Υπολογίστε τα ακόλουθα ολοκληρώµατα : + + d, + + ( + 3)( ) d, 3 + 3 + 3 + + + d. Υπόδειξη. (α) Γράφουµε + + d

Διαβάστε περισσότερα

1 3 (a2 ρ 2 ) 3/2 ] b V = [(a 2 b 2 ) 3/2 a 3 ] 3 (1) V total = 2V V total = 4π 3 (2)

1 3 (a2 ρ 2 ) 3/2 ] b V = [(a 2 b 2 ) 3/2 a 3 ] 3 (1) V total = 2V V total = 4π 3 (2) Γενικά Μαθηματικά ΙΙΙ Δεύτερο σετ ασκήσεων, Λύσεις Άσκηση 1 Για την επίλυση της άσκησης και την εύρεση του ζητούμενου όγκου, αρχικά αναγνωρίζουμε ότι ο τόπος ολοκλήρωσης, είναι ο κύκλος x + y = b, ο οποίος

Διαβάστε περισσότερα

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις. Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 9 εκδόσεις Καλό πήξιμο Τα πάντα για τα Ολοκληρώματα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008 ΘΕΜΑΤΑ B Σεπτέμβριος 8. Να προσδιοριστούν με τη μέθοδο των ελαχίστων τετραγώνων οι συντελεστές a και b της εξίσωσης y = be a, ώστε να περιγράφει τα πειραματικά σημεία ( i, y i ), i =,,, N.. Να υπολογιστούν

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

Ανασκόπηση-Μάθημα 24, 25 Διπλό ολοκλήρωμα

Ανασκόπηση-Μάθημα 24, 25 Διπλό ολοκλήρωμα Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 4, 5 Διπλό ολοκλήρωμα Στο μαθήματα 4 και 5 ( //8, 6 //8 ), μιλήσαμε για το διπλό ολοκλήρωμα.

Διαβάστε περισσότερα

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας

Σηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας Σηµειώσεις ιαφορικές Εξισώσεις- Μετασχηµατισµός Lplce- Σειρές Fourier Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 4 Περιεχόµενα Κεφάλαιο Επισκόπηση γνωστών εννοιών Σειρές πραγµατικών αριθµών Σειρές συναρτήσεων 3 Γενικευµένα

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9 Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9 Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Η καµπύλη y = /x µε x >, περιστρέφεται γύρω από τον άξονα Ox και δηµιουργεί ένα στερεό µε επιφάνεια S και όγκο V. είξτε

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

4 Συνέχεια συνάρτησης

4 Συνέχεια συνάρτησης 4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 TΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. R = x,y,z : a x b, a y b, a z b.

ΚΕΦΑΛΑΙΟ 5 TΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. R = x,y,z : a x b, a y b, a z b. ΚΕΦΑΛΑΙΟ 5 TΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ 5.. Ορισμοί-Ιδιότητες Έστω f : R είναι φραγμένη συνάρτηση πάνω σε κλειστό ορθογώνιο παραλληλεπίπεδο Εστω x, y, z R = x,y,z : a x b, a y b, a z b. είναι μια διαμέριση του

Διαβάστε περισσότερα

< F ( σ(h(t))), σ (h(t)) > h (t)dt.

< F ( σ(h(t))), σ (h(t)) > h (t)dt. ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ IV, /6/9 Θέμα 1. Εστω : a 1, β 1 ] R μια C 1 καμπύλη. Μια C 1 καμπύλη ρ : a, β] R λέγεται αναπαραμετρικοποίηση της αν υπάρχει h : a, β] a 1, β 1 ], 1 1 επί και

Διαβάστε περισσότερα

2 η ΕΡΓΑΣΙΑ Παράδοση

2 η ΕΡΓΑΣΙΑ Παράδοση η ΕΡΓΑΣΙΑ Παράδοση --8 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Άσκηση η Υπολογίστε τα κάτωθι όρια: cos α) β) γ) δ) ε) sin 5 α) Εφαρμόζουμε τον κανόνα L Hospital μια φορά (απροσδιοριστία της μορφής /)

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 8: Διπλά ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

8 Ακρότατα και µονοτονία

8 Ακρότατα και µονοτονία 8 Ακρότατα και µονοτονία Πρόταση 8.1. Εστω ότι η y = f (x) είναι συνεχής σε κάποιο διάστηµα I και έχει παράγωγο σε κάθε εσωτερικό σηµείο του I. 1. Η y = f (x) είναι σταθερή στο I αν και µόνο να είναι f

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii08/laii08.html Παρασκευή 4 Μαίου

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΙΛΥΣΗΣ ΑΣΚΗΣΕΩΝ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f

Διαβάστε περισσότερα

r (t) dt f ds r (t) = (x (t)) 2 + (y (t)) 2 + (z (t)) 2.

r (t) dt f ds r (t) = (x (t)) 2 + (y (t)) 2 + (z (t)) 2. ΑΝΑΛΥΣΗ ΙΙ Μήκος καμπύλης και Μέση τιμή συνάρτησης κατά μήκος καμπύλης Ορισμός : Εστω r μία απλή και λεία παραμετρική καμπύλη του R που ορίζεται από την απλή και λεία παραμέτρηση r : [a, b] R R. Ως μήκος

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2 1994 ΘΕΜΑΤΑ 1. ίνεται η συνάρτηση f()=,. Α) Αν ε είναι η εφαπτοµένη της γραφικής παράστασης C της συνάρτησης f στο σηµείο Μ(α, α ), α >, να βρείτε το εµβαδόν του χωρίου που περικλείεται από τη C, την ευθεία

Διαβάστε περισσότερα

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1 Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες

Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 12 Συναρτήσεις πολλών μεταβλητών-καμπύλες-πολικές συντεταγμένες Στο δωδέκατο μάθημα (24/10/2018)

Διαβάστε περισσότερα

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f Συνάρτηση f, λέγεται η διαδικασία µε βάση την οποία σε κάθε στοιχείο χ ενός συνόλου Α αντιστοιχούµε ακριβώς ένα στοιχείο ενός άλλου συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισµού ( ή σύνολο ορισµού ) της

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( )

1. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι. β α. = [f (x) ηµx] - [f (x) συνx] β α. ( ) Ερωτήσεις ανάπτυξης. ** α) Αν η f είναι δυο φορές παραγωγίσιµη συνάρτηση, να αποδείξετε ότι β ( f () f () ) + α ηµ d β α = [f () ηµ] - [f () συν] β α. ( ) β) Αν f () = ηµ, να αποδείξετε ότι f () + f ()

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος 3/4/6 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος Άσκηση (Μονάδες.5) Έστω το ολοκλήρωμα: I da {(, ) :, } 3 ( + 3 ) Να εκφράσετε το ολοκλήρωμα σε νέες συντεταγμένες, οι οποίες ορίζονται

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 8/4/8 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να εξετάσετε ως προς τα τοπικά ακρότατα τη συνάρτηση: f x x x (,

Διαβάστε περισσότερα

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Eo! Bookmak not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία μέτρου και ολοκλήρωσης Ενότητα 4: Ολοκλήρωση επί Καρτεσιανών γινομένων Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 8: Ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mil: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii09/laii09.html Παρασκευή 0 Μαίου

Διαβάστε περισσότερα

Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη

Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη Διδάσκοντες: Δάλλα - Αλικάκος 6 Ιουλίου 204 Θέμα (α) Από την γνωστή ανισότητα a 2 + b 2 2 ab, όταν (x, y) (0, 0), τότε ισχύει: f(x, y) f(0, 0) x 2 y 2x

Διαβάστε περισσότερα

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ETION 1 13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 13.1 Ορισµοί Μεγέθη Μια ποσότητα που εκφράζεται από ένα µόνο πραγµατικό αριθµό καλείται βαθµωτό µέγεθος. Μια ποσότητα που εκφράζεται από περισσότερους από έναν πραγµατικούς

Διαβάστε περισσότερα

Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση

Ονοματεπώνυμο Τμήμα. 1. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση ΓΕΛ. ΚΑΣΤΡΙΤΣΙΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 202- Ονοματεπώνυμο Τμήμα ΘΕΜΑ: ΕΜΒΑΔΟΝ ΠΑΡΑΒΟΛΙΚΟΥ ΧΩΡΙΟΥ. Τι ονομάζουμε εμβαδόν ενός επιπέδου σχήματος (χωρίου) και πως υπολογίζεται αυτό; Απάντηση Το πρόβλημα μελετήθηκε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a 7 Έστω Το θεώρηµα του Tylor στη µια µεταβλητή Ι ανοικτό διάστηµα Ι και : Ι φορές διαφορίσιµη συνάρτηση στο Ι, (. Γράφουµε, ( = + +... + +,, Ι, όπου!, είναι το υπόλοιπο Tylor ( κέντρου και τάξης και ( Ρ

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,

Διαβάστε περισσότερα

5 Παράγωγος συνάρτησης

5 Παράγωγος συνάρτησης 5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση 44 ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση F : U R R. Για εµάς φυσικά µια τέτοια συνάρτηση θα θεωρείται ότι είναι τουλάχιστον συνεχής και συνήθως C και βέβαια

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφείο 102, Στρόβολος 2003, Λευκωσία Τηλέφωνο: 357 22378101 Φαξ: 357 22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 1 ΚΕΦΑΛΑΙΟ 1 : ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 11 ΕΙΣΑΓΩΓΗ Σε ότι ακολουθεί συμβολίζουμε με το σύνολο των φυσικών αριθμών και με και R τα σύνολα των ακεραίων των ρητών και των πραγματικών αριθμών

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

14 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ SECTION 4 ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 4. Γενικοί Ορισµοί Η θέση ενός σηµείου P στον τρισδιάστατο Ευκλείδειο χώρο µπορεί να καθορισθεί µε ορθογώνιες καρτεσιανές συντεταγµένες (x y οι οποίες µετριώνται

Διαβάστε περισσότερα

f(x) dx. f(x)dx = 0. f(x) dx = 1 < 1 = f(x) dx. Θα είχαµε f(c) = 0, ενώ η f δεν µηδενίζεται πουθενά στο [0, 2].

f(x) dx. f(x)dx = 0. f(x) dx = 1 < 1 = f(x) dx. Θα είχαµε f(c) = 0, ενώ η f δεν µηδενίζεται πουθενά στο [0, 2]. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riem Α Οµάδα. Εστω f : [, ] R. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας).

Διαβάστε περισσότερα