Napomena: Zadaci za DZ su označeni plavom bojom!
|
|
- Χλωρίς Καψής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 DODATNI ZADACI ZA DOMAĆU ZADAĆU I VJEŽBU (uz Seminar 05 i 06) Napomena: Zadaci za DZ su označeni plavom bojom! 1. Koliko je grama fosforne kiseline i kalcijeva hidroksida potrebno za dobivanje 100 g kalcijeva fosfata? R: 71,6 g kalcijeva hidroksida i 63,2 g fosforne kiseline 2. Koliko se može dobiti kalijeva kromova aluna, KCr(SO 4 ) 2 10 H 2 O iz 10 g K 2 Cr 2 O 7? R: m(kcr(so 4 ) 2 ) 10 H 2 O = 31,48 g 3. U otopinu koja sadrži 5,00 g aluminijevog klorida dodano je 9,20 g barijeva hidroksida oktahidrata. Izračunajte a) masu nastalog aluminijevog hidroksida i b) masu reaktanta u suvišku. R: m(aluminijev hidroksid) = 1,519 g; masa reaktanta u suvišku = 2,404 g 4. Antimonov(III) jodid nastaje izravnom sintezom elementarnog antimona i joda. Izračunajte a) masu antimonovog(iii) jodida, b) masu reaktanta u suvišku, ako 4,00 g antimona reagira sa 6,60 g joda. Napišite odgovarajuću kemijsku reakciju. R: a) m(sbi 3 ) = 8,692 g; b) m(reaktant u suvišku) = 1,887 g 5. Neutralizacijom i uparavanjem nastale otopine treba se iskristalizirati najveća moguća količina soli NaK 2 PO 4. Koliko grama otopine fosforne kiseline, w(h 3 PO 4 ) = 87 % i pojedinih hidroksida treba uzeti, raspolažemo li s 10,0 g KOH i 7,50 g NaOH? R: m(h 3 PO 4 ) otopina = 10,0 g; m(koh) = 10,0 g; m(naoh) = 3,56 g 6. U 100,0 ml otopine sumporne kiseline nepoznate koncentracije dodano je 150,0 ml otopine natrijevog hidroksida, c(naoh) = 2,000 mol/l. Za neutralizaciju natrijevog hidroksida, preostalog nakon reakcije sa sumpornom kiselinom, utrošeno je 43,0 ml otopine klorovodične kiseline, c(hcl) = 0,5 mol/l. Izračunajte nepoznatu koncentraciju otopine sumporne kiseline. R: c(h 2 SO 4 ) = 1,392 mol/l 7. Izračunajte koliko treba aluminija i amonijevog perklorata, NH 4 ClO 4, za dobivanje 14, 228 g aluminijevog klorida, ako aluminij treba dodati u 56,00 %-tnom suvišku. Napišite odgovarajuću jednadžbu kemijske reakcije, ako su produkti reakcije aluminijev klorid, dušikov(ii) oksid, aluminijev oksid i vodena para. R: m(al) = 13,48 g; m(nh 4 ClO 4 ) = 37,584 g 8. Na 25,00 g fosforova(iii) oksida, P 4 O 6, dodano je 633,2 ml kalijevog permanganata, c(kmno 4 ) = 0,2500 mol dm -3. Dobivena otopina je zakiseljena klorovodičnom kiselinom. Neizjednačena jednadžba rekacije (riješiti redoks reakciju!) je: MnO H2 O + P 4 O 6 + H + H 3 PO 4 + Mn 2+
2 Izračunajte a) masu dobivene fosforne kiseline i b) masu reaktanta u suvišku i c) iskažite koliko je to % reaktanta u suvišku. R: a) m(h 3 PO 4 ) = 38,78 g; m(reaktant u suvišku) = 3,234 g 14,86 % reaktanta u suvišku 9. Izračunajte masu reaktanta u suvišku i iskažite suvišak tog reaktanta u %, ako se na 3,00 g mramora u kojem je maseni udio kalcijeva karbonata, w(caco 3 ) = 96 %, dodalo 7,0 ml otopine klorovodične kiseline u kojoj je maseni udio kiseline, w(hcl) = 36,00 %, a gustoća otopine je 1,18 kg/l. R: m(reaktant u suvišku) = 0,8748 g 41,7 % reaktanta u suvišku 10. Izračunajte koliki je volumen otopine natrijeva tiosulfata, koncentracije otopine c = 0,1 mol/l potreban za otapanje 5 g srebrova klorida, ako je natrijev tiosulfat potrebno dodati u suvišku od 15 %? Srebrov kation gradi sa tiosulfatnim anionom stabilan kompleksni anion prema jednadžbi reakcije: R: V(Na 2 S 2 O 3 ) = 803 ml AgCl (s) + 2 S 2 O 3 2- (aq) [Ag(S2 O 3 ) 2 ] 3 - (aq) + Cl - (aq) 11. Izračunajte masu željeza koja se može dobiti iz 65,0 t magnetita, u kome je maseni udio Fe 3 O 4, w(fe 3 O 4 ) = 82,5 %, ako je iskorištenje procesa, η = 91,5 %? R: m(fe) = 35,5 t 12. Koliko kg koncentrirane sumporne kiseline, w(h 2 SO 4 ) = 96 % se može dobiti iz 1 t željezove rude koja sadrži 66 % FeS 2, ako se proces zbiva prema sljedećim reakcijama: 4 FeS O 2 2 Fe 2 O SO 2 (iskorištenje reakcije je 85 %) 2 SO2 + O2 2 SO3 (iskorištenje reakcije je 92 %) SO 3 + H 2 O H 2 SO 4 (iskorištenje reakcije je 98 %) R: m(h 2 SO 4 ) otopina = 862 kg 13. Izračunajte masu amonijaka i masu otopine dušične kiseline u kojoj je maseni udio kiseline, w(hno 3 ) = 42,0 %, koje treba pomiješati da bi se dobilo 115,0 g amonijeva nitrata, ako je iskorištenje reakcije 95,8 %, a reaktanti su u stehiometrijakom omjeru. R: m(nh 3 ) = 25,5 g; m(hno 3 ) otopina = 225,0 g 14. Djelovanjem klorovodične kiseline na kalcijev karbonat nastaje kalcijev klorid, ugljikov(iv) oksid i voda. Izračunajte masu kalcijeva karbonata i volumen klorovodične kiseline koncentracije, c(hcl) = 10,21 mol/l koje je potrebno pomiješati, da bi se dobilo 82,49 dm 3 ugljikovog(iv) oksida pri tlaku, p = 756 mm Hg i temperaturi, t = 25 0 C, ako se reakcijom gubi 12 % CO 2, a reaktanti su u stehiometrijskom omjeru. R: m(caco 3 ) = 381,5 g; V(HCl) otopina = 746,5 ml
3 15. Izračunajte iskorištenje reakcije, ako se iz 85,8 kg pirita, u kojemu je maseni udio željezova(ii) sulfida, w(fes 2 ) = 90,4 %, dobije 79,0 kg sumporovog(iv) oksida. R: η = 95,2 % 16. Reakcije koje se zbivaju u postrojenju za uklanjanje otpadnog fluora su sljedeće: 2 F NaOH O NaF + 2 H 2 O 2 NaF + CaO + 2 H 2 O CaF NaOH Nakon nekog vremena uklonjeno je kg fluora, za što je utrošeno kg CaO. Koliko je iskorištenje vapna? R: η(cao) = 29,51 % 17. a) Koliko aluminija se može dobiti reakcijom 2,26 g natrija i 2,55 g aluminijevog oksida, ako je iskorištenje reakcije 75 %? b) Izračunajte mase neizreagiralih reaktanata. Neizjednačena jednadžba kemijske reakcije je: Na (l) + Al 2 O 3 (s) Al (l) + Na 2 O (s) R: m(al) = 0,664 g; m(naoh) neizreagiralo = 0,566 g; m(al 2 O 3 ) neizreagiralo = 1,295 g 18. U jednoj kemijskoj reakciji su reaktanti U(SO 4 ) 2, KMnO 4 i voda, a produkti su sumporna kiselina i sulfati kalija, mangana i uranila, UO a) Napišite jednadžbu te kemijske reakcije i navedite koja molekulska vrsta je reducens. b) Izračunajte masu MnSO 4 u gramima koja će nastati kada se pomiješa 100 g U(SO 4 ) 2 s 50 g KMnO 4, ako je iskorištenje reakcije 95 %. c) Izračunajte mase neizreagiralih reaktanata (vodu ne). R: m(mnso 4 ) = 13,34 g; m(u(so 4 ) 2 ) neizreagiralo = 4,99 g; m(kmno 4 ) neizreagiralo = 36,06 g 19. Zagrijavanjem reakcijske smjese natrijeva klorida i koncentrirane otopine sumporne kiseline, w(h 2 SO 4 ) = 92 %, ρ(h 2 SO 4 ) otopina = 1,8240 kg/l dobije se klorovodična kiselina. Izračunajte masu natrijevog klorida i volumen zadane otopine sumporne kiseline koji su potrebni za dobivanje 9 L otopine klorovodične kiseline, w(hcl) = 22 %, ρ(hcl) otopina = 1,1789 kg/l, ako je iskorištenje procesa 94,2 %, a sumpornu kiselinu treba dodati u suvišku od 12 %. R: m(nacl) = 3,97 kg; V(H 2 SO 4 ) otopina = 2,22 L 20. Reakcijom klorovodične kiseline i legure koja sadrži 20% aluminija i 80% cinka (oba metala reagiraju s klorovodičnom kiselinom) dobije se plinoviti vodik. Izračunajte masu legure koju je potrebno uzeti da bi se pri tlaku, p = 1,02 bar i temperaturi, t = 21 0 C, dobila 1 L vodika. R: 1,79 g 21. U vodi je otopljeno 15,0 g smjese natrijeva hidrogenkarbonata, NaHCO 3 i natrijeva karbonata, Na 2 CO 3. Reakcijom otopine s klorovodičnom kiselinom (obje soli reagiraju) te uparavanjem otopine dobiveno je 11,0 g natrijeva klorida, NaCl. Izračunajte maseni udio natrijeva karbonata u smjesi. R: w(na 2 CO 3 ) smjesa = 39,6 %
4 22. Izračunajte masene udjele kalcijeva oksida i kalcijeva karbonata u smjesi, ako od 55,0 g smjese žarenjem preostane 34,0 g. Kalcijev karbonat se žarenjem raspada na kalcijev oksid i ugljikov dioksid. R: w(caco 3 ) = 86,7 %; w(cao) = 13,3 % 23. a) Izračunajte volumen plinovitog vodika koja se dobije pri tlaku, p = 0,985 bar i temperaturi, t = 23 0 C, reakcijom 73,6 g legure koja sadrži 80,3 % aluminija i 19,7 % magnezija s otopinom solne kiseline masenog udjela kiseline, w(hcl) = 31,2 % i gustoće otopine, ρ(hcl) otopina = 1,156 g/ml. b) Izračunajte potrebni volumen solne kiseline. Oba metala reagiraju s kiselinom. Napišite jednadžbe kemijskih reakcija. R: V(H 2 ) = 97 L; V(HCl) = 784,7 ml NAPOMENA: Rezultati svih zadataka su još jednom provjereni i ispravci su podcrtani i označeni debljim znakovima. Ako netko od studenata uoči još neku pogrešku, molimo da se javi osobno ili mailom, kako bi se dvojbeni rezultat još jednom provjerio. Hvala!! ODMAH ZAPOČNITE S RADOM! U fotokopiraonici se od 7. prosinca nalaze riješeni zadatci 13., 15., 18. i 22. pod nazivom Dodatni zadaci 2-Tkalčec, koji se nisu stigli izraditi na skupnim konzultacijama.
5
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότεραPripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA
Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA Relativna skala masa elemenata: atomska jedinica mase 1/12 mase atoma ugljika C-12. Unificirana jedinica atomske mase (u)
Διαβάστε περισσότεραKEMIJSKO RAČUNANJE. uvod DIMENZIJSKA ANALIZA. odnosi masa reaktanata i produkata zakon o održavanju masa različito zadana količina reaktanata
KEMIJSKO RAČUNANJE uvod odnosi masa reaktanata i produkata zakon o održavanju masa različito zadana količina reaktanata MOLNA METODA: pristup određivanja količine produkata (reaktanata) kemijskom reakcijom
Διαβάστε περισσότεραUKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE II razred UKUPAN BROJ OSVOJENIH BODOVA Test regledala/regledao...... Podgorica,... 008. godine 1. Izračunati steen disocijacije slabe kiseline, HA, ako je oznata analitička koncentracija
Διαβάστε περισσότεραKEMIJSKA RAVNOTEŽA II
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 09 EMIJSA RAVNOTEŽA II Ravnoteže u otopinama elektrolita 2 dr. s. Biserka Tkalče dr. s. Lidija Furač EMIJSA RAVNOTEŽA II ONJUGIRANE
Διαβάστε περισσότεραZADACI. Prilog pripremi ispita za slijedeće kolegije. Analitička kemija Analitička kemija II
ZADACI Prilog pripremi ispita za slijedeće kolegije Analitička kemija Analitička kemija I Analitička kemija II 1. Izračunajte volumen kloridne kiseline (ρ = 1,19 g/ml, w(hcl) = 37,0 %) potreban za pripravu
Διαβάστε περισσότεραHeterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima
Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom
Διαβάστε περισσότεραS t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Διαβάστε περισσότερα5. KONCENTRACIJA OTOPINA
5. KONCENTRACIJA OTOPINA Fizičke veličine koncentracije Fizička veličina Simbol Definicija Jedinica* množinska koncentracija otopljene tvari B; masena koncentracija otopljene tvari B; molalitet otopljene
Διαβάστε περισσότεραVježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom
Kolegij: Obrada industrijskih otpadnih voda Vježba: Uklanjanje organskih bojila iz otpadne vode koagulacijom/flokulacijom Zadatak: Ispitati učinkovitost procesa koagulacije/flokulacije na obezbojavanje
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραRepublika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo
Republika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo ŠKOLSKO NATJECANJE IZ KEMIJE učeni(ka)ca osnovnih i srednjih škola 2015. PISANA
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότεραΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Χημεία Α Λυκείου Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 57 1.. 1 kg = 1000 g 1 g = 0,001 kg 1
Διαβάστε περισσότεραPrirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 018. Rješenja zadataka iz HEMIJE za VIII razred osnovne škole 1. Posmatrati sliku i izračunati: a) masu kalijum-permanganata
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραPRIPREMA OTOPINA. Vježba 10. OTOPINE. Uvod:
Vježba 0. OTOPINE PRIPREMA OTOPINA Uvod: Koncentracija je skupni naziv za veličine koje određuju sastav neke smjese. Smjese mogu biti plinovite, tekuće i čvrste. Tekuće i čvrste mogu biti homogene i heterogene.
Διαβάστε περισσότεραKEMIJSKA RAVNOTEŽA II
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 08 EMIJSA RAVNOTEŽA II Ravnoteže u otopinama elektrolita 1 dr. sc. Biserka Tkalčec dr. sc. Lidija Furač EMIJSA RAVNOTEŽA II -
Διαβάστε περισσότεραKiselo bazni indikatori
Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότεραVodik i njegovi spojevi Skupina elemenata i njihovi spojevi Skupina elemenata i njihovi spojevi Skupina elemenata i njihovi
ZBIRKA ZADATAKA IZ ANORGANSKE KEMIJE Zagreb, 2005 1 ZBIRKA ZADATAKA IZ ANORGANSKE KEMIJE (za internu upotrebu) Dr. sc. Marina Cindrić, red. prof. Dr. sc. Višnja Vrdoljak, izv. prof. Zagreb, listopad 2005.
Διαβάστε περισσότεραRepublika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo
Republika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo ŠKOLSKO NATJECANJE IZ KEMIJE učeni(ka)ca osnovnih i srednjih škola 05. PISANA
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραOSNOVNA ŠKOLA HEMIJA
OSNOVNA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 6 7. 10 8. 8 9. 8 10. 10 11. 8 12. 8 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραKEM KEMIJA. Ispitna knjižica 1 KEM.25.HR.R.K1.20 KEM IK-1 D-S025. KEM IK-1 D-S025.indd :05:13
KEM KEMIJA Ispitna knjižica 1 KEM.25.HR.R.K1.20 12 1.indd 1 2.5.26. 14:05:13 Prazna stranica 99 2.indd 2 2.5.26. 14:05:13 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i
Διαβάστε περισσότερα4 2. Opis reakcije zamijeni uravnoteženom kemijskom jednadžbom s oznakom
Školsko natjecanje iz kemije u šk. god. 2009.010. ostv max 1. Što je zajedničko česticama u paru? Kako se zajedničkim imenom zove svaki par čestica? a) Cr 3+ i Al 3+ _ jednaki naboj (ili nabojni broj)
Διαβάστε περισσότεραPRAKTIKUM IZ OPĆE KEMIJE II (preddiplomski studij biologije-kemije i preddiplomski studij fizike-kemije) Dodatak
PRAKTIKUM IZ OPĆE KEMIJE II (preddiplomski studij biologije-kemije i preddiplomski studij fizike-kemije) Dodatak Zagreb, veljača 2007. PRAKTIKUM OPĆE KEMIJE II (za studente biol. - kem. i fiz. - kem.)
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα
Διαβάστε περισσότεραUKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE VIII razred UKUPAN BROJ OSVOJENIH BODOVA Test pregledala/pregledao...... Podgorica,... 2008. godine UPUTSTVO TAKMIČARIMA Zadatak Bodovi br. 1. 10 2. 10 3. 10 4. 5 5. 10 6. 5 7.
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότεραhttp://ekfe.chi.sch.gr ΙΑΝΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων
http://ekfe.chi.sch.g 5 η - 6 η Συνάντηση ΙΑΝΟΥΑΡΙΟΣ 010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων Παρασκευή διαλύματος ορισμένης συγκέντρωσης αραίωση διαλυμάτων Παρασκευή και ιδιότητες
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότεραRepublika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo
Republika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo ŠKOLSKO NATJECANJE IZ KEMIJE učeni(ka)ca osnovnih i srednjih škola 201. PISANA
Διαβάστε περισσότεραNumerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Διαβάστε περισσότεραpanagiotisathanasopoulos.gr
. Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4
ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της
Διαβάστε περισσότερα2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Διαβάστε περισσότεραFakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc.
Fakultet kemijskog inženjerstva i tehnologije Sveučilišta u Zagrebu Seminar 06 Plinski zakoni dr. sc. Biserka Tkalčec dr. sc. Lidija Furač Pri normalnim uvjetima tlaka i temperature : 11 elemenata su plinovi
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραRepublika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo
Republika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo ŠKOLSKO NATJECANJE IZ KEMIJE učeni(ka)ca osnovnih i srednjih škola 05. PISANA
Διαβάστε περισσότεραZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.
Διαβάστε περισσότεραΘέμα Α. Ονοματεπώνυμο: Χημεία Α Λυκείου Διαγώνισμα εφ όλης της ύλης. Αξιολόγηση :
Ονοματεπώνυμο: Μάθημα: Υλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση : Χημεία Α Λυκείου Διαγώνισμα εφ όλης της ύλης Τσικριτζή Αθανασία Θέμα Α 1. Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες ερωτήσεις.
Διαβάστε περισσότεραMATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Διαβάστε περισσότεραIZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Διαβάστε περισσότεραPrirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 018. Rješenja zadataka iz HEMIJE za II razred srednje škole 1. Izračunaj masu magnezijum-sulfata heptahidrata (u
Διαβάστε περισσότεραΟνοματεπώνυμο: Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση. Αξιολόγηση :
Ονοματεπώνυμο: Μάθημα: Υλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση : Χημεία Α Λυκείου Αριθμός Οξείδωσης Ονοματολογία Απλή Αντικατάσταση Τσικριτζή Αθανασία Θέμα Α 1. Να επιλέξετε τη σωστή απάντηση σε καθεμία
Διαβάστε περισσότερα(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραVodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju
Vodik Najzastupljeniji element u svemiru (maseni udio iznosi 90 %) i sastavni dio Zvijezda. Na Zemlji je po masenom udjelu deseti element po zastupljenosti. Zemljina gravitacija premalena je da zadrži
Διαβάστε περισσότεραΧημεία Γ ΓΕΛ 15 / 04 / Σελίδα 1 από 7. ΘΕΜΑ Α A1. β - 5 μονάδες. A2. γ - 5 μονάδες. A3. α - 5 μονάδες. A4. β - 5 μονάδες. A5.
Γ ΓΕΛ 15 / 04 / 018 Χημεία ΘΕΜΑ Α A1. β - 5 μονάδες A. γ - 5 μονάδες A3. α - 5 μονάδες A4. β - 5 μονάδες A5. β - 5 μονάδες ΘΕΜΑ Β Β1. i. Κατά τη διάρκεια της αντίδρασης η πίεση μειώνεται γιατί μειώνεται
Διαβάστε περισσότεραTvari 1. lekcija
1. lekcija Tvari 1. Tvari Uvod Kemija je prirodna znanost koja proučava sastav, građu i svojstva tvari, reakcije među tvarima i čimbenike koji utječu na kemijske reakcije. Tvari izgrađuju sve što nas okružuje.
Διαβάστε περισσότερα2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η : A) 9,8g H 3 PO 4 αντιδρούν με την κατάλληλη ποσότητα NaCl σύμφωνα με την χημική εξίσωση: H 3 PO 4 + 3NaCl Na 3 PO 4 + 3HCl. Να υπολογίσετε πόσα λίτρα αέριου HCl παράγονται,
Διαβάστε περισσότερα11. ELEKTROKEMIJA C 40,5 kw h ,5 mol 0,133 cm
11. ELEKTROKEMIJA 11.1. Vidi STEHIOMETRIJA Najprije izračunajmo množinu bakra u 80 kg bakra.. m(cu) 80 000 g n(cu) = = = 1258,85 mol M(Cu) 63,55 g mol 1 Napišimo najprije jednadžbu reakcije. Cu 2+ (aq)
Διαβάστε περισσότεραRepublika Hrvatska - Ministarstvo znanosti, obrazovanja i športa Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo
Republika Hrvatska - Ministarstvo znanosti, obrazovanja i športa Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo ŠKOLSKO NATJECANJE IZ KEMIJE učeni(ka)ca osnovnih i srednjih škola 202. PISANA
Διαβάστε περισσότεραXHMEIA ΚΑΤΕΥΘΥΝΣΗΣ. Απαντήσεις Θεμάτων Πανελληνίων Επαναληπτικών Εξετάσεων Γενικών Λυκείων. ΘΕΜΑ Α Α1. γ Α2. β Α3. δ Α4. γ Α5. α ΘΕΜΑ Β. Β1. α.
27 Μαΐου 2015 XHMEIA ΚΑΤΕΥΘΥΝΣΗΣ Απαντήσεις Θεμάτων Πανελληνίων Επαναληπτικών Εξετάσεων Γενικών Λυκείων ΘΕΜΑ Α Α1. γ Α2. β Α3. δ Α4. γ Α5. α ΘΕΜΑ Β Β1. α. Σωστό Το γινόμενο της Κ a ασθενούς οξέος ΗA με
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ)
ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ
Διαβάστε περισσότεραΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ
ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ Τι είναι ο αριθμός οξείδωσης Αριθμό οξείδωσης ενός ιόντος σε μια ετεροπολική ένωση ονομάζουμε το πραγματικό φορτίο του ιόντος. Αριθμό οξείδωσης ενός
Διαβάστε περισσότεραAkvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότερα3. Računanje u kemiji
3. Računanje u kemiji 3.1. Zaokruživanje Na maturi iz kemije iskazivanje rezultata nije se do sada gledalo osobito strogo, ali dobro ga je savladati jer spada u osnove znanstvene kulture: konačne rezultate
Διαβάστε περισσότεραPRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
Διαβάστε περισσότεραΓια τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή.
ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ(5) Για τις προτάσεις Α1 έως και Α5 να γράψετε
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΧΗΜΕΙΑ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ Ημερομηνία: Τετάρτη 11 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α1. β Α. γ Α3. δ Α4. γ Α5. α Λ, β Λ, γ Λ, δ Σ, ε Λ. ΘΕΜΑ Β Β1.
Διαβάστε περισσότεραA B C D. v v k k. k k
Brzina kemijske reakcije proporcionalna je aktivnim masama reagirajućih tvari!!! 1 A B C D v2 1 1 2 2 o C D m A B v m n o p v v k k m A B o C D p C a D n A a B A B C D 1 2 1 2 o m p n 1 2 n v v k k K a
Διαβάστε περισσότεραΧηµεία Γ ΓΕΛ 15 / 04 / 2018
Γ ΓΕΛ 15 / 04 / 2018 Χηµεία ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: A1. Στην αντίδραση με χημική εξίσωση
Διαβάστε περισσότεραZadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Διαβάστε περισσότεραAΝΑΛΟΓΙΑ ΜΑΖΩΝ ΣΤΟΧΕΙΩΝ ΧΗΜΙΚΗΣ ΕΝΩΣΗΣ
2 ο Γυμνάσιο Καματερού 1 ΦΥΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΥΛΗΣ 1. Πόσα γραμμάρια είναι: ι) 0,2 kg, ii) 5,1 kg, iii) 150 mg, iv) 45 mg, v) 0,1 t, vi) 1,2 t; 2. Πόσα λίτρα είναι: i) 0,02 m 3, ii) 15 m 3, iii) 12cm
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα
Διαβάστε περισσότεραIspitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Διαβάστε περισσότεραΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ ο Για τις ερωτήσεις. -.4 να γράψετε στο
Διαβάστε περισσότεραΠορεία ανακρυστάλλωσης: Τα συνήθη βήματα μιας ανακρυστάλλωσης είναι τα ακόλουθα:
Εργαστήριο Οργ. Χημείας 1 ου Εξαμήνου - Περιεχόμενα Μαθήματος Εισαγωγή στο Εργαστήριο Οργανικής Χημείας. Υάλινα σκεύη-θερμαντικά και ψυκτικά μέσα-γνωριμία με τις οργανικές ενώσεις Υγρά-στερεά; τήξη, βρασμός,
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ Ημερομηνία 1/6/2012
ΘΕΜΑ Α Α 1 = γ Α 2 = β Α 3 = β Α 4 = γ Α 5 α) Σελίδα 13 σχολικό βιβλίο β) Σελίδα 122 σχολικό βιβλίο ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ Ημερομηνία 1/6/2012 ΘΕΜΑ Β Β1. α) N : 1s 2 2s 2 2p 3 ή K(2) L(5)
Διαβάστε περισσότεραOsnovne veličine, jedinice i izračunavanja u hemiji
Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice
Διαβάστε περισσότεραBANKA PITANJA IZ HEMIJE
BANKA PITANJA IZ HEMIJE NEORGANSKA HEMIJA PUFERI 1. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće acidoze. 2. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 2 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Δίνεται στοιχείο Χ το οποίο έχει οκτώ ηλεκτρόνια στην εξωτερική του στιβάδα.
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραΑ1 Α2 Α3 Α4 Α5 γ β γ α β
Χημεία Θετικής Κατεύθυνσης 27-5-2015 ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ ΑΔΑΜ ΓΙΑΝΝΗΣ ΒΑΡΒΑΡΙΓΟΣ ΜΑΝΟΣ ΘΕΟΔΩΡΟΠΟΥΛΟΣ ΠΑΝΑΓΙΩΤΗΣ ΚΑΠΛΑΝΗΣ ΘΑΝΑΣΗΣ ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ ΚΩΣΤΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΣΙΔΕΡΗ ΦΙΛΛΕΝΙΑ 1 ΘΕΜΑ Α Α1 Α2 Α3 Α4
Διαβάστε περισσότεραΕρωτήσεις πολλαπλης επιλογής στην οξειδοαναγωγή (1ο κεφάλαιο Γ Θετική 2015)
Ερωτήσεις πολλαπλης επιλογής στην οξειδοαναγωγή (1ο κεφάλαιο Γ Θετική 2015) 1. Σε ποια απο τις παρακάτω ενώσεις το Ν έχει αριθμό οξέιδωσης +5 A. ΗΝΟ 2 C ΚΝΟ 3 B. ΝΗ 3 D Ν 2 Ο 3 2. Σε ποια απο τις παρακάτω
Διαβάστε περισσότεραZBIRKA ZADATAKA IZ ANALITIČKE KEMIJE
EMIJSO-TEHNOLOŠI FAULTET U SPLITU Silvestar rka - Eni Generalić ZBIRA ZADATAA IZ ANALITIČE EMIJE Split,. listopada 0. SADRŽAJ UVOD...3 Sastav otopine...3 RAVNOTEŽA...0 Ravnoteža vode... Aktivitet, ionska
Διαβάστε περισσότεραΓενική Χημεία. Νίκος Ξεκουκουλωτάκης Επίκουρος Καθηγητής
Γενική Χημεία Νίκος Ξεκουκουλωτάκης Επίκουρος Καθηγητής Πολυτεχνείο Κρήτης Τμήμα Μηχανικών Περιβάλλοντος Γραφείο Κ2.125, τηλ.: 28210-37772 e-mail:nikosxek@gmail.com Περιεχόμενα Μοριακό βάρος και τυπικό
Διαβάστε περισσότεραΚανόνες διαλυτότητας για ιοντικές ενώσεις
Κανόνες διαλυτότητας για ιοντικές ενώσεις 1. Ενώσεις των στοιχείων της Ομάδας 1A και του ιόντος αμμωνίου (Ιόντα: Li +, Na +, K +, Rb +, Cs +, NH 4+ ) είναι ευδιάλυτες, χωρίς εξαίρεση: πχ. NaCl, K 2 S,
Διαβάστε περισσότερα2 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ. Ημερομηνία: Σάββατο 4 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ημερομηνία: Σάββατο 4 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να βρεθεί η δομή των παρακάτω ατόμων: 23 11 Na, 40 20 Ca, 33 16 S, 127 53 I, 108
Διαβάστε περισσότεραΧ ΗΜΙΚΕΣ Α Ν Τ ΙΔΡΑΣΕΙΣ
53 Χ ΗΜΙΚΕΣ Α Ν Τ ΙΔΡΑΣΕΙΣ Χημική αντίδραση ονομάζουμε κάθε χημικό φαινόμενο. Δηλαδή, κάθε φαινόμενο στο οποίο έχουμε αναδιάταξη των ηλεκτρονίων ( e ) της εξωτερικής στιβάδας των ατόμων που παίρνουν μέρος
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ Όλες οι αντιδράσεις που ζητούνται στη τράπεζα θεµάτων πραγµατοποιούνται. Στην πλειοψηφία των περιπτώσεων απαιτείται αιτιολόγηση της πραγµατοποίησης των αντιδράσεων.
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραAlkalijski i zemnoalkalijski metali
Elementi 1. i 2. skupine Sljedeći faktori utječu na svojstva alkalijskih i zemnoalkalijskih elemenata : Alkalijski i zemnoalkalijski metali elektronska konfiguracija veličina atoma i iona energija ionizacije
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότερα1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq)
Ion equilibrium ก ก 1. ก 2. ก - ก ก ก 3. ก ก 4. (ph) 5. 6. 7. ก 8. ก ก 9. ก 10. 1 2 สารล ลายอ เล กโทรไลต (Electrolyte solution) ก 1. strong electrolyte ก HCl HNO 3 HClO 4 NaOH KOH NH 4 Cl NaCl 2. weak
Διαβάστε περισσότερα