IV.3. Factorul de condiţionare al unei matrice

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "IV.3. Factorul de condiţionare al unei matrice"

Transcript

1 IV.3. Fctorul de codiţiore l uei mtrice defieşte pri Defiiţie. Fctorul de codiţiore l uei mtrice pătrte A M, (R) se cod(a) = A A - ude este o orm opertorilă mtricei A (de exemplu, su ). Pri coveţie cod(a) = dcă A este sigulră. Se pote observ că Ax Ax cod(a) = mx mi x 0 x x 0 x Fctor de codiţiore cod(a) mre îsemă A prope sigulră. Fctorul de codiţiore cod(a) re următorele proprietăţi cod(a) cod(i ) = petru orice cod(αa) = cod(a) petru orice sclr α 0 cod(d) = mx i mi α αi petru orice mtrice digolă i i D=dig(α, α 2,..., α ). Clcul vlorii excte fctorului de codiţiore l uei mtrice A presupue clculul A -. Cum umărul de operţii ecesre petru clculul ormei iversei lui A ( A - ) este mi mre decât cel petru rezolvre uui sistem liir Ax = b, de obicei î prctică se foloseşte u estimtor petru A -. Determire uei estimţii petru A - plecă de l observţi că, dcă Ax = y, tuci şi mărgie superioră mulţimii x y A-, x, Ax = y y este A - şi se tige petru o umită vlore y..

2 Mădăli Rox Bueci Metode Numerice Curs Comd MAPLE cod(a) di pchetul lilg clculeză fctorul de codiţiore mtricei A. Cosiderăm sistemul Ax = b, cu A esigulră şi otăm cu x* soluţi exctă. Să presupuem că î locul mtricei A este furiztă mtrice A + E şi c urmre se rezolvă sistemul (A+E) x = b, cărui soluţie o otăm cu ˆx. Atuci (A+E) ˆx = Ax* E ˆx = A(x*- ˆx ). A - E ˆx =x*- ˆx Atuci x*- ˆx = A - E ˆx A - E ˆx, de ude ˆx x * ˆx cod(a) E A. Deci fctor de codiţiore mic şi vriţii reltive mici le coeficieţilor mtricei implică vriţii reltive mici le soluţiei. Dcă fctorul de codiţiore cod(a) este mre, tuci rezolvre sistemului Ax = b este o problemă rău codiţiotă. Să presupuem cum că î locul vectorului termeilor liberi b este dt vectorul ˆb şi c urmre se rezolvă sistemul A x = ˆb, cărui soluţie o otăm cu ˆx. Atuci A ˆx = ˆb - b + b A ˆx = ˆb - b + Ax* A(x*- ˆx ) = b- ˆb x*- ˆx = A - (b- ˆb ) Atuci 2

3 x*- ˆx = A - (b- ˆb ) A - (b- ˆb ) = A - (b- ˆb ) Ax * b A - b bˆ b A x*, de ude ˆx x * x * cod(a) b bˆ b. Deci fctor de codiţiore mic şi vriţii reltive mici le termeilor liberi implică vriţii reltive mici le soluţiei. Dcă grdul de curteţe dtelor de itrre este comptibil cu precizi mşiii ε mch, tuci ˆx x * x * cod(a)ε mch. Î urm clculului soluţiei sistemului Ax = b se pot pierde pâă l log 0 (cod(a)) cifre zecimle semifictive reltiv l curteţe dtelor de itrre. Iterpretre geometrică: = 2: Ecuţii uui sistem liir cărui mtrice A M 2,2 (R) pot fi iterprette c ecuţiile două drepte î pl, ir soluţi sistemului drept coordotele puctului de itersecţie celor două drepte. Fctor de codiţiore mre l mtricei A îsemă că dreptele sut prope prlele. problemă bie codiţiotă problemă rău codiţiotă Exemplu Cosiderăm sistemul Ax = b, ude 3

4 Mădăli Rox Bueci Metode Numerice Curs şi A = b = Cosiderăm următorele comezi MAPLE: > with(lilg): > A:=mtrix(2,2,[ ,887.2,887.2,885.78]); A := > A:=mtrix(2,2,[888445/000,8872/000,8872/000, 88578/000]); > cod(a); > b:=vector([,0]); > Digits:=6; > lisolve(a,b); > Digits:=5; > lisolve(a,b); > Digits:=0; > lisolve(a,b); > lisolve(a,b); A := b := [, 0 ] Digits := [ , ] Digits := 5 [ , ] Digits := 0 [ , ] [ , ] 4

5 Deşi mtricele A şi A sut egle - difereţ este dtă dor de reprezetre coeficieţilor: simbolic (c umere rţiole) î czul lui A şi î virgulă mobilă î czul lui A comezile lisolve(a,b) şi lisolve(a,b) îtorc rezultte diferite. Soluţi corectă sistemului este ce obţiută î vrit î cre s- lucrt simbolic: x = x 2 = Rezulttul erot furizt de comd lisolve(a,b) se dtoreză relei codiţioări mtricei A. Se observă că fctorul de codiţiore este: Reveim l sistemul Ax = b, cu A esigulră otăm cu x* soluţi exctă şi cu ˆx soluţi proximtivă. Vectorul se umeşte reziduu. Avem r = b - A ˆx x*- ˆx = 0 r = 0, dr x*- ˆx şi r u sut mici simult. Avem r = b - A ˆx = Ax* - A ˆx = A(x*- ˆx ) A - r = x* - ˆx x* - ˆx = A - r A - r =cod(a) = cod(a) A r = x* A x* r cod(a) x* Ax* r = = cod(a) x* r. b de ude rezultă x * xˆ x * cod(a) r b C urmre fctor de codiţiore mic (problemă bie codiţiotă) şi reziduu mic implică vriţii reltive mici le soluţiei. Exemplu Cosiderăm sistemul Ax = b, ude 5

6 Mădăli Rox Bueci Metode Numerice Curs şi A =.00 b = Evidet soluţi corectă sistemului este x = x 2 = Dcă se cosideră vectorul y se observă că y 2 y 2 = 0 b - Ay = Deci y pret verifică sistemul, deşi este diferit de x. Acest se dtoreză vlorii fctorului de codiţiore l lui A pe cre-l putem determi folosid următorele comezi MAPLE: > with(lilg): > A:=mtrix(2,2,[,.00,,]); > cod(a); A := Arătăm î cotiure că dcă reziduu este mre tuci vriţi reltivă coeficieţilor mtricei de itrre A este mre. Să presupuem că ˆx este soluţi sistemului (A+E) x = b. Atuci de ude (A+E) ˆx = b E ˆx = b -A ˆx E ˆx = r r = E ˆx E ˆx, 6

7 şi c urmre r E A x ˆ A. Î coseciţă dcă reziduu este mre tuci vriţi reltivă coeficieţilor mtricei de itrre A este mre. Deci dcă lgoritmul de rezolvre sistemului este stbil tuci reziduul reltiv este mic idiferet dcă problem este bie codiţiotă su u. IV.4. Metode itertive de rezolvre sistemelor liire IV.4.. eerlităţi Metodele itertive costu î costrucţi uui şir (x ) coverget către soluţi exctă sistemului. Oprire procesului itertiv re loc l u idice m determit pe prcursul clculului î fucţie de precizi impusă stfel îcât termeul x m să costituie o proximţie stisfăcătore soluţiei căutte. Se cosideră sistemul liir Ax = b, A M, (R) esigulră şi desfcere mtricei A defiită pri A = N-P. cu N o mtrice iversbilă. Fie x 0 u vector rbitrr di R. Costruim şirul (x ) folosid relţi de recureţă: Nx + = P x + b, 0. Notăm e = x* x erore bsolută cu cre x proximeză x*, soluţi exctă sistemului Ax = b. Teoremă. Fie sistemul liir Ax = b cu A M, (R) esigulră şi fie A = N- P o desfcere mtricei A (N M, (R) mtrice esigură). Şirul (x ) defiit pri Nx + = P x + b, 0, x 0 dt 7

8 Mădăli Rox Bueci Metode Numerice Curs coverge l soluţi exctă sistemului Ax = b oricre r fi x 0 dcă şi umi dcă ρ(n - P) < (ρ(n - P) reprezită rz spectrlă lui N - P, i.e. mximum modulelor vlorilor proprii le lui N - P). Demostrţie. Notăm = N - P. Atuci e + = x* x + = x* - N - (P x + b) = x* - N - P x - N - b = x* - N - P x - N - Ax* = x* - N - P x - N - (N-P) x* = x* - N - P x - x* + N - P x* = N - P (x* - x ) = e. C urmre e + = e = e - =...= + e 0, petru orice 0. Î coseciţă, lim x = x* petru orice terme iiţil x 0 dcă şi umi dcă 0 lim e =0 petru orice e 0, su echivlet dcă ρ() <. lim =0. Este cuoscut că lim =0 dcă şi umi Di demostrţi teoremei teriore rezultt că dcă = N - P şi e = x* x, tuci e = e - = e 0 petru orice 0. N se lege stfel îcât sistemul Nx + = P x + b, 0. cărui soluţie este x + să se rezolve uşor de exemplu se lee N digolă su triughiulră Î czul metodelor cocrete descrise î cotiure se cosideră desfcere stdrd mtricei A = ( i,j ) i,j defiită pri: A = L + D + R ude, D = dig(,, 2,2,., ) = 0 2, , 8

9 L = 2, ,,2,3,- 0 0,2,3,-, R = 0 0 2,3 2,- 2, IV.4.2. Metod Jcobi Metod Jcobi se crcterizeză pri desfcere N = D, P = - (L+R) N - = N - P = ,2 -,3 -,- -, - 2, 0-2,3-2,- - 2, : , -,2 -,3 -,- 0 9

10 Mădăli Rox Bueci Metode Numerice Curs Dcă = N - P, tuci coeficieţii mtricei = (g ij ) i,j sut: 0, i = j g i,j = i,j, i j. Şirul (x ) defiit pri Nx + = P x + b, 0, x 0 dt coverge l soluţi exctă sistemului Ax = b oricre r fi x 0 dcă şi umi dcă ρ() <. Deorece ρ(), petru orice ormă opertorilă lui, vem ρ() mi(, ), şi c urmre petru sigur covergeţ şirului (x ) este suficiet c mi(, )<. Clculăm : = mx{ g i= = mx{ i= i j i,j i, j i, i, j }, j } Clculăm : = mx{ g i,j, i } = mx{ j i i, j i, i, i }. Dcă < su <, tuci ρ() <. Dr codiţi < este echivletă cu j i i, j i, i < petru orice i, i > i= i j petru orice i, i i, j 0

11 cz î cre spuem că A este digol domită. Deci dcă 0 petru orice i =,2,,, şi dcă A este digol domită tuci şirul obţiut pri metod Jcobi coverge l soluţi exctă sistemului Ax = b. Dcă e = x*- x este erore bsolută cu cre x proximeză x*, soluţi exctă sistemului Ax = b, tuci e = e 0 petru orice 0. Î coseciţă, petru orice orme comptibile e e 0 e 0 e 0 Fie, = mi(, stisfăcătore petru soluţi exctă sistemului dcă cee ce este echivlet cu ) şi fie ε > 0 dt. Vom cosider x este o proximţie (, ) < ε. ( ) l ε l, ( ) +. Şirul (x ) costruit pri metod Jcobi este defiit pri Nx + = P x + b, 0, x 0 dt x + = N - P x + N - b, 0, x + = x + N - b, 0, Deci petru orice i, i, x i + b = gi,jx j + i = b gi,jx j - i j i = i,j b x j + i j i. Î coseciţă, şirul (x ) costruit pri metod Jcobi este: x 0 dt x i + = (b i - i,jx j ), i =,2,,, 0. j i IV.4.3. Metod uss-seidel Metod uss-seidel corespude desfcerii

12 Mădăli Rox Bueci Metode Numerice Curs N = L + D, P = -R. Şirul (x ) costruit pri metod uss-seidel este defiit pri Nx + = P x + b, 0, x 0 dt, , 2, :...,,2,3,- x + x 2 + x + = Px + b Deci x + = =,, ((Px ) + b ) =, (,jx j + b ) = 2 ( P,j x j + b ) =, (b -,,jx j ) 2 ( P,j x j + b ) = 2 şi petru orice i, 2 i, vem x i + = = = = i ((Px + ) i + b i - i,jx j ) = ( i + Pi,jx j + b i - i,jx j ) i+ i + i,jx j + b i - i,jx j ) i+ ( ( b i - i + i,jx j - i,jx j ) i+ ( Pi,j x j + b i - i + i,jx j ) Î coseciţă, şirul (x ) costruit pri metod uss-seidel este: x 0 dt 2

13 petru 0, x + =, (b -,jx j ) 2 x i + = ( b i - i,jx j - i+ i i,j x + j ), i =2,3,, C şi î czul metodei Jcobi dcă 0 petru orice i =,2,,, şi dcă A este digol domită tuci şirul obţiut pri metod uss-seidel coverge l soluţi exctă sistemului Ax=b. De semee dcă A este o mtrice simetrică şi re elemetele de pe digol priciplă pozitive, tuci metod uss-seidel coverge dcă şi umi dcă mtrice A este pozitiv defiită. 3

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

4. Integrale improprii cu parametru real

4. Integrale improprii cu parametru real 4. Itegrle improprii cu prmetru rel Fie f: [ b, ) [ cd, ] y [, itegrl improprie R cu < b +, stfel îcât petru fiecre b cd ] f (, ) ydeste covergetă. Atuci eistă o fucţie defiită pritr-o itegrlă improprie

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

ANEXA., unde a ij K, i = 1, m, j = 1, n,

ANEXA., unde a ij K, i = 1, m, j = 1, n, ANEXA ANEXĂ MATRICE ŞI DETERMINANŢI Fie K u corp şi m N* = N \ {} Tbloul dreptughiulr A = ude ij K i = m j = m m m se umeşte mtrice de tip (m ) cu elemete di corpul K Mulţime mtricelor cu m liii şi coloe

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

4. Serii de numere reale

4. Serii de numere reale I. (,) lim x lim + II. x şi lim x III. > x ( + ) ( + ) şi cum lim ( >) ; lim x lim lim lim x + ; (,) (, ). 4. Serii de umere rele Coceptul de serie umerică este o geerlizre turlă oţiuii de sum fiită de

Διαβάστε περισσότερα

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi.

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi. Poliome ) Form lgebrică uui poliom Pri form lgebrică su form coică îţelegem f X X X Prescurtt putem scrie f X,,, sut coeficieţii poliomului cu, se umeşte coeficiet domit şi X terme domit tuci poliomul

Διαβάστε περισσότερα

λ C valoare proprie a matricei A dacă x, x 0

λ C valoare proprie a matricei A dacă x, x 0 ALULUL NUMERI AL VALORILOR PROPRII ŞI AL VETORILOR PROPRII A mtrice pătrtică de ordiul cu elemete rele vlore proprie mtricei A dcă, R : A ; () vector propriu l mtricei A socit vlorii () (A I), I mtrice

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU

6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU 6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU 6.1. Noţiui teoretice şi rezultte fudmetle 6.1.1. Metod lui Droux de defii itegrl simplă Fie [, ] u itervl. Descompuem itervlul [, ] îtr-u umăr orecre

Διαβάστε περισσότερα

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem

Διαβάστε περισσότερα

DRUMURI, ARCE ŞI LUNGIMILE LOR

DRUMURI, ARCE ŞI LUNGIMILE LOR Drumuri, rce, lugimi Virgil-Mihil Zhri DRUMURI, ARCE ŞI LUNGIMILE LOR FucŃiile cu vrińie mărgiită u fost itroduse de Jord Cmille (88-9) şi utilizte de el cu oczi studiului prolemei rectificilităńii curelor,

Διαβάστε περισσότερα

CAPITOLUL 4 REZOLVAREA ECUAŢIILOR NELINIARE

CAPITOLUL 4 REZOLVAREA ECUAŢIILOR NELINIARE Tri CICNE Metode umerice î igieri ecoomică CAPITLUL 4 REZLVAREA ECUAŢIILR NELINIARE Rezolvre uei ecuţii eliire pre prctic î orice modelre mtemtică uei proleme fizice. Cu ecepţi uor czuri forte prticulre,

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

Cap. IV Serii Fourier. 4.1 Serii trigonometrice. (1) Numărul T se numeşte perioadă pentru funcţia f ( x )., x D, x ± T D

Cap. IV Serii Fourier. 4.1 Serii trigonometrice. (1) Numărul T se numeşte perioadă pentru funcţia f ( x )., x D, x ± T D Cp. IV Serii Fourier 4. Serii trigoometrice Defiiţie: O fucţie f ( ) defiită pe o muţime ifiită D se umeşte periodică dcă eistă u umăr T stfe îcât: f ( ± T) = f ( ), D, ± T D () Număru T se umeşte periodă

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cp PRIMITIVE 5 CAPITOLUL PRIMITIVE METOE GENERALE E CALCUL ALE PRIMITIVELOR Î cest prgrf vom remiti oţiue de primitivă, proprietăţile primitivelor şi metodele geerle de clcul le cestor efiiţi Fie f : I,

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete:

Διαβάστε περισσότερα

Inegalitati. I. Monotonia functiilor

Inegalitati. I. Monotonia functiilor Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite

Διαβάστε περισσότερα

CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică

CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică Capitolul II: Serii de umere reale Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC CURS III, IV Capitolul

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

Tema 4. Primitiva şi integrala Riemann. Aplicaţii. Modulul Primitiva. Aplicaţii

Tema 4. Primitiva şi integrala Riemann. Aplicaţii. Modulul Primitiva. Aplicaţii Tem 4 Primitiv şi itegrl Riem. Alicţii. Modulul 4. - Primitiv. Alicţii Noţiue de rimitivă s- degjt di licţiile mtemticii î situţii cocrete, cre costă î determire modelului mtemtic l uui roces tuci câd

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

9. Polinoamele Taylor asociate unor funcţii (I. Boroica) 9.1. Formulele lui Taylor şi polinoamele Taylor asociate funcţiilor elementare

9. Polinoamele Taylor asociate unor funcţii (I. Boroica) 9.1. Formulele lui Taylor şi polinoamele Taylor asociate funcţiilor elementare lgeră Cupris Mtrice de ordi doi şi plicţii (IDicou VPop Mtrice de ordi doi Proleme rezolvte Teorem lui Cle- Hmilto 4 Proleme rezolvte 5 Determire puterilor turle le uei mtrice de ordi doi 6 Proleme rezolvte

Διαβάστε περισσότερα

OperaŃii cu numere naturale

OperaŃii cu numere naturale MulŃime umereleor turle www.webmteifo.com Petru scrie u umr orecre trebuie s combim itre ele uele ditre cele 0 simboluri: 0,,,, 4,, 6, 7, 8, 9.Aceste simboluri se umesc cifre. Ele sut de origie rb. Ν =

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ Sala: 203 Decembrie 204 Cof. uiv. dr.: Dragoş-Pătru Covei CURS 0: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs u a fost supus uui proces riguros de recezare petru a fi oficial publicat. distribuit

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

5.1. ŞIRURI DE FUNCŢII

5.1. ŞIRURI DE FUNCŢII Modulul 5 ŞIRURI ŞI SERII DE FUNCŢII Subiecte :. Şiruri de fucţii.. Serii de fucţii. 3. Serii de puteri. Evaluare :. Covergeţa puctuală şi covergeţa uiformă la şiruri şi serii de fucţii.. Teorema lui Abel.

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA î ul uiversitr 9 PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii lor

Διαβάστε περισσότερα

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI XII- A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.

Διαβάστε περισσότερα

PENTRU CERCURILE DE ELEVI

PENTRU CERCURILE DE ELEVI 122 Petru cercurile de elevi PENTRU CERCURILE DE ELEVI Petru N, otăm: POLINOAME CICLOTOMICE Marcel Ţea 1) U = x C x = 1} = cos 2kπ + i si 2kπ } k = 0, 1. Mulţimea U se umeşte mulţimea rădăciilor de ordi

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

2) Numim matrice elementara o matrice:

2) Numim matrice elementara o matrice: I TRANSFORMARI ELEMENTARE ) Cre di urmtorele opertii efectute supr uei mtrice este trsformre elemetr: ) dure uei liii l o colo; b) imultire uei liii cu sclrul α = c) schimbre dou liii itre ele; d) dure

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu

Διαβάστε περισσότερα

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA TESTE GRILĂ DE MATEMATICĂ petru emeul de bcluret şi dmitere î îvăţămâtul superior l UNIVERSITATEA POLITEHNICA DIN TIMISOARA PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii

Διαβάστε περισσότερα

Spaţii topologice. Spaţii metrice. Spaţii normate. Spaţii Hilbert

Spaţii topologice. Spaţii metrice. Spaţii normate. Spaţii Hilbert Metode de Optimizare Noţiui recapitulative de Aaliză Matematică şi Algebră Liiară Spaţii topologice. Spaţii metrice. Spaţii ormate. Spaţii Hilbert Reamitim o serie de defiiţii şi teoreme legate de spaţiile

Διαβάστε περισσότερα

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011 Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila

Διαβάστε περισσότερα

sin d = 8 2π 2 = 32 π

sin d = 8 2π 2 = 32 π .. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],

Διαβάστε περισσότερα

Cursul 4. Matrice. Rangul unei matrice. Rezolvarea sistemelor de ecuaţii liniare. Metoda eliminării a lui Gauss

Cursul 4. Matrice. Rangul unei matrice. Rezolvarea sistemelor de ecuaţii liniare. Metoda eliminării a lui Gauss Lector univ dr Cristin Nrte Cursul 4 Mtrice Rngul unei mtrice Rezolvre sistemelor de ecuţii linire Metod eliminării lui Guss Definiţie O mtrice m n este o serie de mn intrări, numite elemente, rnjte în

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

3.1. DEFINIŢII. PROPRIETĂŢI

3.1. DEFINIŢII. PROPRIETĂŢI Modulul 3 SERII NUMERICE Subiecte :. Criterii de covergeţă petşru serii cu termei oarecare. Serii alterate 3. Criterii de covergeţă petru serii cu termei poziţivi Evaluare. Criterii de covergeţă petru

Διαβάστε περισσότερα

Formula lui Taylor. 25 februarie 2017

Formula lui Taylor. 25 februarie 2017 Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =

Διαβάστε περισσότερα

PROBLEME CU PARTEA ÎNTREAGĂ ŞI

PROBLEME CU PARTEA ÎNTREAGĂ ŞI PROBLEME CU PARTEA ÎNTREAGĂ ŞI PARTEA FRACŢIONARĂ. Să se rezolve ecuaţia {x} {008 x} =.. Fie r R astfel ca r 9 ] 00 Determiaţi 00r]. r 0 ] r ]... r 9 ] = 546. 00 00 00 Cocurs AIME (SUA), 99. Câte ditre

Διαβάστε περισσότερα

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite. CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte

Διαβάστε περισσότερα

Polinoame Fibonacci, polinoame ciclotomice

Polinoame Fibonacci, polinoame ciclotomice Polioame Fiboacci, polioame ciclotomice Loredaa STRUGARIU, Cipria STRUGARIU 1 Deoarece şirul lui Fiboacci este cuoscut elevilor îcă dicl.aix-a,iarrădăciile de ordiul ale uităţii şi polioamele ciclotomice

Διαβάστε περισσότερα

3. Serii de puteri. Serii Taylor. Aplicaţii.

3. Serii de puteri. Serii Taylor. Aplicaţii. Fucţiile f ( ) cos t = sut de clasă C pe R cu α si derivatelor satisface codiţiile: α f ' ( ) si = şi seria ' ( ), α α f R cu = b α ' coverge petru α > f este (ormal covergetă) absolut şi uiform covergetă

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5..8 Ecuaţia difereţială Riccati Ecuaţia difereţială de ordiul îtâi de forma: d q( ) p( ) r( ) d + + (4) r sut fucţii cotiue pe u iterval, cuoscute, iar fucţia ude q( ), p ( ) şi ( ) este ecuoscuta se

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE ŞIRURI ŞI SERII DE NUMERE REALE Noţiui teoretice şi rezultate fudametale Şiruri de umere reale Presupuem cuoscute oţiuile de bază despre mulţimea N a umerelor aturale, mulţimea Z a umerelor îtregi, mulţimea

Διαβάστε περισσότερα

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1 3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg

Διαβάστε περισσότερα

în care suma termenilor din fiecare grup este 0, poate conduce la ideea că valoarea acestei sume este 0. De asemenea, gruparea în modul

în care suma termenilor din fiecare grup este 0, poate conduce la ideea că valoarea acestei sume este 0. De asemenea, gruparea în modul Capitolul 3 SERII NUMERICE Date fiid umerele reale x 0, x,..., x, î umăr fiit, suma lor x 0 + x +... + x se poate calcula fără dificultate, după regulile uzuale. Extiderea oţiuii de sumă petru mulţimi

Διαβάστε περισσότερα

2.1. DEFINIŢIE. EXEMPLE

2.1. DEFINIŢIE. EXEMPLE Modulul SPAŢII METRICE Subiecte :. Spaţii metrice. Defiiţii, exemple.. Mulţimi deschise, mulţimi îchise î spaţii metrice. Mulţimi compacte. 3. Spaţii metrice complete. Pricipiul cotracţiei. Evaluare:.Răspusuri

Διαβάστε περισσότερα

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.

Διαβάστε περισσότερα

REZIDUURI ŞI APLICAŢII

REZIDUURI ŞI APLICAŢII Mtemtici specile şi metode umerice EZIDUUI ŞI APLICAŢII. Formule petru reiduuri Câd sigulrităţile du vlore şi uţ. Teorem reiduurilor Defiiţi. Fie f() o fucţie cre re î C u pol su u puct sigulr eseţil iolt.

Διαβάστε περισσότερα

x x m Δx. Rezulta deci că adevătata valoare a mărimii căutate va fi cuprinsă între limitele:

x x m Δx. Rezulta deci că adevătata valoare a mărimii căutate va fi cuprinsă între limitele: ERORI DE MĂSURĂ L efecture uei determiări, pri repetre celeişi măsurători, reliztă î codiţii idetice, se oţi rezultte diferite, difereţele fiid î geerl mici. Acest fpt dovedeşte că măsurătorile efectute

Διαβάστε περισσότερα

Exerciţii de Analiză Matematică

Exerciţii de Analiză Matematică Exerciţii de Aliză Mtemtică October, 5 Şiruri si serii de umere rele. Să se stbilescă dcă şirul cu termeul geerl x =... este su u fudmetl.. Petru răt că şirul este fudmetl: Petru răt că şirul este fudmetl:

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

ŞIRURI ŞI SERII DE FUNCŢII

ŞIRURI ŞI SERII DE FUNCŢII Capitolul 8 ŞIRURI ŞI SERII DE FUNCŢII 8. Şiruri de fucţii Fie D R, D = şi fie f 0, f, f 2,... fucţii reale defiite pe mulţimea D. Şirul f 0, f, f 2,... se umeşte şir de fucţii şi se otează cu ( f ) 0.

Διαβάστε περισσότερα

Şiruri recurente. Mircea Buzilă. 2009, Editura Neutrino Titlul: Şiruri recurente Autor: Mircea Buzilă ISBN

Şiruri recurente. Mircea Buzilă. 2009, Editura Neutrino Titlul: Şiruri recurente Autor: Mircea Buzilă ISBN Mirce Buzilă Şiruri recurete Editur eutrio 9 9 Editur eutrio Titlul: Şiruri recurete utor: Mirce Buzilă SB 978-97-896-7-9 Descriere CP Bibliotecii ţiole Roâiei BUZLĂ MRCE Şiruri recurete / Mirce Buzilă.

Διαβάστε περισσότερα

sistemelor de algebrice liniarel

sistemelor de algebrice liniarel Uivesitatea Tehică a Moldovei Facultatea de Eergetică Catedra Electroeergetica Soluţioarea sistemelor de ecuaţii algebrice liiarel lect.uiv. Victor Gropa «Programarea si Utilizarea Calculatoarelor I» Cupris

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

IV. Rezolvarea sistemelor liniare

IV. Rezolvarea sistemelor liniare IV. Rezolvarea sistemelor liiare IV.. Elemete de aaliză matriceală Fie V u spaţiu vectorial (liiar peste corpul K (K=R sau K=C. Reamitim o serie de defiiţii şi teoreme legate de spaţiile ormate şi spaţiile

Διαβάστε περισσότερα

BAREM DE CORECTARE CLASA A IX A

BAREM DE CORECTARE CLASA A IX A ETAPA JUDEŢEANĂ - martie 0 Filiera tehologica : profil tehic BAREM DE CORECTARE CLASA A IX A a) Daţi exemplu de o ecuaţie de gradul al doilea avâd coeficieţi raţioali care admite ca rădăciă umărul x= +

Διαβάστε περισσότερα

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x

Διαβάστε περισσότερα

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA, TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul

Διαβάστε περισσότερα

4. Ecuaţii diferenţiale de ordin superior

4. Ecuaţii diferenţiale de ordin superior 4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã

Διαβάστε περισσότερα

Analiză I Curs 1. Curs 1., a n. dacă ε, ( )N ( ε ) a.î. n x n ε ; ε sunt numere reale şi deci (a n. şi fie

Analiză I Curs 1. Curs 1., a n. dacă ε, ( )N ( ε ) a.î. n x n ε ; ε sunt numere reale şi deci (a n. şi fie Aaliză I Curs Curs Şiruri de umere: D : Fie u şir de umere (a ), a. Spuem că dacă ( )M 0, a.î. a M. (a ) este mărgiit D : Spuem că (a ) coverge către l dacă ( )V (l), ( )N (V ) şi N (V ) a V. D 3 : a l

Διαβάστε περισσότερα

Adrian Stan Editura Rafet 2007

Adrian Stan Editura Rafet 2007 Dreptul de copyright: Crte dowlodtă de pe site-ul www.mteifo.ro u pote fi pulictă pe u lt site şi u pote fi folosită î scopuri comercile fără specificre sursei şi cordul utorului Adri St Editur Rfet 007

Διαβάστε περισσότερα

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs

Διαβάστε περισσότερα

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât Cp 2 INTEGRALA RIEMANN 9 CAPITOLUL 2 INTEGRALA RIEMANN 2 SUME DARBOUX CRITERIUL DE INTEGRABILITATE DARBOUX Defţ 2 Se umeşte dvzue tervlulu [, ] orce sumulţme,, K,, K, [, ] stfel îcât = { } = < < K< <

Διαβάστε περισσότερα

Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008

Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008 Cocursul Naţioal Al. Myller CLASA a VII-a Numerele reale disticte x, yz, au proprietatea că Să se arate că x+ y+ z = 0. 3 3 3 x x= y y= z z. a) Să se arate că, ditre cici umere aturale oarecare, se pot

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

def def punctul ( x, y )0R 2 de coordonate x = b a

def def punctul ( x, y )0R 2 de coordonate x = b a Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă

Διαβάστε περισσότερα

4.7 Reprezentarea complexă a seriilor Fourier

4.7 Reprezentarea complexă a seriilor Fourier 4.7 Reprezetre compeă seriior Fourier Presupuem că f ( ) îdepieşte codiţii suficiete petru dezvotre î serie Fourier. Atuci pote fi reprezettă pe [, ] cu seri: f b + ( cos + si ) f cos d,,, b f si d,, Foosid

Διαβάστε περισσότερα

Varianta 1

Varianta 1 Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări

Διαβάστε περισσότερα

Integrale generalizate (improprii)

Integrale generalizate (improprii) Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem

Διαβάστε περισσότερα

Capitolul 2 ŞIRURI DE NUMERE REALE. 2.1 Proprietăţi generale Moduri de definire a unui şir. (x n ) n 0 : x n =

Capitolul 2 ŞIRURI DE NUMERE REALE. 2.1 Proprietăţi generale Moduri de definire a unui şir. (x n ) n 0 : x n = Capitolul 2 ŞIRURI DE NUMERE REALE 2. Proprietăţi geerale Fie A = o mulţime dată. Se umeşte şir de elemete di A o fucţie f : N A. Dacă A = R, şirul respectiv se va umi şir de umere reale, şir umeric sau,

Διαβάστε περισσότερα

Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial

Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul difereţial MATHEMATICAL ANALYSIS Differetial calculus The preset book is the first part of the cours of Mathematical Aalysis give by the author for may years

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

UNIVERSITATEA ŞTEFAN CEL MARE FACULTATEA DE SILVICULTURĂ MATEMATICI SUPERIOARE

UNIVERSITATEA ŞTEFAN CEL MARE FACULTATEA DE SILVICULTURĂ MATEMATICI SUPERIOARE UNIVERSITATEA ŞTEFAN CEL MARE FACULTATEA DE SILVICULTURĂ DEPARTAMENTUL PENTRU ÎNVĂŢĂMÂNT LA DISTANŢĂ MATEMATICI SUPERIOARE PENTRU ÎNVĂŢĂMÂNTUL LA DISTANŢĂ - Ediţie reviuită - Lector Agel Picu Editur Uiversităţii

Διαβάστε περισσότερα

REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE

REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE Forma geerală a ecuaţiei: cu : I R R Î particular poliom / adus la o ormă poliomială dar şi ecuaţiile trascedete Rezolvarea

Διαβάστε περισσότερα

Varianta 1. SUBIECTUL I (30p) Varianta 001 5p 1. Să se determine numărul natural x din egalitatea x = p

Varianta 1. SUBIECTUL I (30p) Varianta 001 5p 1. Să se determine numărul natural x din egalitatea x = p Filiera vocaţioală, profilul militar, specializarea matematică-iformatică Toate subiectele sut obligatorii Timpul efectiv de lucru este de ore Se acordă pucte di oficiu La toate subiectele se cer rezolvări

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ]. Miisterul EducaŃiei, Cercetării, Tieretului şi Sportului Cetrul NaŃioal de Evaluare şi Eamiare Eameul de bacalaureat ańioal 0 Proba E c) Matematică M_mate-ifo Filiera teoretică, profilul real, specializarea

Διαβάστε περισσότερα

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii... Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα