ŽVEPLOVA (VI) KISLINA INDIKATOR RAZVITOSTI INDUSTRIJE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ŽVEPLOVA (VI) KISLINA INDIKATOR RAZVITOSTI INDUSTRIJE"

Transcript

1 Gimnazija Kočevje Ljubljanska cesta Kočevje ŽVEPLOVA (VI) KISLINA INDIKATOR RAZVITOSTI INDUSTRIJE Avtor: Rok Nosan Mentor: prof. Ela Bečirović Šolsko leto: 2009/

2 Kazalo 1. Uvod Žveplova (VI) kislina H2SO4 osnovni podatki Žveplo in njegove spojine... 5 Žveplo S... 5 Vodikov sulfid H2S (tudi: žveplovodikova kislina)... 6 Žveplov dioksid... 7 Žveplov trioksid Proizvodnja žveplove kisline Literatura

3 1. Uvod Pri pouku kemije smo morali izdelati projektno nalogo. Naša skupina se je odločila, da bo naslov naše projektne naloge Žveplova (VI) kislina - indikator razvitosti industrije. Preden smo se lotili pisanja naše projektne naloge, smo pregledali kaj o tej snovi piše v učbeniku in kaj na internetu. Po pregledu literature smo se odločili, da najprej predstavimo nekaj osnovnih podatkov o žveplovi kislini in nato še osnovne podatke o žveplu in njegovih spojinah, s katerimi se srečujemo pri pridobivanje žveplove kisline. Sledi opis postopka pridobivanja žveplove (VI) kisline. Nato smo si razdelili delo in sicer tako, da Rok napiše PowerPoint predstavitev in Word predstavitev, Nik napiše predstavitev za razred, Matic izdela delovne liste za sošolce, in Tilen pokaže nekaj poskusov pred razredom. Upamo, da vam je naša naloga všeč

4 2. Žveplova (VI) kislina H2SO4 osnovni podatki Žveplova kislina je brezbarvna, gosta tekočina in je ena od najpomembnejših kemikalij. Uporabljajo jo v različnih vejah industrije (v anorganski, organski, živilsko predelovalni, farmacevtski, kovinsko predelovalni industriji...), najdemo jo pa tudi v običajnih avtomobilskih akumulatorjih. Je močna kislina z tališčem pri 10 C in vreliščem pri 338 C. Na leto jo po celem svetu proizvedejo cca. 100 milijonov ton. Razvitost neke države ocenjujejo glede na letno porabo te kisline. Žveplova (VI) kislina povzroča hude opekline, zato je pri delo s to snovjo potrebno biti zelo previden. Z vodo protolitsko reagira v dveh stopnjah: H 2 SO 4 (aq) + H 2 O(l) HSO 4- (aq) + H 3 O + (aq) K a = zelo velika HSO 4- (aq) + H 2 O(l) 2- SO 4 (aq) + H 3 O + (aq) K a = 0,012 molekulska formula H 2 SO 4 gostota pri 20 C 1,84 g/cm 3 tališče 10 C vrelišče 338 C molska masa 98,09 g/mol Koncentrirana žveplova kislina je močan oksidant in lahko pri dovolj visoki temperaturi raztaplja celo baker in srebro. Pri tem se žveplova kislina reducira v žveplov dioksid. Cu(s) + 2H 2 SO 4 (l) CuSO 4 (aq) + SO 2 (g) + 2H 2 O(l) Razredčena žveplova kislina raztaplja kovine z negativnim elektrodnim potencialom. (magnezij, cink, aluminij, železo, itd.). Mg(s) + H 2 SO 4 (aq) MgSO 4 (aq) + H 2 (g)

5 Žveplova kislina je močno higroskopna tekočina (vodovpojna). Vodo odvzame celo organskim snovem (npr. sladkorju, lesu), pri čemer organska snov poogleni. Pri tem se sprosti veliko toplote. C 12 H 22 O 11 (s) 12C(s) + 11H 2 O(l) Del nastalega ogljika se zaradi žveplove kisline še oksidira. Pri tem nastanejo plini, ki povzročijo dvig pooglenele snovi: C(s) + 2H 2 SO 4 (l) CO 2 (g) + 2SO 2 (g) + 2H 2 O(l) Slika 1: Reakcija sladkorja s koncentrirano žveplovo (VI) kislino Ker je redčenje žveplove kisline zelo eksotermen proces, moramo pri redčenju vselej dodajati kislino v vodo (in ne obratno vodo v kislino). 3. Žveplo in njegove spojine Preden se seznanimo z temeljnimi postopki proizvodnje žveplove kisline, spoznajmo še lastnosti žvepla in njegovih spojin s katerimi se srečujemo pri proizvodnji te kisline. Žveplo S Žveplo je nekovina. Pri sobni temperaturi je to rumena trdna snov. Zanj je značilno, da se ne topi v vodi, topi pa se v nepolarnih topilih ( npr. v ogljikovem disulfidu CS 2, tetraklorometanu CCl 4 ). V naravi ga najdemo v elementarni obliki (predvsem v ZDA in na Japonskem), pa tudi v mnogih spojinah, predvsem v sulfidih (npr. ZnS) in sulfatih (npr. CaSO 4 ). V zadnjem času žveplo pridobivajo z odstranjevanjem in s predelavo vodikovega sulfida H 2 S iz zemeljskega plina ter žveplovega dioksida SO 2, ki nastane pri predelavi sulfidnih rud. Žveplo ima več različnih alotropnih modifikacij: * α-žveplo (ortorombsko); rumeni, krhki kristali, brez vonja in okusa (obstojno pri sobni temperaturi), osnovni delci so molekule S 8 Slika 2: α-žveplo

6 * β-žveplo (monoklinsko); rumenkaste, kristalne iglice (nastane pri segrevanju α-žvepla nad 95 C), osnovni delci so molekule S 8 Slika 3: β-žveplo * λ-žveplo ; oranžnorumena talina; nastane pri segrevanju β-žvepla nad 119 C in je prav tako kot pri trdni modifikaciji sestavljeno iz cikličnih molekul S 8 Slika 4: λ-žveplo Pri 160 C se talina skoraj strdi in postane oranžnordeče obarvana. V oranžnordeči talini so poleg molekul S 8 tudi daljše verige S x *μ-žveplo ; rdečerjava, talina; pri višji temperaturi se ciklične molekule S 8 odprejo v verige S x, ki pa se v nadaljnem segrevanju sprimejo v še daljše verige (pri 240 C) Slika 5: μ-žveplo Če talino žvepla segrejemo nad 240 C ter jo v curku zlijemo v mrzlo vodo, dobimo t.i. plastično žveplo, ki pri sobni temperaturi ni obstojno in zato po nekaj tednih ali mesecih počasi preide nazaj v α-žveplo. Vodikov sulfid H 2 S (tudi: žveplovodikova kislina) Vodikov sulfid je brezbarven zelo strupen plin z vonjem po pokvarjenih jajcih. Njegov vonj zaznamo že pri zelo majhni koncentraciji. Vodikov sulfid lahko dobimo z reakcijo med kovinskimi sulfidi in močnimi kislinami: ZnS(s) + 2HCl(aq) ZnCl 2 (aq) + H 2 S(g) Z vodo protolitsko reagira: H 2 S(aq) + H 2 O(l) HS - (aq) + H 3 O + (aq) K a = 1 x 10-7 HS - (aq) + H 2 O(l) S 2- (aq) + H 3 O + (aq) K a = 1 x Tudi v naši atmosferi imamo sledove vodikovega sulfida. Tja pride z vulkanskimi izbruhi in razpadom organskih snovi. Srebro na zraku reagira z vodikovim sulfidom v prisotnosti kisika iz zraka. Na površini srebra nastane tanka plast črnega srebrovega sulfida:

7 4Ag(s) + 2H 2 S(g) + O 2 (g) 2Ag 2 S(g) + 2H 2 O(l) Žveplov dioksid Žveplov dioksid je brezbarven plin ostrega vonja. Večino žveplovega dioksida predelajo v žveplovo kislino, uporabljamo pa ga tudi kot konzervans v živilski industriji ter za beljenje tkanin v tekstilni industriji. Žveplov dioksid je eden izmed glavnih krivcev za nastanek kislega dežja, ki nastane npr. pri gorenju fosilnih goriv in pri praženju sulfidnih rud. Del žveplovega dioksida se z kisikom iz zraka oksidira v žveplov trioksid. Žveplov trioksid reagira z vodo (z dežjem) in nastane žveplova kislina. Večje koncentracije žveplovih oksidov lahko povzročijo, da je deževnica kisla s ph celo pod 4. Prekisla deževnica škodi rastlinam in kamnitim zgradbam. Nastanek kislega dežja: 2SO 2 (g) + O 2 (g) SO 3 (s) + H 2 O(l) 2SO 3 (g) H 2 SO 4 (aq) Žveplov trioksid Pri sobni temperaturi je bela trdna snov, ki je zelo higroskopna. Podobno kot koncentrirana žveplova (VI) kislina je močen oksidant 4. Proizvodnja žveplove kisline Osnovna surovina za pridobivanje žveplove kisline je v državah, kjer so nahajališča samorodnega žvepla (ZDA, Japonska), kar elementarno žveplo. Drugod je mnogokrat osnovna surovina vodikov sulfid, ki ga odstranijo iz zemeljskega plina. Z oksidacijo vodikovega sulfida najprej pridobijo žveplo: 2H 2 S(g) + O 2 (g) 2S(s) + 2H 2 O(l) Pri gorenju žvepla na zraku pridobijo žveplov dioksid: S(s) + O 2 (g) SO 2 (g) Žveplov dioksid lahko pridobijo tudi pri reakciji kovinskih sulfidov s kisikom (postopek se imenuje praženje sulfidnih rud): 2ZnS(s) + 3O 2 (g) 2ZnO(s) + 2SO 2 (g) Industrijska proizvodnja žveplove kisline poteka v reaktorju, ki ga imenujemo konverter. Žveplov dioksid na začetku očistijo nečistoč in potem ga oksidirajo v žveplov trioksid: 2SO 2 (g) + O 2 (g) 2SO 3 (g) Proizvodnja katerega koli produkta je naravnana tako, da v čim krajšem času proizvedejo čim več produktov po čim nižji ceni. Izkoristek te reakcije lahko povečamo tako, da ravnotežje te reakcije pomaknemo v desno. To storimo tako, da povečamo tlak, povečamo koncentracijo kisika in sproti odstranjujemo žveplov trioksid iz reakcijske zmesi

8 Z zvišanjem temperature bi povečali hitrost te reakcije, vendar bi zvišanje temperature pomenilo manjši izkoristek te reakcije, saj bi ravnotežje reakcije pomaknili v levo. Zato potrebujemo katalizator, ki poveča hitrost kemijske reakcije, ne zmanjša pa izkoristka reakcije. Za oksidacijo žveplovega dioksida uporabljajo katalizator vanadijev pentaoksid. Ta katalizator dobro deluje v temperaturnem območju od 400 do 500 C, ne deluje pri temperaturi pod 400 C, pri temperaturah nad 600 C pa začne razpadati. Potem žveplov trioksid uvajajo v koncentrirano raztopino žveplove kisline, ki ji dodajajo vodo, da ostane koncentracija ves čas enaka. Slika 6: Reaktor za pridobivanje žveplove (VI) kisline 5. Literatura Nataša Bukovec, Darko Dolenc, Boris Šket: KEMIJA ZA GIMNAZIJE 2, učbenik dne: 1. junij dne: 1. junij

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

ELEMENTI V PERIODNEM SISTEMU VII. SKUPINA HALOGENI ELEMENTI

ELEMENTI V PERIODNEM SISTEMU VII. SKUPINA HALOGENI ELEMENTI ELEMENTI V PERIODNEM SISTEMU VII. SKUPINA HALOGENI ELEMENTI F fluor Reaktivnost Oksidacijska Cl klor elementov moč elementov Br brom se zmanjšuje se zmanjšuje I jod At astat po skupini navzdol Agregatno

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Homogena snov je snov, ki ima vsepovsod enake lastnosti in sestavo Heterogena snov je snov, katere sestava in lastnosti so na različnih mestih

Homogena snov je snov, ki ima vsepovsod enake lastnosti in sestavo Heterogena snov je snov, katere sestava in lastnosti so na različnih mestih Homogena snov je snov, ki ima vsepovsod enake lastnosti in sestavo Heterogena snov je snov, katere sestava in lastnosti so na različnih mestih različne Postopki ločevanja zmesi:iz zmesi je mogoče ločiti

Διαβάστε περισσότερα

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Katedra za farmacevtsko kemijo Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Sinteza kompleksa [Mn 3+ (salen)oac] Zakaj uporabljamo brezvodni

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

II. gimnazija Maribor PROJEKTNA NALOGA. Mentor oblike: Mirko Pešec, prof. Predmet: kemija - informatika

II. gimnazija Maribor PROJEKTNA NALOGA. Mentor oblike: Mirko Pešec, prof. Predmet: kemija - informatika II. gimnazija Maribor PROJEKTNA NALOGA Mentor vsebine: Irena Ilc, prof. Avtor: Andreja Urlaub Mentor oblike: Mirko Pešec, prof. Predmet: kemija - informatika Selnica ob Dravi, januar 2005 KAZALO VSEBINE

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

KEMIJA ZA GIMNAZIJE 1

KEMIJA ZA GIMNAZIJE 1 Nataša Bukovec KEMIJA ZA GIMNAZIJE 1 Zbirka nalog za 1. letnik gimnazij VSEBINA Predgovor 1. VARN DEL V KEMIJSKEM LABRATRIJU 5 Laboratorijski inventar 5 Znaki za nevarnost opozorilne besede stavki o nevarnosti

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

1A skupina;alkalijske kovine

1A skupina;alkalijske kovine 1 skupina;alkalijske kovine 1. Katera izmed spojin je najbolj topna v vodi? Zakaj? NaCl, KBr, RbBr ali NaF? dgovor: Topnost je odvisna od mrežne entalpije Δ mr (energija, potrebna za razgradnjo kristala

Διαβάστε περισσότερα

Ponovi in utrdi svoje znanje Rešitve

Ponovi in utrdi svoje znanje Rešitve 1. poglavje: Kakšne so lastnosti vode? 10. Ni dosežena, saj podgana zaužije 188,8 mg/kg. 11. LD 50 = 0,480 mg/kg 2. poglavje: Kaj je največje čudo na Zemlji? 5. Edini stabilni izotop natrija ima masno

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

VPLIV REAKCIJSKIH SPREMENLJIVK NA POTEK IN HITROST MODELNE REAKCIJE NATRIJEVEGA TIOSULFATA S KLOROVODIKOVO KISLINO

VPLIV REAKCIJSKIH SPREMENLJIVK NA POTEK IN HITROST MODELNE REAKCIJE NATRIJEVEGA TIOSULFATA S KLOROVODIKOVO KISLINO OSNOVNA ŠOLA PRIMOŽA TRUBARJA LAŠKO VPLIV REAKCIJSKIH SPREMENLJIVK NA POTEK IN HITROST MODELNE REAKCIJE NATRIJEVEGA TIOSULFATA S KLOROVODIKOVO KISLINO (RAZISKOVALNO DELO) Avtorici: Lea Lešek Povšič in

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Osnovne stehiometrijske veličine

Osnovne stehiometrijske veličine Osnovne stehiometrijske veličine Stehiometrija (grško: stoiheion snov, metron merilo) obravnava količinske odnose pri kemijskih reakcijah. Fizikalne veličine, s katerimi kemik najpogosteje izraža količino

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

13. Vaja: Reakcije oksidacije in redukcije

13. Vaja: Reakcije oksidacije in redukcije 1. Vaja: Reakcije oksidacije in redukcije a) Osnove: Oksidacija je reakcija pri kateri posamezen element (reducent) oddaja elektrone in se pri tem oksidira (oksidacijsko število se zviša). Redukcija pa

Διαβάστε περισσότερα

Simbolni zapis in množina snovi

Simbolni zapis in množina snovi Simbolni zapis in množina snovi RELATIVNA MOLEKULSKA MASA ON MOLSKA MASA Relativna molekulska masa Ker so atomi premajhni, da bi jih merili z običajnimi tehtnicami, so ugotovili, kako jih izračunati. Izražamo

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE

PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE TOPLOTNO ENERGETSKI SISTEMI TES d.o.o. GREGORČIČEVA 3 2000 MARIBOR IN PREDSTAVITEV SPTE SISTEMOV GOSPEJNA IN MERCATOR CELJE Saša Rodošek December 2011, Hotel BETNAVA, Maribor TES d.o.o. Energetika Maribor

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

1A skupina alkalijske kovine

1A skupina alkalijske kovine 1. NALOGA: KATERA IZMED SPOJIN JE NAJBOLJ TOPNA V VODI? NaCl, KBr, RbBr ALI NaF? ZAKAJ? 1. NALOGA: ODGOVOR Topnost je odvisna od mrežne entalpije ΔH mr (energija, potrebna za razgradnjo kristala na anione

Διαβάστε περισσότερα

BRONASTE PREGLOVE PLAKETE

BRONASTE PREGLOVE PLAKETE ŠOLSKO TEKMOVNJE IZ ZNNJ KEMIJE Z RONSTE PREGLOVE PLKETE Tekmovalna pola za. letnik. marec 08 Pred vami je deset tekmovalnih nalog, ki so različnega tipa. Pri reševanju lahko uporabljajte le priložen periodni

Διαβάστε περισσότερα

Hitrost reakcije je lahko tudi krmiljena od težav pri prenosu kemijskih elementov oz. molekul od mesta reakcije.

Hitrost reakcije je lahko tudi krmiljena od težav pri prenosu kemijskih elementov oz. molekul od mesta reakcije. REAKCIJSKA KINETIKA REAKCIJSKA KINETIKA Termodinamika ne pove nič o pogojih napredovanja nekega procesa proti ravnotežju ter nič o mehanizmu reakcij. Pri ekstraktivnih procesih često zavisi hitrost proizvodnje

Διαβάστε περισσότερα

Stehiometrija za študente veterine

Stehiometrija za študente veterine Univerza v Ljubljani Veterinarska fakulteta Stehiometrija za študente veterine Učbenik s praktičnimi primeri Petra Zrimšek Ljubljana, 01 Petra Zrimšek Stehiometrija za študente veterine Izdajatelj: Univerza

Διαβάστε περισσότερα

MODERIRANA RAZLIČICA

MODERIRANA RAZLIČICA Dr`avni izpitni center *N07143132* REDNI ROK KEMIJA PREIZKUS ZNANJA Maj 2007 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA b kncu 3. bdbja MODERIRANA RAZLIČICA RIC 2007 2 N071-431-3-2 NAVODILA

Διαβάστε περισσότερα

[ ]... je oznaka za koncentracijo

[ ]... je oznaka za koncentracijo 9. Vaja: Elektrolitska disociacija a) Osnove: Elektroliti so snovi, ki prevajajo električni tok; to so raztopine kislin, baz in soli. Elektrolitska disociacija je razpad elektrolita na ione. Stopnja elektrolitske

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

ODGOVORI NA VPRAŠANJA V UČBENIKU. Margareta Vrtačnik Katarina S. Wissiak Grm Saša A. Glažar Andrej Godec

ODGOVORI NA VPRAŠANJA V UČBENIKU. Margareta Vrtačnik Katarina S. Wissiak Grm Saša A. Glažar Andrej Godec ODGOVORI NA VPRAŠANJA V UČBENIKU Margareta Vrtačnik Katarina S. Wissiak Grm Saša A. Glažar Andrej Godec 1. KAJ JE KEMIJA KEMIJA JE EKSPERIMENTALNA VEDA (str. 14) 1. Kemija je nauk o snovi in njenih spremembah.

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

0,00275 cm3 = = 0,35 cm = 3,5 mm.

0,00275 cm3 = = 0,35 cm = 3,5 mm. 1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru

Διαβάστε περισσότερα

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice

Laboratorij za termoenergetiko. Vodikove tehnologije in PEM gorivne celice Laboratorij za termoenergetiko Vodikove tehnologije in PEM gorivne celice Pokrivanje svetovnih potreb po energiji premog 27% plin 22% biomasa 10% voda 2% sonce 0,4% veter 0,3% nafta 32% jedrska 6% geoterm.

Διαβάστε περισσότερα

Slika, vir: http://www.manataka.org

Slika, vir: http://www.manataka.org KEMIJA Slika, vir: http://www.manataka.org RAZTOPINE SPLOŠNE INFORMACIJE O GRADIVU Učno gradivo je nastalo v okviru projekta Munus 2. Njegovo izdajo je omogočilo sofinanciranje Evropskega socialnega sklada

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

KOLI»INSKI ODNOSI. Kemik mora vedeti, koliko snovi pri kemijski reakciji zreagira in koliko snovi nastane.

KOLI»INSKI ODNOSI. Kemik mora vedeti, koliko snovi pri kemijski reakciji zreagira in koliko snovi nastane. KOLI»INSKI ODNOSI Kemik mora vedeti koliko snovi pri kemijski reakciji zreagira in koliko snovi nastane 4 Mase atomov in molekul 42 tevilo delcev masa in mnoæina snovi 43 RaËunajmo maso mnoæino in πtevilo

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov 28. 3. 11 UV- spektrofotometrija Biuretska metoda Absorbanca pri λ=28 nm (A28) UV- spektrofotometrija Biuretska metoda vstopni žarek intenziteta I Lowrijeva metoda Bradfordova metoda Bradfordova metoda

Διαβάστε περισσότερα

KISLINE IN BAZE ARRHENIUSOVA DEFINICIJA KISLIN IN BAZ

KISLINE IN BAZE ARRHENIUSOVA DEFINICIJA KISLIN IN BAZ 6. KISLINE IN BAZE KISLINE IN BAZE ARRHENIUSOVA DEFINICIJA KISLIN IN BAZ kisline so snovi, ki v vodni raztopini disocirajo vodikove ione (H + ), baze pa snovi, ki v vodni raztopini disocirajo hidroksidne

Διαβάστε περισσότερα

DELOVNI ZVEZEK REŠITVE ZA 8. IN 9. RAZRED OSNOVNE ŠOLE 1. DEL. Margareta Vrtačnik Katarina S. Wissiak Grm Saša A. Glažar Andrej Godec

DELOVNI ZVEZEK REŠITVE ZA 8. IN 9. RAZRED OSNOVNE ŠOLE 1. DEL. Margareta Vrtačnik Katarina S. Wissiak Grm Saša A. Glažar Andrej Godec DELVNI ZVEZEK REŠITVE ZA 8. IN 9. RAZRED SNVNE ŠLE 1. DEL Margareta Vrtačnik Katarina S. Wissiak Grm Saša A. Glažar Andrej Godec 1. KAJ JE KEMIJA 1 Nekaj pravil: v šolski laboratorij ne smemo vnašati hrane

Διαβάστε περισσότερα

Za šolsko leto 2008/2009 bosta še naprej na razpolago zbirki»fluor ni flour«in»anenin«.

Za šolsko leto 2008/2009 bosta še naprej na razpolago zbirki»fluor ni flour«in»anenin«. Zbirka nalog Kemijo razumem, kemijo znam 1 je namenjena dijakom 1. letnika gimnazije in drugih srednjih šol ter je v celoti usklajena z novim učnim načrtom. Urejena je v osem poglavij (Varno eksperimentalno

Διαβάστε περισσότερα

Kemija elementov glavnih skupin: Vodik

Kemija elementov glavnih skupin: Vodik Kemija elementov glavnih skupin: Vodik 1. Nastanek vodika in nahajališča na Zemlji 2. izikalne in kemijske lastnosti 3. ridobivanje vodika 4. Uporaba vodika 1. Nastanek in nahajališča vodika Vodik je v

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah Entalpija pri kemijskih reakcijah Pri obravnavi energijskih pretvorb pri kemijskih reakcijah uvedemo pojem entalpije, ki popisuje spreminjanje energije sistema pri konstantnem tlaku. Sistemu lahko povečamo

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

IZPIT IZ ORGANSKE ANALIZE 1. ROK ( )

IZPIT IZ ORGANSKE ANALIZE 1. ROK ( ) IZPIT IZ ORGANSKE ANALIZE 1. ROK (26. 1. 2015) 1. Naslednjim spojinam določi topnostni razred in kratko utemelji svojo odločitev! (1) 3-kloroanilin nitroetan butanamid 2. Prikazane imaš 4 razvite kromatograme

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

*M * K E M I J A. Izpitna pola 1. Četrtek, 27. avgust 2009 / 90 minut JESENSKI IZPITNI ROK

*M * K E M I J A. Izpitna pola 1. Četrtek, 27. avgust 2009 / 90 minut JESENSKI IZPITNI ROK Š i f r a k a n d i d a t a : ržavni izpitni center *M09243111* JESENSKI IZPITNI ROK K E M I J Izpitna pola 1 Četrtek, 27. avgust 2009 / 90 minut ovoljeno gradivo in pripomočki: Kandidat prinese nalivno

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν.

ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ. β) Να βρεθεί σε ποια οµάδα και σε ποια περίοδο του Περιοδικού Πίνακα ανήκουν. ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΜΑΤΑ: 03490 ΗΜΕΡΟΜΗΝΙΑ: 27/5/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΞΙΜΟΣ ΚΟΤΕΛΙΔΑΣ ΕΚΦΩΝΗΣΕΙΣ Θέμα 2ο Α) Για τα στοιχεία: 12 Μg και 8 Ο α) Να κατανεµηθούν τα ηλεκτρόνιά τους σε στιβάδες. (µονάδες 2) β)

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

REŠITVE LABORATORIJSKE VAJE ZA KEMIJO V GIMNAZIJI. Marjeta Prašnikar

REŠITVE LABORATORIJSKE VAJE ZA KEMIJO V GIMNAZIJI. Marjeta Prašnikar REŠITVE LABORATORIJSKE VAJE ZA KEMIJO V GIMNAZIJI Andrej Nika Cebin Godec Manica Ivan Perdan Leban - Ocepek Marjeta Prašnikar 2 Rešitve VARNO EKSPERIMENTALNO DELO Kemija je eksperimentalna veda (str. 8)

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ Όλες οι αντιδράσεις που ζητούνται στη τράπεζα θεµάτων πραγµατοποιούνται. Στην πλειοψηφία των περιπτώσεων απαιτείται αιτιολόγηση της πραγµατοποίησης των αντιδράσεων.

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

KEMIJA. Iztok Prislan Biotehniška fakulteta Oddelek za živilstvo

KEMIJA. Iztok Prislan Biotehniška fakulteta Oddelek za živilstvo KEMIJA Iztok Prislan Biotehniška fakulteta Oddelek za živilstvo Estri Najpogostejši derivati karboksilnih kislin so estri: Estri običajno nastanejo pri reakciji med kislino in alkoholom oz. fenolom (esterifikacija):

Διαβάστε περισσότερα

FOTOSINTEZA Wan Hill primerjal rastlinsko fotosintezo s fotosintezo BAKTERIJ

FOTOSINTEZA Wan Hill primerjal rastlinsko fotosintezo s fotosintezo BAKTERIJ FOTOSINTEZA FOTOSINTEZA je proces, pri katerem s pomočjo svetlobne energijje nastajajo v živih celicah organske spojine. 1772 Priestley RASTLINA slab zrak dober zrak Rastlina s pomočjo svetlobe spreminja

Διαβάστε περισσότερα

Χηµεία Α Γενικού Λυκείου

Χηµεία Α Γενικού Λυκείου Χηµεία Α Γενικού Λυκείου Απαντήσεις στα θέματα της Τράπεζας Θεμάτων Συγγραφή απαντήσεων: 'Αρης Ασλανίδης Χρησιμοποιήστε τους σελιδοδείκτες (bookmarks) στο αριστερό μέρος της οθόνης για την πλοήγηση μέσα

Διαβάστε περισσότερα

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA 2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

1 η Σειρά προβλημάτων στο μάθημα Εισαγωγική Χημεία

1 η Σειρά προβλημάτων στο μάθημα Εισαγωγική Χημεία 1 η Σειρά προβλημάτων στο μάθημα Εισαγωγική Χημεία Ημ. Παράδοσης: Δευτέρα 25/11/2013 11 πμ 1. Οι αντιδράσεις οξειδοαναγωγής σώζουν ζωές!!! Οι αερόσακοι στα αυτοκίνητα, όταν ανοίγουν γεμίζουν με άζωτο το

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

Molekule. Za vodik dobimo gostoto 0,09 g/dm 3, za kisik 1,43 g/dm 3 in za ogljikov oksid 2,00 g/dm 3. Merilni balon

Molekule. Za vodik dobimo gostoto 0,09 g/dm 3, za kisik 1,43 g/dm 3 in za ogljikov oksid 2,00 g/dm 3. Merilni balon 23 Molekule Tehtanje plinov Reakcijska razmerja Molekule v plinih Molekule v gosti snovi Valenca atomov Velikost molekul Kilomol in kilomolska masa Splošna plinska konstanta Raztopine Osmozni tlak Reakcijske

Διαβάστε περισσότερα

Srednja šola za gostinstvo in turizem v Ljubljani NARAVOSLOVJE I

Srednja šola za gostinstvo in turizem v Ljubljani NARAVOSLOVJE I Srednja šola za gostinstvo in turizem v Ljubljani NARAVOSLOVJE I Interno nelektorirano gradivo Izobraževanje odraslih Gastronomske in hotelske storitve (1. letnik) Pripravil: Jernej Grdun, prof Ljubljana,

Διαβάστε περισσότερα

Iztok Devetak, Tanja Cvirn Pavlin, Samo Jamšek in Vesna Pahor. Peti element PRIROČNIK ZA KEMIJO V DEVETEM RAZREDU OSNOVNE ŠOLE

Iztok Devetak, Tanja Cvirn Pavlin, Samo Jamšek in Vesna Pahor. Peti element PRIROČNIK ZA KEMIJO V DEVETEM RAZREDU OSNOVNE ŠOLE Iztok Devetak, Tanja Cvirn Pavlin, Samo Jamšek in Vesna Pahor Peti element 9 PRIROČNIK ZA KEMIJO V DEVETEM RAZREDU OSNOVNE ŠOLE dr. Iztok Devetak Pedagoška fakulteta Univerza v Ljubljani Samo Jamšek OŠ

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

OGLJIKOVODIKI. 1. Nasičeni alifatski ogljikovodiki ali ALKANI (parafini)

OGLJIKOVODIKI. 1. Nasičeni alifatski ogljikovodiki ali ALKANI (parafini) OGLJIKOVODIKI Ogljikovodiki so najenostavnejše organske spojine. Sestavljeni so iz ogljika in vodika. Poznamo ogljikovodike alifatske in ciklične vrste. Alifatski ogljikovodiki se delijo na nasičene in

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα