21. Viri napetosti. Viri napetosti 21.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "21. Viri napetosti. Viri napetosti 21."

Transcript

1 21. Viri napetosti Vsebina polavja: elektromotorna sila, eneratorska napetost, električni tokokro, baterije, sončna celica. Generatorska sila. Do sedaj smo se ukvarjali le z učinki električnea polja, ne pa tudi z načinom, kako sploh ustrezno matematično opisati ločevanje naboja in eneriranje napetosti. Vzemimo na primer naelektren kondenzator, ki ima ločene pozitivne ion neativne naboje. Smer elektrostatičnea polja je od + nabojev proti nabojem, tako v notranjosti, kot v zunanjosti kondenzatorja. SLIKA: Naelektren kondenzator z ločenimi naboji in elektrostatičnim poljem v notranjosti in zunanjosti. Če bi upoštevali le elektrostatično polje (E es ) za katero velja, da je delo električnih sil po zaključeni poti enako nič E dl = 0, uotovimo, da to polje ne more biti eneratorsko, L es da to polje ni sposobno ločevanja nabojev, pač pa le združevanja. Torej mora biti neka drua sila, ki omooča ločevanje nabojev nasprotnea predznaka. Tej sili rečemo eneratorska ali razdvajalna sila. V anleškem jeziku se poosto uporablja izraz electromotive force, poslovenjeno bi ji rekli elektromotorna ali elektroeneratorska sila. Označimo jo z F F, pripadajoče električno polje pa E =. Vzemimo, da znotraj Q kondenzatorja deluje eneratorska sila, ki je sposobna razdvajanja nabojev. Hkrati, ko deluje eneratorska sila in razdvaja naboje, se vzpostavlja tudi elektrostatična sila, ki pa je usmerjena v nasprotno smer. Na elektrodah se ustvarja akumulacija naboja, ki je v ravnovesju taka, da je E + E = 0. es SLIKA: V kondenzatorju (bateriji) deluje eneratorska sila, ki razdvaja naboje in jih»nalaa«na elektrodi. 1/11

2 Generatorska napetost. Polejmo, koliko interal E dl, če je E sumarna električna poljska jakost, ki vključuje L tako eneratorsko kot elektrostatično silo. L 1 naj bo pot znotraj, L 2 pa zunaj kondenzatorja pri čemer naj bo L 2 usmerjena v nasprotno smer. Za elektrostatično polje velja Ees dl = Ees dl = 0 Ees dl = Ees dl. L L1 L2 L1 L2 Ker pa električno polje v kondenzatorju ni le elektrostatične narave, velja d ( es E l = E + E ) dl + Ees dl = Ees dl + E dl = U, L L1 L2 L1 L2 L1 torej velja tudi E dl = E dl = U. es es L1 L2 Ali druače: Znotraj kondenzatorja je elektrostatično polje (v stacionarnem stanju) enako E + E dl = 0, preostane veliko a nasprotno usmerjeno eneratorskemu in je torej ( es ) del L2 E dl = U es. Generatorska napetost je usmerjena od + naboja proti naboju, enako kot elektrostatično polje in nasprotno smeri eneratorskea polja. Povzetek: Interal E dl, ki ne vsebuje le elektrostatične električne poljske jakosti, pač L pa tudi sile druea izvora, ni nujno enak nič, pač pa neki napetosti, ki ji rečemo eneratorska napetost E dl = U. L V naslednjem semestru (OE2) bomo uotovili, da je ta interal različen od nič tudi v primeru časovno spreminjajočea se manetnea polja skozi zanko. L1 Tokokro. Zaključimo enerator v tokokro s ploščnim kondenzatorjem s presekom A, razmakom med ploščama l in specifično prevodnostjo γ. Ponovno poledamo, kako lahko razdelamo interal E dl = 0. Interal razdelimo na pot znotraj vira in preko kondenzatorja s es L prevodnim materialom. Ker je sedaj zaradi toka v tokokrou E es + E 0, bo znotraj J eneratorja Ees dl = U E dl = U dl. Enako velja za interal znotraj γ L1 L1 L1 J es prevodnika Ees dl = dl. γ L2 L2 R Če predpostavimo homoeno polje v preseku A tako za eneratorski medij, kot za breme, dobimo: I / A I / A l l E es dl = U dl dl U I I 0 γ γ = γ A γ A =. L L1 L2 R R Prvi člen je eneratorska napetost, drui člen predstavlja padec napetosti na notranji upornosti vira, tretji pa padec napetosti na bremenskem prevodniku (uporu): 2/11

3 U IR IRR = 0. Uotovimo, da je ločevanje med eneratorsko upornostjo in napetostjo mooče le modelno, v realnosti pa sta ta dva elementa vezij interirana v eni strukturi. SLIKA: Tokokro iz eneratorskea in bremenskea dela. ** Baterije. Tak princip eneracije naboja si lahko predstavljamo v bateriji (akumulatorju), kjer ločevanje naboja nastopa zaradi elektro-kemijskih reakcij. Zn/Cu baterija. Vzemimo primer dveh elektrod, ene iz cinka (Zn) in drue iz bakra (Cu). Če med elektrodi vlijemo tekočino, ki ji rečemo elektrolit, med elektrodama zaradi elektrokemijske reakcije nastane t.i. alvanski člen. Če je elektrolit žveplena kislina H 2 S0 4, le ta v vodi disociira (tvorijo se ioni) na ione H + in S H + ioni se nabirajo na 2- bakrovi elektrodi, kjer tvorijo presežek pozitivnea naboja. Ioni S0 4 se nabirajo na cinkovi elektrodi, tam tvorijo cinkov sulfat in presežek neativnea naboja. Na Cu elektrodi se tvori presežek pozitivnea naboja. Vzpostavi se napetost, ki jo lahko izkoristimo kot eneratorski vir napetosti. Ob priključitvi bremena (upora) na baterijo, v priključnih žicah steče tok (elektronov), ki zmanjšuje količino eneriranea naboja. Elektrokemijska reakcija nadomešča porabo naboja dokler je v elektrolitu dovolj ionov ali dokler se cinkova elektroda ne iztroši. 1 SLIKA: a) Baterija iz bakrene in cinkove elektrode v elektrolitu iz razredčene žveplene kisline. b) Tok ob kratkem stiku elektrod. Kemijsko bi lahko reakcijo zapisali Zn + CuSO 4 = ZnSO 4 + Cu. 1 Priznati je potrebno, da se napetost med dvema različnima kovinama pojavi že brez delovanja elektrolita, torej pri neposrednem stiku dveh kovin. Ta napetost je posledica različnih izstopnih del različnih kovin in je med druim temperaturno odvisna. Zato stik dveh različnih kovinskih materialov izkoristimo kot senzor temperature. Tak spoj pa ne more delovati kot enerator toka, razen v primeru, da na tak spoj delujemo z zunanjo silo. Na primer, da spoj serevamo ali ohlajamo. 3/11

4 Vodikovi ioni imajo pomanjkanje elektrona, ki priteče iz tokokroa na bakrovo elektrodo (priključnih žic) kot električni tok. Vodikov ion pridobi iz bakrene elektrode elektron in se izloči iz elektrolita. temu procesu rečemo redukcija. Na cinkovi elektrodi se vrši oksidacija (izločanje presežnih prostih elektronov) pri čemer nastaja cinkov sulfat, ki se useda na dnu posode. Faraday je z eksperimenti uotovil, da je količina snovi, ki se nabere na elektrodah (v našem primeru baker) sorazmerna toku, ki steče skozi priklopne žice. Količina elektrike, ki je potrebna za en ekvivalent kemične akcije (ki ustreza kemični reakciji potrebni za izločitev 1 vodika iz kisline) je enaka enemu Faradayju, kar ustreza naboju amperskih sekund. Za zornjo reakcijo v kateri sta udeležena ena enota cinka in ena enota bakra ustreza eneracija naboja 2 F ali C. Poskuse s podobno baterijo je prvi delal Alessandro Volta v Italiji, ki se po njem imenuje Voltova celica ali Voltin člen. Kovinske elektrode imajo neativen potencial lede na raztopino. Da bi jih lahko primerjali med seboj, jih primerjamo s potencialom t.i. referenčne elektrode, ki je iz platine z dodatki vodika. Tako primerjane elektrodne napetosti so za različne materiale sledeče: zlato platina srebro olje baker železo cink aluminij 1,5 V 1,2 V 0,8 V 0,74 V 0,34 V -0,44 V -0,76 V -1,67 V Če torej sestavimo t.i. alvanski člen iz elektrode iz bakra in cinka, bo med njima napetost 0,34 V (0,76 V) = 1,2 V. Svinčeva baterija - akumulator. Drua znana baterija je svinčeva baterija, v kateri imamo dve elektrodi, ena iz svinca, drua pa iz svinčevea dioksida. Kot elektrolit nastopa razredčena žveplena kislina. Elektroda iz svinčevea dioksida ima za dobra 2 V višjo napetost od svinčeve. Z vezavo šestih takih celic zaotovimo baterijo z V izhodno napetostjo (avtomobilski akumulator). Rekacija, ki poteka je sledeča: na neativni elektrodi: Pb + SO 4 2- = PbSO 4 + 2e na pozitivni elektrodi: PbO 2 + Pb + 2H 2 SO 4 + 2e = 2PbSO 4 + 2H 2 O Na obeh elektrodah nastaja svinčev sulfat, kar pomeni, da je ob popolni razelektritvi napetost med elektrodama enaka nič. Kot vemo, je mooče te tipe baterij ponovno naelektriti, pri čemer s tokom ustvarimo eneracijo svinca na eni in svinčevea dioksida na drui elektrodi. Proces je torej reverzibilen. 2PbSO 4 + 2H 2 O = PbO 2 + 2H 2 SO 4 + Pb 4/11

5 SLIKA: Baterija iz svinčeve elektrode in iz elektrode iz svinčevea dioksida. Zanimivo je to, da se med razelektritvijo manjša, med naelektritvijo pa veča koncentracija kisline, medtem ko ostane napetost celice več ali manj konstanta. V tem smislu nam merjenje napetosti na akumulatorju ne predstavlja posebno natančnea merila»polnosti«. SLIKA: Karakteristika naelektritve in razelektritve baterije (napetost čas). Vir: T.R. Crompton: Battery reference book, Newnes, Svinčene baterije so verjetno še vedno najbolj razširjene. Predvsem se uporabljajo v avtomobilski industriji. Njihova prednost pred ostalimi je nizka cena, visoka napetost na celico in»dobra«življenska doba (mnookratno polnenje). Slabosti pa velika teža, slabe nizko-temperaturne lastnosti in ne sme biti v stanju razelektritve za daljše obdobje. V prodaji so tudi t.i. zaprti tip akumulatorjev (suhi), katerih prednost je, da jim ni potrebno dolivati elektrolita / destilirane vode. Pri standardnih svinčenih baterijah namreč lahko posebno pri koncu elektritve ali pri prekomerni naelektritvi pride do elektrolize žveplene kisline pri čemer se kreirata kisik in vodik, kar v končni konsekvenci lahko škodno vpliva na karakteristiko baterije. Novi tipi baterij omoočajo, da eneriran kisik in vodik tvorita vodo. Pri razelektritvi ima svinčeva»celica«določeno notranjo upornost; standardni tip D ima pri napetosti celice 2 V notranjo upornost 10 mω. Nikelj kadmijeve baterije (Ni-Cd) so mehansko trdne in imajo dolo življensko dobo. Imajo tudi dobro nizkotemperaturno karakteristiko in so hermetično zaprte. Imajo pa višjo ceno kot svinčene ali nikel-cinkove baterije. V robem jih po izdelavi delimo na dva tipa: celice z debelimi ploščami v katerih je aktiven material stisnjen v perforiran metalni trak v 5/11

6 obliki žepkov ali tubusov, in na celice s sintranimi ploščami v katerih je aktivni material deponiran v porozne reže metala. Posebno slednje imajo majhno notranjo upornost in sposobnost velike obremenitve. Uporabljajo se na primer v biomedicfinskih napravah, iračkah, itd. Vsebujejo toksične substance. Nikelj metal hidridne baterije. Omoočajo večjo ostoto enerije (enerija na kiloram teže) vendar manjše število ponovnih polnenj kot nikel-kadmijeve baterije. Uporaba: mobilne naprave. Litij ionske baterije. So trenutno najpoosteje uporabne baterije v prenosnikih, mobilnih in druih aparatih, kjer je potrebna velika ostota in obnovljivost enerije. Litij je najlažji kovinski element, ima zelo velik elektrokemijski potencial in torej omooča zelo velike ostote enerije. Veliko razvoja je bilo potrebnea, da so se odpravile težave temperaturne nestabilnosti litijeve elektrode pri ponovnih polnjenjih, ko je prihajalo do eksplozij baterij. Da bi se izonili težavam, so litij nadomestili z litij-ionsko elektrodo, ki ima sicer nekoliko manjšo ostoto enerije, je bolj varna. Prve tovrstne baterije so začeli proizvajati in tržiti pri Sony-ju leta Obstaja več različnih tipov litij-ionskih baterij, ki se predvsem razlikujejo materialu iz katerea sta anoda in katoda. Anoda je najpoosteje iz rafita, katoda pa iz kobalta ali manezija. Elektrolit je iz litijeve soli (LiPF 6, LiBF 4, or LiClO 4 ). Napetost ene celice je višja kot pri druih celicah, običajno med 4,1 V in 4,2 V. Precej pomembno je, da se te napetosti ne preseže. Hitrost polnenja je približno 3h za 1 C naboja. Slika: Polnilni tok in napetost za litij-ionsko baterijo. Vir: Običajno litij-ionske baterije potrebujejo določeno zaščitno vezje, ki baterijo izklopi, če je napetost celice večja od 4,3 V ali če temperatura celice preseže 90 o C. Tipična življenjska doba Li-ionskih baterij je 300 do 500 polnjenj/praznjenj. Neuodno je, da ob koncu življenjske dobe običajno baterija še vedno kaže visoko napetost, bistveno pa se zmanjša njena kapacitivnost. Poveča se tudi notranja upornost baterije Namesto»klasičnea«elektrolita iz litijevih soli, se v zadnjem času uporablja tudi bolj kompaktne snovi 6/11

7 polimere. Te tipe baterij imenujemo litij-ionske polimerske baterije. Prednost teh baterij je cenejša izdelava, manjši volumen in manjša teža, saj jih lahko oblikujemo v obliki folij (slika desno), pa tudi večja ostota enerije ( W/k in 300 Wh/L). SLIKA: Primerjava baterij po ostoti enerije, notranji upornosti, času polnenja, itd. Vir: 7/11

8 SLIKA: Primerjava prednosti Litijevih baterij pred ostalimi lede na ostoto enerije. Vir: T.R. Crompton: Battery reference book, Newnes, SLIKA: Napetostne karakteristike V(t) razčnih tipov baterij. Vir: T.R. Crompton: Battery reference book, Newnes, /11

9 Galvani in Volta. Zanimiva je zodba nastanka Voltinovea izuma, ki je povezana s poskusi Luiija Galvanjija, Voltinea sonarodnjaka, ki je presenečeno uotavljal, da mrtvi žabji kraki reairajo na dotik s kovino, kar je razlaal z živalsko elektriko (slika desno). Volta je tej teoriji nasprotoval in dokazal, da je to posledica zunanje enerirane napetosti, kar je tudi dokazal z uporabo elektrike shranjene v Leidenski flaši ali pa z bimetalom, torej s stikom dveh različnih kovinskih materialov. Dandanes vemo, da smo tudi ljudje sestavljeni iz celic, ki za svoje delovanje uporabljajo elektrokemijske principe in da je prenašanje sinalov živčnih celic električne narave. Torej je imel delno Galvani prav, obstaja živalska elektrika, le da je bila njeova interpretacija napačna. V njeovem primeru je bil rezultat trzljaja električni sunek, ki je bil zunanje (ekstrinsično) in ne notranje kreiran. Voltini eksperimenti in donanja so mu prinesli pomembna priznanja (narada Royal Society leta 1791, Copleyeva narada leta 1974) in veliko slavo. Raziskave je nadaljeval v smeri povečanja napetosti, ki je bila zelo šibka (manj kot 1 V) in jo je bilo težko zaznati s tedaj najpopolnejšimi elektrometri. Uspelo mu je z zaporedno povezavo šalčk z elektrolitom in bimetalnimi elektrodami. Povezal je diske iz cinka in srebra ter vmes dodal šibko kislino ali slano vodo in dobil Voltino kaskado, pri kateri se je napetost na skrajnih koncih povečevala v sorazmerju s številom uporabljenih členov. Zodovinsko je morda zanimivo, da je njeovo delo močno podprl Napolenon, ki mu je podelil naziv vitez (Conte) in dal penzijo. Hkrati je Napoleon, ki se je zavedal pomena novih odkritij razpisal narado frankov za vsakoar, ki bi doseel podobne dosežke kot Franklin in Volta. Leta 1881 na prvem internacionalnem električnem (elektrotehničnem) konresu v Parizu, so v čast Volti po njemu poimenovali enoto za napetost. Obstaja mnoo načinov eneriranja električne napetosti. Pole baterij je najbolj pomemben princip uporabe eneracija izmenične napetosti z elektrodinamskim načinom, ki pa a bomo bolj natančno spoznali pri predmetu OE2. 9/11

10 ** Sončna celica. Osnovni princip delovanja sončne celice je eneracija parov elektron - vrzel pod vplivom visoko enerijskih sončnih žarkov. Vrzel predstavlja pomanjkanje elektronov v dopiranem polprevodniškem materialu oziroma nezaključene vezi med atomi polprevodnika in dopanta. Vrzel se obnaša ekvivalentno pozitivnemu naboju in lahko potuje po polprevodniku, če nanj deluje električna sila. Njeno potovanje pa je počasnejše, kot potovanje prostih elektronov (rečemo, da je mobilnost vrzeli manjša od mobilnosti vrzeli). Pole tea je v polprevodnikih potrebno upoštevati tok, ki je posledica krajevne razlike v koncentracijah nabojev, tako elektronov kot vrzeli. Ravno ta tok povzroči, da pri stiku dveh polprevodnikov različnea tipa pride do prerazporeditve naboja in s tem do vrajenea električnea polja. SLIKA: Sončna celica sestavljena iz polprevodniškea pn spoja. Na površini je antirefleksni sloj, ki povečuje absorpcijo svetlobne enerije. Vir: internet. Čisti, nedopiran, polprevodniški material (recimo Si ali Ge) je izolator. Njeova specifična prevodnost je zelo majhna. Če pa a dopiramo z določenimi atomi, recimo fosforja ali bora, se ti atomi vradijo v kristalno strukturo silicija. Dopiranje se vrši na zelo visoki temperaturi (čez 1000 o C). Z dopiranjem vnesemo v kristalno strukturo silicija atome (primesi), ki s sosednjimi atomi silicija tvorijo nezaključene vezi, kar v končni obliki pomeni, da je v primeru vrajenea atoma fosforja na mestu fosforja višek elektrona, ki je zelo šibko vezan na atom in je praktično prosto ibljiv. Na ta način lahko s kontrolo množine (koncentracije) dopiranih atomov uravnavamo prevodnost polprevodniškea materiala. Tak tip polprevodnika imenujemo n (neative) tip. Kljub določeni koncentraciji prostih (šibko vezanih) elektronov v snovi, pa je ta material še vedno električno nevtralen. Če podobno dopiramo silicij z atomi bora, tvori atom bora z okoliškimi vezmi silicija nezaključeno vez, kar predstavlja pomanjkanje elektrona oziroma vrzel. Tak tip polprevodnika imenujemo p (positive) tip. Tudi tak tip polprevodnika je prevoden, le da je mobilnost vrzeli manjša kot mobilnost elektronov. Zanimiv pa je stik dveh polprevodnikov različnea tipa. Ob stiku se tvori t.i. pn spoj. Tu pride zaradi izenačenja potenciala na meji do prerazporeditve nabojev, kar pomeni, da postane del prevodnika na meji brez nosilcev naboja in s tem ne več nevtralen. Ostane 10/11

11 vezan naboj, ki ustvari vrajeno električno polje. To polje kaže od n-tipa proti p-tipu polprevodnika. To vrajeno polje se veča z večanjem t.i. zaporne napetosti, torej tedaj, ko je na zunanji sponki n-tipa bolj pozitiven potencial kot na zunanji sponki p-tipu polprevodnika. V tem primeru skozi prevodnik teče le majhen, zaporni tok. V nasprotnem primeru pa zunanja napetost povzroči zmanjšanje vrajenea polja in poveča prevodno proo. Ko zunanji vir vrajeno polje (pri pn diodi iz Si pri cca. 0,7 V) izniči postane pn spoj prevoden in tok hitro (eksponentno) naraste. pn dioda je tipičen nelinearen element. Kot smo že omenili je za delovanje sončne celice pomembna eneracija parov elektronvrzel. Če ta eneracija nastopi v osiromašenem področju (kjer je vrajeno polje), to polje potene elektrone v nasprotni smeri polja, vrzeli (pozitivni naboj) pa v smeri polja. Ti naboji predstavljajo zmanjšanje vrajenea polja vendar obenem presežek neativnih nabojev v n-tipu in presežek vrzeli v p-tipu polprevodnika. Povzročijo neravnotežje, ki a lahko zmanjšamo, če tako diodo kratko sklenemo ali pa, če nanjo priključimo določeno breme. Skozi breme steče tok, ki povzroči ponovno vzpostavitev ravnotežja. Če je fotoeneracija konstantna, je konstanten tudi tok, ki teče skozi priključeno breme. Dobili smo enerator toka. Več toka bomo seveda dobili če bo večja eneracija parov elektronvrzel, kar lahko omoočimo tako z izboljšanjem materialov kot z večjo površino celice, ki je izpostavljena soncu. Osnovni princip je ta, da je potrebno povečati osiromašeno področje, kjer je vrajeno polje in omoočiti, da v to področje»zaide«čim več fotonov sončne svetlobe. Ena od idej je, da se med p in n tipom polprevodnika obdrži nedopiran (intrinsični) tip silicija, v katerem je osiromašeno področje zelo veliko. Težava, ki jo je potrebno upoštevati je ta, da se sončna svetloba v polprevodnikih tipa Si ali Ge zelo hitro absorbira, torej že v površinskem sloju. Kar pomeni, da je potrebno osiromašeno področje zaotoviti zelo blizu površine. Itd... Običajno je tako, da je najvažnejše razmerje med ceno celico in sposobnostjo eneracije električnea toka in ne med izkoristkom celice. Ceneje kot iz čistea silicija je izdelovanje sončnih celic iz amorfnea silicija ali polisilicija. V Sloveniji je začelo izdelovati panele s sončnimi celicami podjetje Biosol. 11/11

25. Viri napetosti. Vir napetosti(25).doc

25. Viri napetosti. Vir napetosti(25).doc 25. Viri napetosti Vsebina polavja: elektromotorna sila, eneratorska napetost, električni tokokro, baterije, sončna celica. Generatorska sila. Do sedaj smo se ukvarjali le z učinki električnea polja, ne

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

1. Enosmerna vezja. = 0, kar zaključena

1. Enosmerna vezja. = 0, kar zaključena 1. Enosmerna vezja Vsebina polavja: Kirchoffova zakona, Ohmov zakon, električni viri (idealni realni, karakteristika vira, karakteristika bremena matematično in rafično, delovna točka). V enosmernih vezjih

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

Elektronski elementi so osnovni gradniki vsakega vezja. Imajo bodisi dva, tri ali več priključkov.

Elektronski elementi so osnovni gradniki vsakega vezja. Imajo bodisi dva, tri ali več priključkov. Elementi in vezja Elektronski elementi so osnovni gradniki vsakega vezja. Imajo bodisi dva, tri ali več priključkov. kov. Zaprti so v kovinska, plastična ali keramična ohišja, na katerih so osnovne označbe

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

17. Električni dipol

17. Električni dipol 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

13. Vaja: Reakcije oksidacije in redukcije

13. Vaja: Reakcije oksidacije in redukcije 1. Vaja: Reakcije oksidacije in redukcije a) Osnove: Oksidacija je reakcija pri kateri posamezen element (reducent) oddaja elektrone in se pri tem oksidira (oksidacijsko število se zviša). Redukcija pa

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE I

OSNOVE ELEKTROTEHNIKE I OSNOVE ELEKTROTEHNIKE I 008 ENOSMERNA VEZJA DEJAN KRIŽAJ Spoštovani študenti! Pred vami je skripta, ki jo lahko uporabljate za lažje spremljanje predavanj pri predmetu Osnove elektrotehnike 1 na visokošolskem

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

UVOD GORIVNE CELICE...

UVOD GORIVNE CELICE... GORIVNE CELICE 1 Kazalo UVOD... 3 1 GORIVNE CELICE... 4 1.1 VRSTE IN LASTNOSTI GORIVNIH CELIC... 4 1.2 DELOVANJE GORIVNIH CELIC... 5 2 TEMELJI ELEKTROKEMIJE... 7 2.1 ELEKTROKEMIJSKE REAKCIJE... 7 2.2 ELEKTROKEMIJSKI

Διαβάστε περισσότερα

Galvanski členi. Mentor: Gregor Skačej. 24. september 2009

Galvanski členi. Mentor: Gregor Skačej. 24. september 2009 Galvanski členi Blaž Šterbenc Mentor: Gregor Skačej 24. september 2009 Povzetek V seminarju bom na kratko opisal zgodovinski razvoj galvanskih členov, obravnaval nernstovo enačbo uporaba za izračun električnih

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

, kjer je t čas opravljanja dela.

, kjer je t čas opravljanja dela. 3. Moč Vseina polavja: definicija moči, delo, moč na remenu, maksimalna moč, izkoristek. Moč (simol ) je definirana kot produkt napetosti in toka: = UI. V primeru, da se moč troši na linearnem uporu (na

Διαβάστε περισσότερα

Laboratorij za termoenergetiko. Vodikove tehnologije

Laboratorij za termoenergetiko. Vodikove tehnologije Laboratorij za termoenergetiko Vodikove tehnologije Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm. 0,2% biogoriva 0,2%

Διαβάστε περισσότερα

ELEKTROTEHNIKA DRAGO ŠEBEZ

ELEKTROTEHNIKA DRAGO ŠEBEZ ELEKTROTEHNIKA DRAGO ŠEBEZ Zgodovina Thales drgnjenje jantarja Jantar gr. ELEKTRON 17. in 18. st.: drgnjenje stekla+ jantarja Franklin: steklo pozitivna elektrika, jantar neg. Coulomb (1736-1806): 1806):

Διαβάστε περισσότερα

Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo "kulon") ali As (1 C = 1 As).

Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo kulon) ali As (1 C = 1 As). 1 UI.DOC Elektrina - električni naboj (Q) Elementarni delci snovi imajo lastnost, da so nabiti - nosijo električni naboj-elektrino. Protoni imajo pozitiven naboj, zato je jedro pozitivno nabito, elektroni

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Predstavitev informacije

Predstavitev informacije Predstavitev informacije 1 polprevodniki_tranzistorji_3_0.doc Informacijo lahko prenašamo, če se nahaja v primerni obliki. V elektrotehniki se informacija lahko nahaja v analogni ali digitalni obliki (analogni

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

MAGNETNI PRETOK FLUKS

MAGNETNI PRETOK FLUKS MGNETNI PRETOK FLUKS Equation Section 4 Vsebina poglavja: Določitev magnetnega pretoka, brezizvornost magnetnega polja, upodobitev polja z gostotnicami, induktivnost, lastna induktivnost, magnetni sklep.

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO FOTOCELICE IZBRANA POGLAVJA IZ UPORABNE FIZIKE.

UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO FOTOCELICE IZBRANA POGLAVJA IZ UPORABNE FIZIKE. UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO FOTOCELICE IZBRANA POGLAVJA IZ UPORABNE FIZIKE Matej Andrejašič Mentor: doc. dr. Primož Ziherl Ljubljana, 2. 5. 2007 Povzetek Fotocelice

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

FOTOUPOR, FOTODIODA, FOTOTRANZISTOR

FOTOUPOR, FOTODIODA, FOTOTRANZISTOR UNIVERZA V LJUBLJANI FAKULTETA ZA ELEKTROTEHNIKO FOTOUPOR, FOTODIODA, FOTOTRANZISTOR Seminarska naloga pri predmetu Merilni pretvorniki Ljubljana 2011 Študenta: Peter Oblak Matej Mavsar Mentor: doc. dr.

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

Državni izpitni center *M * JESENSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA

Državni izpitni center *M * JESENSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M097711* ELEKTROTEHNIKA JESENSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Četrtek, 7. avgust 009 SPLOŠNA MATURA RIC 009 M09-771-1- A01 Z galvanizacijskim

Διαβάστε περισσότερα

1.5 POLPREVODNIŠKE KOMPONENTE

1.5 POLPREVODNIŠKE KOMPONENTE Polprevodniške komponente 1.5 POLPREVODNIŠKE KOMPONENTE Polprevodniške komponente lahko delimo glede na način delovanja oz. tehnologijo izdelave na bipolarno in unipolarno (MOS- Metal Okside Silicon )

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

VAJE IZ FIZIKE 2 ALEŠ IGLIČ VERONIKA KRALJ-IGLIČ TOMAŽ GYERGYEK MIHA FOŠNARIČ

VAJE IZ FIZIKE 2 ALEŠ IGLIČ VERONIKA KRALJ-IGLIČ TOMAŽ GYERGYEK MIHA FOŠNARIČ UNIVERZA V LJUBLJANI FAKULTETA ZA ELEKTROTEHNIKO VAJE IZ FIZIKE 2 ALEŠ IGLIČ VERONIKA KRALJ-IGLIČ TOMAŽ GYERGYEK MIHA FOŠNARIČ LJUBLJANA, 2011 CIP - Kataložni zapis o publikaciji Narodna in univerzitetna

Διαβάστε περισσότερα

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno FIZIKA 3. poglavje: Elektrika in magnetizem - B. Borštnik 1 ELEKTRIKA IN MAGNETIZEM Elektrostatika Snov je sestavljena iz atomov in molekul. Atome si lahko predstavljamo kot kroglice s premerom nekaj desetink

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE I

OSNOVE ELEKTROTEHNIKE I OSNOVE ELEKTROTEHNIKE I ENOSMERNA VEZJA DEJAN KRIŽAJ 009 Namerno prazna stran (prirejeno za dvostranski tisk) D.K. / 44. VSEBINA. ENOSMERNA VEZJA. OSNOVNA VEZJA IN MERILNI INŠTRUMENTI 3. MOČ 4. ANALIZA

Διαβάστε περισσότερα

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M877* SPOMLADANSK ZPTN ROK ELEKTROTEHNKA NAVODLA ZA OCENJEVANJE Četrtek, 9 maj 8 SPLOŠNA MATRA RC 8 M8-77-- A zračunajte gostoto toka v vodniku s presekom

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Lastnosti in delovanje polimerne gorivne celice

Lastnosti in delovanje polimerne gorivne celice FAKULTETA ZA STROJNIŠTVO Laboratorij za termoenergetiko LABORATORIJSKA VAJA Lastnosti in delovanje polimerne gorivne celice Mitja Mori, Mihael Sekavčnik CILJ VAJE - Spoznati sestavo in vrste gorivnih celic.

Διαβάστε περισσότερα

Robert Lorencon ELEKTRONSKI ELEMENTI IN VEZJA

Robert Lorencon ELEKTRONSKI ELEMENTI IN VEZJA obert Lorencon ELEKTONSK ELEMENT N VEZJA Mnenja, predloge, namige sporočite na naslov: MAYA STDO, d.o.o., Ziherlova 38, Ljubljana Tel.: (01) 42 95 255, Tel. & Fax: (01) 28 39 617 http://www.maya-studio.com

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Uporaba programskega okolja LabVIEWpri fizikalnih merjenjih

Uporaba programskega okolja LabVIEWpri fizikalnih merjenjih Uporaba programskega okolja LabVIEWpri fizikalnih merjenjih Anja Višnikar V seminarju je predstavljen primer uporabe programa LabVIEW za analizo izmerjenih podatkov pri meritvah frekvence s fotodiodo.

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

SONČNE CELICE. Primož Hudi. Mentor: doc. dr. Zlatko Bradač. V seminarju sem predstavil sestavo ter delovanje sončnih celic.

SONČNE CELICE. Primož Hudi. Mentor: doc. dr. Zlatko Bradač. V seminarju sem predstavil sestavo ter delovanje sončnih celic. SONČNE CELICE Primož Hudi V seminarju sem predstavil sestavo ter delovanje sončnih celic. Mentor: doc. dr. Zlatko Bradač Maribor, 2009 Kazalo 1 UVOD...3 2 SONČNE CELICE...4 2.1 SESTAVA SONČNE CELICE...4

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Izmenični signali metode reševanja vezij (21)

Izmenični signali metode reševanja vezij (21) Izmenični sinali_metode_resevanja (21b).doc 1/8 03/06/2006 Izmenični sinali metode reševanja vezij (21) Načine reševanja enosmernih vezij smo že spoznali. Pri vezjih z izmeničnimi sinali lahko uotovimo,

Διαβάστε περισσότερα

Kovinske indikatorske elektrode. Inertne elektrode. Membranske indikatorske elektrode

Kovinske indikatorske elektrode. Inertne elektrode. Membranske indikatorske elektrode Indikatorske elektrode Indikatorske elektrode Kovinske indikatorske elektrode Inertne elektrode Membranske indikatorske elektrode Elektroda 1. reda je kovinska elektroda (Ag, Cu, Hg, Cd, Pb), ki je v stiku

Διαβάστε περισσότερα

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice Laboratorij za termoenergetiko Vodikove tehnologije in PEM gorivne celice Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Polnilnik Ni-MH/Ni-Cd baterij

Polnilnik Ni-MH/Ni-Cd baterij Univerza v Ljubljani Fakulteta za elektrotehniko Matej Antonijevič Polnilnik Ni-MH/Ni-Cd baterij Seminarska naloga pri predmetu Elektronska vezja Ljubljana, julij 2011 Matej Antonijevič Polnilnik Ni-MH/Ni-Cd

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

INDUCIRANA NAPETOST (11)

INDUCIRANA NAPETOST (11) INDUCIRANA NAPETOST_1(11d).doc 1/17 29.3.2007 INDUCIRANA NAPETOST (11) V tem poglavju bomo nadgradili spoznanja o magnetnih pojavih v stacionarnih razmerah (pri konstantnem toku) z analizo razmer pri časovno

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Zaporedna in vzporedna feroresonanca

Zaporedna in vzporedna feroresonanca Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju

Διαβάστε περισσότερα

Visokošolski strokovni študijski program»tehnologija polimerov«

Visokošolski strokovni študijski program»tehnologija polimerov« Visokošolski strokovni študijski program»tehnologija polimerov«predmet: ELEKTROTEHNIKA Predavatelj: dr. Konrad Steblovnik Asistent: Drago Šebez 1 Elektrostatika. Električna polja. Sile v električnem polju.

Διαβάστε περισσότερα

Elektroni in ioni. Piezoelektrični pojav. Termoelektrični pojav

Elektroni in ioni. Piezoelektrični pojav. Termoelektrični pojav 39 Elektroni in ioni Piezo- in termoelektrika Termični elektroni Curki elektronov Odklon curka v poljih Relativistični odklon Masni spektrometer ionov Naboji na kapljicah Elektroni v snovi Dielektričnost

Διαβάστε περισσότερα

Električno polje. Na principu električnega polja deluje npr. LCD zaslon, fotokopirni stroj, digitalna vezja, osciloskop, TV,...

Električno polje. Na principu električnega polja deluje npr. LCD zaslon, fotokopirni stroj, digitalna vezja, osciloskop, TV,... 1 Električno polje Vemo že, da: med elektrinami delujejo električne sile prevodniki vsebujejo gibljive nosilce elektrine navzven so snovi praviloma nevtralne če ima telo presežek ene vrste elektrine, je

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja.

Slika 6.1. Smer električne poljske jakosti v okolici pozitivnega (levo) in negativnega (desno) točkastega naboja. 6. ONOVE ELEKTROMAGNETIZMA Nosilci naboja so: elektroni, protoni, ioni Osnoni naboj: e 0 = 1,6.10-19 As, naboj elektrona je -e 0, naboj protona e 0, naboj iona je (pozitini ali negatini) ečkratnik osnonega

Διαβάστε περισσότερα

uvod v elektrostatiko

uvod v elektrostatiko Daniel Knez univ.dipl.ing 041 626 559 uvod v elektrostatiko ELEKTRON KNEZ d.o.o. Daniel Knez univ.dipl.ing 041 626 559 KATALOG MATERIALOV, OPREME, SISTEMOV ZA OBVLADOVANJE ELEKTROSTATIKE Daniel Knez univ.dipl.ing

Διαβάστε περισσότερα

Primeri: naftalen kinolin spojeni kinolin

Primeri: naftalen kinolin spojeni kinolin Primeri: naftalen kinolin spojeni kinolin 3 skupne strani 7 skupnih strani 5 skupnih strani 6 skupnih atomov 8 skupnih atomov 6 skupnih atomov orto spojen sistem orto in peri spojena sistema mostni kinolin

Διαβάστε περισσότερα

4. Analiza vezij. Analiza vezij(4).docj 4. Vsebina poglavja: metoda Kirchoffovih zakonov, metoda zančnih tokov, metoda spojiščnih potencialov.

4. Analiza vezij. Analiza vezij(4).docj 4. Vsebina poglavja: metoda Kirchoffovih zakonov, metoda zančnih tokov, metoda spojiščnih potencialov. 4. Analiza vezij Vsebina polavja: metoda Kirchoffovih zakonov, metoda zančnih tokov, metoda spojiščnih potencialov. Spoznali smo že oba Kirchoffova zakona in zvezo med tokom in napetostjo na uporu. Zaradi

Διαβάστε περισσότερα

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa. 3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,

Διαβάστε περισσότερα

Ravnotežja v raztopini

Ravnotežja v raztopini Ravnotežja v raztopini TOPILO: komponenta, ki jo je več v raztopini.v analizni kemiji uporabljamo organska in anorganska topila. Topila z veliko dielektrično konstanto (ε > 10) so polarna in ionizirajo

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

1. Merjenje toka in napetosti z AVO metrom

1. Merjenje toka in napetosti z AVO metrom 1. Merjenje toka in napetosti z AVO metrom Cilj: Nariši karakteristiko Zenerjeve diode in določi njene parametre, pri delu uporabi AVO metre za merjenje napetosti in toka ter vir spremenljive napetosti

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

March 6, tuljava in električna. napetost in. padanjem. Potrebujete. torej 8,8µF. priključen. napetosti. in ustrezen

March 6, tuljava in električna. napetost in. padanjem. Potrebujete. torej 8,8µF. priključen. napetosti. in ustrezen DELAVNICA SSS: POSKUSI Z NIHANJEM V ELEKTRONIKI March 6, 2009 DUŠAN PONIKVAR: POSKUSI Z NIHANJEM V ELEKTROTEHNIKI Vsi smo poznamo električni nihajni krog. Sestavljataa ga tuljava in kondenzator po sliki

Διαβάστε περισσότερα

Bipolarni tranzistor je trielektrodni polprevodniški elektronski sestavni del, ki je namenjen za ojačevanje

Bipolarni tranzistor je trielektrodni polprevodniški elektronski sestavni del, ki je namenjen za ojačevanje TRANZISTOR Bipolarni tranzistor je trielektrodni polprevodniški elektronski sestavni del, ki je namenjen za ojačevanje električnih signalov. Zgrajen je iz treh plasti polprevodnika (silicija z različnimi

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

ELEKTRIČNA STRUJA KROZ TEKUĆINE. Elektrolitička disocijacija. čista destilirana voda izolator, uz npr. NaCl bolja vodljivost

ELEKTRIČNA STRUJA KROZ TEKUĆINE. Elektrolitička disocijacija. čista destilirana voda izolator, uz npr. NaCl bolja vodljivost ELEKTRIČNA STRUJA KROZ TEKUĆINE Elektrolitička disocijacija čista destilirana voda izolator, uz npr. NaCl bolja vodljivost otopine kiselina, lužina ili soli = elektroliti pozitivni i negativni ioni povećavaju

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

KISLINE IN BAZE ARRHENIUSOVA DEFINICIJA KISLIN IN BAZ

KISLINE IN BAZE ARRHENIUSOVA DEFINICIJA KISLIN IN BAZ 6. KISLINE IN BAZE KISLINE IN BAZE ARRHENIUSOVA DEFINICIJA KISLIN IN BAZ kisline so snovi, ki v vodni raztopini disocirajo vodikove ione (H + ), baze pa snovi, ki v vodni raztopini disocirajo hidroksidne

Διαβάστε περισσότερα

UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ

UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ 1. UVOD V ENERGIJSKE METODE V MEHANIKI KONSTRUKCIJ Vosnovnemtečaju mehanike trdnih teles smo izpeljali sistem petnajstih osnovnih enačb, s katerimi lahko načeloma določimo napetosti, deformacije in pomike

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Moč s kompleksnim računom (19)

Moč s kompleksnim računom (19) Izmenicni_sinali_kompleksna_moc(9).doc /8 8.5.007 Moč s kompleksnim računom (9) otovili smo že, da lahko moč na elementu (vezju) predstavimo s tremi»komponentami«. mim Delovno moč, ki predstavlja tudi

Διαβάστε περισσότερα

TŠC Kranj _ Višja strokovna šola za mehatroniko

TŠC Kranj _ Višja strokovna šola za mehatroniko KRMILNI POLPREVODNIŠKI ELEMENTI Krmilni polprevodniški elementi niso namenjeni ojačanju, anju, temveč krmiljenju tokov v vezju. Narejeni so tako, da imajo dve stanji: vključeno in izključeno. Enospojni

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola 1. Četrtek, 5. junij 2014 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M477* SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA Izpitna pola Četrtek, 5. junij 04 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost

Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost Led dioda LED dioda je sestavljena iz LED čipa, ki ga povezujejo priključne nogice ter ohišja led diode. Glavno,

Διαβάστε περισσότερα