Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore
|
|
- Μαργαρίτες Ουζουνίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 018. Rješenja zadataka iz HEMIJE za VIII razred osnovne škole 1. Posmatrati sliku i izračunati: a) masu kalijum-permanganata rastvorenog u rastvoru 1, b) masu rastvora, c) maseni udio kalijum-permanganata u rastvoru
2 a) m(rastvora 1)=150 g W(KMnO )=15 % 4 4 W(KMnO 4) 1= m(rastvora 1) 4 1 m(kmno ) m(kmno ) =150 g 0,15=,5 g () b) m (rastvora )=m( rastvora 1)+m(H O) 4 c) W(KMnO 4) = m(rastvora ) m (rastvora )=150 g+50 g=00 g () m(kmno ) W(KMnO ) =0,11=11, % () 4. Opšte oznake od A-D predstavljaju mogući način obilježavanja elementarnih supstanci i hemijskih jedinjenja. A Y B XY C XY D XY Na crtama napišite oznaku koja može označavati empirijsku formulu: molekula sumporvodonika molekula negašenog kreča molekula sumporvodonika XY molekula negašenog kreča XY. Napišite hemijske formule i nazive jedinjenja za koje su navedeni podaci: A. odnos brojnosti jedinki u jedinjenju: N(Fe):N(S):N(O):N(HO)=1:1:4:7 B. empirijska formula se sastoji iz 1 atoma aluminijuma, atoma kiseonika, atoma vodonika C. jedinjenje bakra i sumpora u kome je atom bakra jednovalentan A. FeSO4. 7HO (1)
3 gvožđe(ii) sulfat heptahidrat (1) B. Al(OH) (1) Aluminijumhidroksid (1) C. CuS (1) Bakar(I) sulfid (1) 4. Atomski broj elementa X je 0, a elementa Y je 16. Atomi ovih elemenata grade jonsko jedinjenje. Koristeći podatke iz PSE odredi: a) broj protona, neutrona i elektrona u atomima datih elemenata. b) identifikuj elemente X i Y. c) prikaži jednačinama nastajanje jona datih elemenata polazeći od neutralnih molekula. a) x : N(p )=0, N(e )=0, N(n )=0 (1) Y : N(p )=16, N(e )=16, N(n )=16 (1) b) X=Ca (1) Y=S (1) c) Ca-e - Ca + (1) S+e - S - (1) 5. U kostima se nalazi oko 58% kalcijum-fosfata. Izračunajte koliko kilograma fosfora ulazi u sastav 10 kg kostiju.
4 g M(Ca (PO ) )=10 () 4 mol 100 kg (kostiju):58 kg Ca (PO ) =10 kg:x x=5,8 kg Ca (PO ) kg: kg=5,8 kg:x x=1,16 kg fosfora 6. Staklo se proizvodi zagrijavanjem i topljenjem u staklarskoj peći. Rezultat je amorfna materija koja se može formirati u različite oblike. Staklo je veoma krto i razbija se na oštre krhotine. Ove osobine mogu biti modifikovane dodavanjem primjesa- najčešće oksida metala prilikom topljenja. Staklo je prije svega sastavljeno od silicijumskog pijeska silicijum-oksida koji ima temperaturu topljenja od.000 C i zato mu se dodaju alkalne materije koje snižavaju temperaturu topljenja. Kako ovo smanjuje otpornost na vodu, dodaje se i oksid kalcijuma koji je povećava. Od osnovnih sirovina za izradu stakla priprema se smješa u prahu koja se topi u staklarskoj peći. Staklu se mogu dodavati primjese koje ga boje, ili ga čine prozirnim odnosno neprozirnim. Koliko se kilograma stakla, sastava: 1% natrijum-oksida, 11,7% kalcijum-oksida i 75,% silicijum (IV) oksida može dobiti stapanjem 76,5 kg silicijum(iv) oksida sa potrebnom količinom oksida natrijuma i kalcijuma? m(sio ) W(SiO )= m(stakla) 76,5 kg 0,75= m(stakla) m(stakla)=500 kg 7. Pri rastvaranju u hlorovodoničnoj kiselini 5 g CaO koji sadrži primjese kalcijum karbonata oslobađa se 140 cm CO (pri n.u.). Izračunajte maseni udio kalcijum karbonata u kalcijum oksidu.
5 CaCO +HCl CO +CaCl +H O () V - n(cacl )= =6,5 10 mol Vm () - n(caco )=6, 5 10 mol () m(caco )=n(caco ) M(CaCO )=0,65 g () W(CaCO )= m(cao m(caco ) =0,15 sa primjesama) W(CaCO )=1,5 % () 8. Gas A je najlakši od svih gasova, a gas B je jedan od glavnih sastojaka vazduha. Spajanjem gasova A i B nastaje jedinjenje C. Reakcijom jedinjenja C i jedne soli bakra nastaje plavi kamen. a) Napiši formule i nazive supstanci A, B i C. b) Hemijskim jednačinama prikaži: 1. reakciju između gasova A i B;. reakciju nastajanja plavog kamena iz jedinjenja C i odgovarajuće soli bakra. a) A vodonik H B kiseonik O C voda HO () b) 1. H+O HO (). CuSO4+5HO CuSO4. 5HO (5)
6 9. Element s atomskim brojem 14 ima isto broj valentnih elektrona kao element čiji je atomski broj: 1) 0 ) 16 ) 4) 8 5) 1 Tačan odgovor je ) 10. U kom nizu se nalaze samo oksidi koji u reakciji sa vodom mogu da nagrade dvobazne (diprotične) kiseline: 1) SO, CO, P4O6 ) P4O10, CrO, NO5 ) CrO, SO, ClO7 4) P4O10, SO, NO 5) CrO, NO, CO Tačan odgovor je 1) 11. Koliko cm vode treba ispariti iz 450 cm rastvora koji sadrži 0, mola/dm sulfitne kiseline da bi se dobio rastvor koncentracije 4,6g/dm?
7 n c= Vr n(h SO ) =c Vr =0,09 mol () 1 1 n(h SO ) =n(h SO ) =0,009 mol () 1 m(h SO ) =n(h SO ) M(H SO )=7, 8 g () m(h SO ) γ= Vr m(h SO ) γ Vr = =0, cm () V(HO)=450 cm -00 cm =150 cm () 1. Koliko grama MgSO4. 7HO, a koliko grama vode treba odmjeriti za pripremu 160 cm rastvora MgSO4 masenog udjela 5% i gustine 1,0 g/cm? (1) m =ρ V =165.1 g () rastvora m(mgso ) w(mgso ) m =8,56 g () M( MgSO rastvora 4 4 rastvora 4 7H O) : M( MgSO ) m( MgSO 7H O) : m( MgSO ) m( MgSO 7H O) 16, 9 g () 4 M( MgSO 7H O) : 7M(H O) m( MgSO 7H O) : m(h O,krist.) 4 4 m(h O,krist.) 8, 65 g () m(h O, ukupna) w(h O) m 8, 65 g () rastvora m(ho) m(ho, ukupna) m(ho,krist.) 148, g () (1) 1. Zaokruži tačne odgovore: 1. Metil-oranž mijenja boju iz narandžaste u crvenu ako je: a) ph<7 b) ph>7 c) ph=7. Fenolftalein mijenja boju iz bezbojne u ljubičastu ako je: a) ph<7 b) ph>7 c) ph=7
8 . Crvena lakmus hartija mijenja boju iz crvene u plavu ako je: a) ph<7 b) ph>7 c) ph=7 4. Plava lakmus hartija ne mijenja boju ako je: a) ph<7 b) ph>7 c) ph=7 (8) 1) a).b).b) 4. b) c) Svaki potpuno tačan odgovor vrijedi po boda. (8) 14. Izračunati koliko grama odgovarajuće soli nastaje ako u potpunosti izreaguju 40 g natrijum hidroksida i 98 g sulfatne kiseline (bez viška). m(naoh) n(naoh)= =1 mol (1) M(NaOH) m(h SO ) 4 n(hso 4)= =1 mol (1) M(HSO 4) NaOH+HSO4 NaHSO 4+HO () n(naoh)=n(h SO )=n(nahso )=1 mol (1) 4 4 m(nahso )=n(nahso ) M(NaHSO )=11 g (1) 4 4 4
OSNOVNA ŠKOLA HEMIJA
OSNOVNA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 6 7. 10 8. 8 9. 8 10. 10 11. 8 12. 8 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti
Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara I fizičara Crne Gore OLIMPIJADA ZNANJA 2018. Rješenja zadataka iz HEMIJE za IX razred osnovne škole 1. Koju zapreminu, pri standardnim uslovima, zauzimaju
UKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE II razred UKUPAN BROJ OSVOJENIH BODOVA Test regledala/regledao...... Podgorica,... 008. godine 1. Izračunati steen disocijacije slabe kiseline, HA, ako je oznata analitička koncentracija
Osnovne veličine, jedinice i izračunavanja u hemiji
Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO
HEMIJA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole školska 2012/2013. godina UPUTSTVO Ne otvarajte test dok vam test-administrator ne kaže da možete početi sa radom. Dozvoljen pribor:
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 018. Rješenja zadataka iz HEMIJE za II razred srednje škole 1. Izračunaj masu magnezijum-sulfata heptahidrata (u
Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA
Pripremila i uredila: Doc. dr. sc. Blaženka Foretić OSNOVE KEMIJSKOG RAČUNANJA Relativna skala masa elemenata: atomska jedinica mase 1/12 mase atoma ugljika C-12. Unificirana jedinica atomske mase (u)
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
3. Koliko g Fe može da se dobije iz 463,1 g rude gvoždja koja sadrži 50 % minerala magnetita (Fe 3 O 4 ) i 50 % jalovine?
PRIJEMNI ISPIT IZ HEMIJE NA RUDARSKO-GEOLOŠKOM FAKULTETU UNIVERZITETA U BEOGRADU Katedra za hemiju; Prof. dr Slobodanka Marinković I) Oblasti 1. Jednostavna izračunavanja u hemiji (mol, molska masa, Avogadrov
SREDNJA ŠKOLA HEMIJA
SREDNJA ŠKOLA EMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 8 7. 6 8. 10 9. 8 10. 8 11. 10 12. 8 Ukupno 100 Za izradu testa planirano je 150 minuta. U toku izrade testa učenici mogu koristiti
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
MEDICINSKI FAKULTET PRIJEMNI ISPIT
UNIVERZITET U NIŠU MEDICINSKI FAKULTET PRIJEMNI ISPIT HEMIJA Niš 29.06.2016. PLAVOM HEMIJSKOM OLOVKOM ZAOKRUŽITI BROJ ISPRED JEDNOG OD PONUĐENIH ODGOVORA. SAMO JEDAN OD PONUĐENIH ODGOVORA JE TAČAN 1. Koliko
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
UKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE III razred UKUPAN BROJ OSVOJENIH BODOVA Test pregledala/pregledao...... Podgorica,... 2009. godine 1. Jedinjenje sadrži ugljenik, vodonik, brom i možda kiseonik.potpunim sagorijevanjem
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Kiselo bazni indikatori
Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik
OSNOVNA ŠKOLA HEMIJA
OSNOVNA ŠKOLA HEMIJA UPUTSTVO TAKMIČARIMA Zadatak br. Bodovi 1. 10 2. 10 3. 10 4. 10 5. 1o 6. 10 7. 10 8. 10 9. 10 10. 10 Ukupno: 100 bodova - Za izradu testa planirano je 120 minuta. - U toku izrade
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
UKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE VIII razred UKUPAN BROJ OSVOJENIH BODOVA Test pregledala/pregledao...... Podgorica,... 2008. godine UPUTSTVO TAKMIČARIMA Zadatak Bodovi br. 1. 10 2. 10 3. 10 4. 5 5. 10 6. 5 7.
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
SREDNJA ŠKOLA HEMIJA
SREDNJA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 6 2. 10 3. 12 4. 8 5. 6 6. 10 7. 8 8. 8 9. 4 10. 10 11. 8 12. 10 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti
II RASTVORI. Borko Matijević
Borko Matijević II RASTVORI Rastvori predstavljaju složene disperzne sisteme u kojima su fino usitnjene čestice jedne supstance ravnomerno raspoređene između čestica druge supstance. Supstanca koja se
Napomena: Zadaci za DZ su označeni plavom bojom!
DODATNI ZADACI ZA DOMAĆU ZADAĆU I VJEŽBU (uz Seminar 05 i 06) Napomena: Zadaci za DZ su označeni plavom bojom! 1. Koliko je grama fosforne kiseline i kalcijeva hidroksida potrebno za dobivanje 100 g kalcijeva
ZADACI ZA KVALIFIKACIONI ISPIT IZ HEMIJE. 1. Napišite elektronsku konfiguraciju broma, čiji je atomski broj Z= 35.
ZADACI ZA KVALIFIKACIONI ISPIT IZ HEMIJE 1. Napišite elektronsku konfiguraciju broma, čiji je atomski broj Z= 35. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 2. Utvrdite koji od navedenih parova hemijskih
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
PRIRUČNIK ZA PRIJEMNI ISPIT
PRIRUČNIK ZA PRIJEMNI ISPIT 1 OPŠTA I NEORGANSKA HEMIJA Visoka škola strukovnih studija Aranđelovac PRIRUČNIK ZA POLAGANJE PRIJEMNOG ISPITA IZ HEMIJE ARANĐELOVAC, 2017. 2 PRIRUČNIK ZA PRIJEMNI ISPIT PREDGOVOR
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
PREGLED OSNOVNIH VELIČINA ZA DEFINISANJE SASTAVA RASTVORA
I RAČUNSKE EŽBE PREGLED OSNONIH ELIČINA ZA DEFINISANJE SASTAA RASTORA Za izražavanje kvantitativnog sastava rastvora u heiji koriste se različite fizičke veličine i odnosi. Koriste se i različite jedinice.
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
BANKA PITANJA IZ HEMIJE
BANKA PITANJA IZ HEMIJE NEORGANSKA HEMIJA PUFERI 1. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće acidoze. 2. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
ZBIRKA ZADATAKA ZA POLAGANJE KLASIFIKACIONOG ISPITA IZ HEMIJE
ZBIRKA ZADATAKA ZA POLAGANJE KLASIFIKACIONOG ISPITA IZ HEMIJE VISOKA TEHNIČKA ŠKOLA POŽAREVAC 1. Napiši formule kalaj(iv)-nitrita i gvožđe(iii)-sulfata. ----------------------------------------------------------------
@elimo vam uspeh u radu!
MINISTARSTVO PROSVETE I SPORTA REPUBLIKE SRBIJE SRPSKO HEMIJSKO DRU[TVO OP[TINSKO TAKMI^EWE IZ HEMIJE MART, 2005. GODINE TEST ZA VIII RAZRED [ifra u~enika: Pa`qivo pro~itajte tekstove zadataka. U prilogu
I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI
dr Ljiljana Vojinović-Ješić I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI ZAKON STALNIH MASENIH ODNOSA (I stehiometrijski zakon, Prust, 1799) Maseni odnos elemenata u datom jedinjenju je stalan, bez obzira na
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM. 5. Navesti osobine amfoternih oksida i napisati 3 primera amfoternih oksida.
Dr Sanja Podunavac-Kuzmanović, redovni profesor tel: (+381) 21 / 485-3693 fax: (+381) 21 / 450-413 e-mail: sanya@uns.ac.rs web page: hemijatf.weebly.com ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Idealno gasno stanje-čisti gasovi
Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore
Prirodno-matematički fakultet Društvo matematičara i fizičara Crne Gore OLIMPIJADA ZNANJA 08. Rješenja zadataka iz HEMIJE za III razred srednje škole (5) Za tačno napisane strukturne formule polaznih prekursora
Διαγώνισμα Χημείας Α Λυκείου
1 Διαγώνισμα Χημείας Α Λυκείου 2 ο Κεφάλαιο... Θέμα 1 ο... 1.1. Να συμπληρωθούν τα κενά... Η εξωτερική στιβάδα ενός ατόμου δε μπορεί να περιέχει περισσότερα από... ηλεκτρόνια. Ειδικότερα αν αυτή είναι
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Budući brucoši, srećno!
Prijemni ispit za upis na Osnovne akademske studije hemije na PMF u u Nišu školske 2015/16. godine 1. Izrada testa traje 120 minuta. 2. Test se sastoji od 40 pitanja. 3. Test se popunjava zaokruživanjem
Ερωηήζεις Πολλαπλής Επιλογής
Ερωηήζεις Θεωρίας 1. Ππθλφηεηα: α) δηαηχπσζε νξηζκνχ, β) ηχπνο, γ) είλαη ζεκειηψδεο ή παξάγσγν κέγεζνο;, δ) πνηα ε κνλάδα κέηξεζήο ηεο ζην Γηεζλέο Σχζηεκα (S.I.); ε) πνηα ε ρξεζηκφηεηά ηεο; 2. Γηαιπηφηεηα:
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
OSNOVNA ŠKOLA HEMIJA
OSNOVNA ŠKOLA HEMIJA Uputstva za takmičare: Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti hemijsku olovku i kalkulator. Ostala sredstva nijesu dozvoljena za upotrebu.
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
UNIVERZITET U PRIŠTINI MEDICINSKI FAKULTET. Program prijemnog ispita
UNIVERZITET U PRIŠTINI MEDICINSKI FAKULTET Program prijemnog ispita Hemija Struktura atoma Periodni sistem; Hemijske veze Energetika Hemijska kinetika; Hemijska ravnoteža Rastvori - koncentracije; Jonske
Π. Ε. Ε. Χ. Ένα άτομο Χ έχει μαζικό αριθμό 40 και στον πυρήνα του υπάρχουν 2 νετρόνια περισσότερα από τα πρωτόνια.
Όνομα: Σχολείο: Τάξη/Τμήμα Ημερομηνία: Επαρχία:... Το εξεταστικό δοκίμιο αποτελείται από δύο μέρη: Μέρος Α και Μέρος Β Το σύνολο των σελίδων είναι έντεκα (11) Μέρος Α Αποτελείται από 8 ερωτήσεις (1-8 ).
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU
ИНФОРМАТОР 29 UNIVERZITET U BEOGRADU jun 2005. godine KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU Šifra zadatka: 51501 Test ima 20 pitanja. Netačan odgovor donosi
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Ispitna pitanja iz medicinske hemije
Ispitna pitanja iz medicinske hemije Periodni sistem elemenata 1. Alkalni metali (1. grupa) u najvišem energetskom nivou imaju elektronsku konfiguraciju: a) s 2 p 1 b) s 2 c) s 1 d) s 1 p 1 e) s 2 p 3
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju
Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju Prijemni ispit za upis na Osnovne akademske studije hemije na PMF-u u Nišu školske 2014/15. godine Test se popunjava zaokruživanjem
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
http://ekfe.chi.sch.gr ΙΑΝΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων
http://ekfe.chi.sch.g 5 η - 6 η Συνάντηση ΙΑΝΟΥΑΡΙΟΣ 010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων Παρασκευή διαλύματος ορισμένης συγκέντρωσης αραίωση διαλυμάτων Παρασκευή και ιδιότητες
Mesto održavanja amfiteatar. laboratorija 90a predavanja
Naziv predmeta Medicinska hemija Odgovorni nastavnik prof. dr S. Borozan Fond časova 2+2 Ostali nastavnici mr M. Krstić Mesto održavanja Mesto održavanja amfiteatar laboratorija 90a predavanja vežbi Raspored
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
ΙΑΓΩΝΙΣΜΑ 1 Ο ( 1 Ο ΚΕΦΑΛΑΙΟ)
ΙΑΓΩΝΙΣΜΑ 1 Ο ( 1 Ο ΚΕΦΑΛΑΙΟ) ΘΕΜΑ 1 Ο Να εξηγήσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και να διορθώσετε τις λανθασµένες: 1. Τα άτοµα όλων των στοιχείων είναι διατοµικά.. Το 16 S έχει ατοµικότητα
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
VOLUMEN ILI OBUJAM TIJELA
VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V