Projekt zo ²trukturálnej makroekonometrie

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Projekt zo ²trukturálnej makroekonometrie"

Transcript

1 Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej matematiky a ²tatistiky Projekt zo ²trukturálnej makroekonometrie Erika ERDÉLYI Hana KADLEƒÍKOVÁ Katarína KAPI INSKÁ Juraj KYSELICA Vladimír LACKO Simona TEFANOVIƒOVÁ Martin TAKÁƒ (4mef) Aplikovaná matematika Ekonomická a nan ná matematika BRATISLAVA 2009

2 Obsah 1 Teoretický Úvod DSGE Model ƒo je DSGE Výhody DSGE modelu DSGE model v praxi Metóda Blancharda a Kahna Popis modelu Zadanie modelu Steady state Maticový zápis úlohy Numerická as Numerická simulácia tatistické vlastnosti veli ín Zdrojový kód

3 Kapitola 1 Teoretický Úvod Centrálne banky sa denne potýkajú s mnoºstvom úloh, ktoré sa snaºia rie²i s vyuºitím maximálneho objemu relevatných informácií. Nie je jednoduché eli pa be informa ného boomu a vedie korektne selektova, ktoré informácie majú skuto ne k ú ový význam. Isté východisko z danej situácie je pretransforovanie reálneho sveta do sveta rovníc a modelovania. Makroekonomické modelovanie za alo hra v posledných rokoch dôleºitú úlohu aj za hranicami teoretického výskumu. Závery získané týmto spôsobom sa implementovali do praxe a pomáhajú nielen popísa aktuálny stav ekonomiky, ale dávajú i isté predikcie oh adom jej vývoja do budúcna. Od dobrého modelu sa o akáva, ºe bude podáva dôveryhodnú a kvantitatívnu interpretáciu ekonomického vývoja.((1), s. 3) Taktieº by mal by empiricky verikovate ný v zmysle reálnych dát. Východiskom základného modelu je deskripcia kanálov menovej transmisie a menovej politiky. Tie sú: kanál úrokových sadzieb, kanál výmenneho kurzu, kanál cien aktív, kanál blahobytu, kanál súvahy bankoveho sektora, kanál pôºi iek bankového sektora, kanál ina ných o akávaní. ((1), s. 5) 3

4 1.1 DSGE Model ƒo je DSGE Makroekonomické modelovanie sa v poslednom ase uberá smerom dynamických stochastických modelov v²eobecného ekvilibria, známych pod skratkou DSGE modely. Ich ²pecikom je, ºe vychádzajú z mikroekonomických princípov. Ako názov indikuje ide o ²túdie, ako sa ekonomika vyvíja v ase (dynamic). Do úvahy sa berú na jednej strane dne²né vplyvy na vývoj v budúcnosti, na strane druhej sa do modelu zakomponovávajú o akávania, ktoré hrajú dôleºitú rolu pri rozhodnutiach v sú asnosti. Slovo stochastic za sebou skrýva istú náhodnos a skuto nos, ºe ekonomika je vystavovaná ²okom (napr. náhodným technologickým zmenám, uktuáciám cien ropy...) Vychádzajúc z mikroekonómie, dostávame, ºe daný DSGE model musí by v stave popísa ekonomické prostredie, tvorené jednotlivými agentmi - domácnos ami, rmami a menovou autoritou. Okrem toho musí by schopný vysvetli nasledovné ekonomické aspekty: preferencie - kaºdý agent musí ma denovan ciele optimalizácie (funkcia uºito nosti,funkcia zisku) technológie - musia by denované produk né kapacity in²titucionálna základ a - predstavujú in²titucionálne ohrani enia, pod ktorými ekonomickí agenti interagujú. Ako príklad moºno uvies agentov, ktorí robia svoje rozhodnutia vzh adom na rozpo tové ohrani enia, ktoré je exogénne predpísané Výhody DSGE modelu Ako sme uº spomínali, DSGE modely stavajú na mikroekonomických základoch. Tento fakt implikuje nasledovné skuto nosti: model je schopný identikova ²oky, ktoré permanentne zasahujú ekonomiku; model nespadá pod Lucasovu kritiku, ktorá kritizuje nemennos systémov modelov; model optimalizuje cez funkcie uºito nosti, o umoº uje zaobera sa sociálnym blahobytom, odvodeným z preferencií agentov.((1) s.9) 4

5 1.1.3 DSGE model v praxi Existujú dve ²koly, z ktorých sa vyvinuli DSGE modely: Novo - keynesiánske modely a RBC. Novo - keynesiánske modely sú historicky mlad²ie ako RBC. Narábajú nielen s reálnymi veli inami, ale i s nominálnymi. Ceny a mzdy povaºujú za rigidné. RBC (Real Business Cycle) h adajú prí iny uktuácií v ekonomike v reálnych veli inách. Ceny a mzdy sú v týchto modeloch brané ako xné. Ak chceme zostavi DSGE model, musíme prija niektoré predpoklady. Jedným z nich je ten, ºe sa ekonomika skladá z ve kého po tu identických domácností, ktoré maximalizujú svoju uºito nos. Tú majú na jednej strane zo spotreby, na strane druhej z asu, ktorý strávia mimo práce max c t,l t U = E 0 pri daných rozpo tových ohrani eniach. β t u(c t, l t ) (1.1) al²í z agentov, ktorého budeme uvaºova, sú rmy. Tie majú snahu maximalizova svoj o akávaný diskontovaný zisk, pri danom dopyte, pri nominálnych cenových nepruºnostiach a ponuke práce. t=0 Produk ná funkcia vo v²eobecnosti vyzerá kde y t = f(k t 1, n t, z t ) (1.2) k t 1 kapitál v roku t-1 n t práca technologický ²ok z t ƒas výstupu z výroby sa spotrebuje a as sa investuje y t = c t + i t (1.3) Kapitál na jednej strane narastie v porovnaní s predchádzajúcim rokom o investované prostriedky, na strane druhej klesne o amortizáciu k t = i t + (1 δ)k t 1 (1.4) udia svoj as delia medzi prácu a oddych 1 = l t + n t (1.5) 5

6 Spotrebu moºeme vyjadri pomocou ostatných premenných c t = f(k t 1, n t, z t ) k t + (1 δ)k t 1 (1.6) Takto vyjadrenú spotrebu dosadíme do funkcie uºito nosti domácností. Pri maximalizácii budeme teraz h ada optimálnu hodnotu vo ného asu a kapitálu. Na rie²enie úlohy sa pouºívajú tzv. Eulerove podmienky, vychádzajúce z parciálnych derivácií pod a jednotlivých premenných. Po úprave dostávame u t (c t, l t ) k t u t (c t, l t ) = u t(c t, l t ). f(k t 1, n t, z t ) (1.7) l t c t n t [ ut (c t+1, l t+1 ) = βe t. f(k ] t, n t+1, z t+1 ) + (1 δ) (1.8) c t+1 k t Problém, ktorý nastal, spo íva v tom, ºe máme nekone ne ve a rovníc a nekone ne ve a premenných Na rie²enie týchto problémov sa pouºívajú metódy: 1. Metóda neznámych koecientov 1. - Christiano 2. Metóda neznámych koecientov 2. - Uhlig 3. Metóda Blancharda a Kahna 4. Metóda Simsa Metóda Blancharda a Kahna V na²ej a ²ej práci sa budeme zaobera metódou Blancharda a Kahna, tá sa v²ak dá pouºi len za predpokladu invertovate nosti matice, ktorá nám hrá k ú ovú úlohu. Ak predpoklad nebude splnený, nastupuje Simsova metóda a jeho Q - R dekompozícia. Podstata metódy Blancharda a Kahna spo íva v rie²ení diferen ných rovníc. 6

7 Kapitola 2 Popis modelu Zadanie modelu Budeme sa zaobera DSGE modelom v nasledujúcom tvare: max c t,l t U(c t, l t ) = t=t 0 β t [ln c t + θ (1 n ] t) 1 γ 1 γ (2.1) y t = A α t n α t k 1 α t 1 α (0, 1) (2.2) k t+1 = (1 δ)k t + y t c t δ (0, 1) (2.3) n t = 1 l t (2.4) Dosa me rovnice (2.2), (2.3) do na²ej ú elovej funkcie a aplikujme podmienky (1.7),(1.8) u(c t, l t ) l t = θ 1 γ (1 γ)(1 n t) γ ( 1) n t l t u(c t, l t ) = θ(1 n t ) γ n t l t = θ(1 n t ) γ c t f(k t 1, n t, z t ) n t = 1 c t = kt 1 1 α αa α t n α 1 t Dostávame tak 1. nutnú podmienku θ(1 n t ) γ = α k1 α t 1 A α t n α 1 t (2.5) c t alej platí f(k t, n t+1, z t+1 ) k t = k α t (1 α)(a t+1 n t+1 ) α (2.6) 7

8 Dostávame tak 2. nutnú podmienku: 1 c t = βe t { 1 c t+1 [ (1 α)a α t+1 n α t+1k α t + (1 δ) ]} (2.7) Nutné podmienky prvého rádu log-linearizujeme nasledovným spôsobom: x t := x eˆx t, kde x t je pôvodná premenná, x je steady state a ˆx je nová premenná (percentuálna odchýlka od priemeru). Dosadením do 1.nutnej podmienky postupne dostaneme: θ[1 ( neˆn t )] γ = α( k eˆk t ) 1 α [( n eˆn t )] α 1 (Āα e αât )( c eĉt ) 1, ( c eĉt )θ( l e γˆl t ) = α k 1 α e (1 α)ˆk t Ā α e αât n (α 1) e (α 1)ˆn t θ c l γ (1 + ĉ t )(1 γˆl t ) = α k 1 α Ā α n (α 1) [1 + (1 α)ˆk t ][1 + αât][1 + (α 1)ˆn t ], z oho vynechaním lenov vy²²ieho rádu dostávame θ c l γ (1 + ĉ t γˆl t ) = α k 1 α Ā α ū (α 1) [1 + αât + (1 α)ˆk t + +(α 1)û t ]. alej vyuºijeme, ºe podmienka (2.5) platí aj pre steady state, t.j. θ c t (1 n t ) γ = α k t 1 1 α Āα t n (α 1) t. Dostávame tak log-linearizáciu 1.nutnej podmienky ĉ t γˆl t = αât + (1 α)ˆk t + (α 1)ˆn t (2.8) Analogickým spôsobom log-linearizujeme 2.nutnú podmienku c 1 t e ĉt = βe t { c ( 1) t e ĉ t+1 [(1 α)āα e αât+1 n α e αˆn t+1 k α e αˆk t +(1 δ)]} 1 ĉ t = βe t {(1 ĉ t+1 )[(1 α)āα n α k α (1 + αât+1)(1 + αˆn t+1 )(1 αˆk t ) + 1 δ]} 1 ĉ t = β(1 α)āα n α k α E t {(1 ĉ t+1 )(1 + αât+1)(1 + αˆn t+1 )(1 αˆk t )}+ + β(1 δ)e t {1 ĉ t+1 } 1 ĉ t = β(1 α)āα n α k α E t {1 ĉ t+1 + αât+1 + αˆn t+1 αˆk t }+ + β(1 δ)e t {1 ĉ t+1 } Z nutnej podmienky (2.7) dostávame pre steady state vz ah (2.9) { 1 1 c = βe [ t (1 α) Ā α n α k α + (1 δ) ]}, c { 1 = βe t (1 α) Ā α n α k α + (1 δ) } a teda môºme rovnicu (2.9) napísa v tvare ĉ t = β(1 α)āα n α k α E t { ĉ t+1 + αât+1 + αˆn t+1 αˆk t } + β(1 δ)e t { ĉ t+1 }, 8

9 ím dostávame log-linearizáciu 2. nutnej podmienky. Log-linearizujeme rovnicu (2.2) ȳ eŷt = Āα e αât n α e αˆn t k(1 α) e (1 α)ˆk t 1, ȳ(1 + ŷ t ) = Āα n α k(1 α) (1 + αât)(1 + αˆn t )[1 + (1 α)ˆk t 1 ], ȳ(1 + ŷ t ) = Āα n α k(1 α) (1 + αât + αˆn t + (1 α)ˆk t 1 ), 1 + ŷ t = 1 + αât + αˆn t + αˆk t 1, 0 = ŷ t + αˆn t + (1 α)ˆk t 1 + αât Opä sme vyuºili to, ºe steady state premenné sp ajú rovnicu (2.2). Log-linearizáciou rovnice (2.3) dostaneme k eˆk t = (1 δ) k e ˆK t 1 +ȳ eŷt 1 c eĉt 1, k(1 + ˆk t ) = (1 δ) k(1 + ˆk t 1 ) + ȳ(1 + ŷ t 1 ) c(1 + ĉ t 1 ), kˆk t = (1 δ) kˆk t 1 + ȳŷ t 1 cĉ t 1 0 = (1 δ) kˆk t 1 kˆk t + ȳŷ t 1 cĉ t 1. Log-linearizáciou rovnice (2.4) dostaneme 1 = n eˆn t + l eˆl t, 1 = n(1 + ˆn t ) + l(1 + ˆl t ), 0 = nˆn t + lˆl t Steady state Odstránením asových indexov v nutných podmienkach (2.5), (2.7), (2.2), (2.3) dostaneme nasledovné rovnice, ktoré treba vyrie²i Z (2.13) dostávame: Rovnicu (2.11) upravme: θ(1 n) γ = 1 c Āα α, n α 1 k 1 α, (2.10) 1 = β[(1 α)āα n α k α + 1 δ], (2.11) ȳ = Āα n α k1 α, (2.12) k = (1 δ) k + ȳ c. (2.13) δ k = ȳ c, k = ȳ c. δ 1 β = Āα n α (1 α) k α + 1 δ, 1 β 1 + δ 1 β 1 α = ȳ k, = (1 α)ȳ k + 1 δ, 9

10 1 β Ozna me φ :=, potom po dosadení do (2.13) platí: 1 α k = (1 δ) k + φ K c, (2.14) c = (1 δ) k + φ k k, (2.15) c = δ k + φ K, (2.16) c = (φ δ) K (2.17) S pouºitím vz ahu (2.10) a (2.12) dostaneme: θ(1 n) γ = αȳ c n (2.18) Ak pouºijeme, ºe ȳ = φ K a vz ah (2.17), tak máme: a následne to dosadíme do rovnice (2.18) c = φ δ ȳ, (2.19) φ θ(1 n) γ φ ȳ = α (φ δ)ȳ n, θ(1 n) γ = α φ 1 φ δ n, θ(1 n) γ αφ = (φ δ) n, θ(φ δ) αφ = (1 n)γ n Ak pouºijeme, ºe ȳ = φ k a vz ah (2.12) dostávame: φ k = Āα n α k1 α, k k α 1 = Āα n α φ, k α = Āα n α φ, k = Ā n α φ o môºme dosadi do (2.17), a kedºe ȳ = φ k, dostávame: c = (φ δ) Ā n, φ ȳ = φ Ā n. φ α α 10

11 2.0.7 Maticový zápis úlohy Log-linearizáciou nutných podmienok a ohrani ení dostávame nasledovný systém: 0 = ĉ t + (α 1)ˆn t + γˆl t + (1 α)ˆk t + αât, (2.20) ] 0 = E t [ĉ t (ϕ δβ + β)ĉ t+1 + αϕˆn t+1 αϕˆk t + αϕât+1), (2.21) 0 = ŷ t + αˆn t + (1 α)ˆk t 1 + αât, (2.22) 0 = ȳŷ t 1 cĉ t 1 kˆk t + (1 δ) kˆk t 1, (2.23) 0 = nˆn t + lˆl t, (2.24) kde pri om pre ²oky platí ϕ := β(1 α)(ā)α ( n) α ( k) α (2.25) Â t+1 = ρât + ε t, Ā = 1, ρ < 1. (2.26) Maticový zápis: 0 = Aˆx t + B ˆx t 1 + CÂt, (2.27) 0 = E t {Dˆx t + E ˆx t+1 + F Ât+1}, (2.28) Â t+1 = ρât + ε t (2.29) kde ˆx t = (ŷ t, ĉ t, ˆn t, ˆl t, ˆk t ) T, (2.30) 0 1 α 1 γ 1 α A := 1 0 α k (2.31) 0 0 n l B := α ȳ c 0 0 (1 δ) k (2.32) C := ( α, α, 0, 0, ) T D := ( 0, 1, 0, 0, αϕ ) T E := ( 0, (ϕ δβ + β), αϕ, 0, 0 ) T (2.33) (2.34) (2.35) F := ( αϕ ) (2.36) 11

12 Steady state je daný rovnicami: kde θ(φ δ) αφ φ := Poznámka: rovnicu (2.37) bude treba rie²i numericky. = (1 n)γ, (2.37) n K = A n, (2.38) φ α c = (φ δ) Ā n, (2.39) φ α ȳ = φ Ā n, (2.40) φ α l = 1 n, (2.41) 1 + δ 1 β 1 α. (2.42) 12

13 Kapitola 3 Numerická as 3.1 Numerická simulácia Simuláciu sme robili v programe Matlab. Koecienty sme zvolili nasledovne: α = 0.60, β = 0.90, γ = 0.50, δ = 0.40, ρ = 0.90, θ = Potom stady state bol ĀȲ C N = Výsledok simulácie moºno vidie na Obr tatistické vlastnosti veli ín V tejto podkapitole uvádzame ²tatistické vlastnosti veli ín vyplývajúce zo simulácie. µ(a ) µ(y ) µ(c ) µ(n ) = kde µ( ) je stredná hodnota náhodnej veli iny , A kovaria ná matica vektora ( A Y C N ) T je 13

14 Simulácia technologický šok At yt ct nt perioda Technologický šok perioda Obr. 3.1: Simulácia technologického ²oku. Na horizontálnej osi je vývoj percentuálnych výchyliek z rovnováºneho stavu Zdrojový kód %% Parametre modelu disp(' seting parameters'); alpha = 0.6 ; beta = 0.90; gamma = 0.5 ; delta = 0.4 ; rho = 0.9 ; theta = 0.8 ; eps = 0.01; N =40; stable_index = [1,2,3,4] unstable_index = [] %% Vypocet Stady state disp(' stady state'); varphi = (1/beta+delta-1)/(1-alpha); %Numericke riesenie NSS NSS = 0.5; 14

15 for i=1:100 NSS2 = (1-NSS)^gamma*alpha*varphi/theta/(varphi-delta); dif = NSS2-NSS; NSS=NSS2; end if (dif < ) disp(' nss is stable'); end LSS = 1-NSS; ASS = 1; KSS = ASS*NSS/(varphi^(1/alpha) ); YSS = varphi * KSS; CSS = (varphi-delta)* KSS; phi = (1-alpha) * beta * ASS^alpha * NSS^alpha *KSS^(-alpha); %% Vypocet matic disp(' creating Matrix'); A = [ phi; -alpha 1 0 -alpha; -alpha*kss / (1-alpha) 0 KSS/(1-alpha)... KSS+gamma/(1-alpha)* NSS/LSS; ]; B = [rho+alpha*phi/(1-alpha) 0 -phi/(1-alpha) -phi*(1+gamma*nss/lss/(1-alpha)); -alpha 0 1 (1-alpha)+gamma*NSS/LSS; -alpha/(1-alpha)*(1-delta)*kss YSS -CSS+(1-delta)*KSS/(1-alpha)... (1-delta)*KSS*(1+gamma*NSS/LSS/(1-alpha)); rho 0 0 0]; C = [ 0; 0; 0; 1]; ZSS = [ ASS;YSS;CSS;NSS]; %% Vypocet trajektorie ekonomiky disp(' solving DSGE'); rand('seed',3); epsilon = eps*randn(1,n); Tr = zeros(4,n); Tr(:,1) = 0; % Test na vlastne cisla AA = inv(a)*b; [V,LAMBDA]=eig(AA) abs(lambda) CC = V*C; diag(abs(lambda))' temp=zeros(1,4); V(unstable_index,unstable_index) for i=1:n temp(stable_index)=lambda(stable_index,stable_index)*tr(stable_index,i)+... CC(stable_index,:)*epsilon(i); temp(unstable_index) = - inv(v(unstable_index,unstable_index)) *... V(unstable_index,stable_index)* temp(stable_index)'; 15

16 Tr(:,i+1)=temp; end figure subplot(2,1,1) plot(tr') title ('Simulácia - technologický ²ok'); xlabel('perioda') ylabel('percentualna vychylka zo stady-state'); legend('at','yt','ct','nt') subplot(2,1,2) plot(epsilon) title ('Technologický ²ok'); xlabel('perioda') ylabel('percentualna vychylka'); covar_matrix = cov(tr(:,10:n)') mean_vector = mean(tr(:,10:n)') 16

17 Literatúra [1] Re ovský, B.: Makroekonomické modelovanie v centrálnych bankách. Infostat, [] Özer Karagedikli, Troy Matheson, Christie Smith and Shaun Vahey : RBCs and DSGEs: The computational approach to business cycle theory and evidence. NORGES BANK 17

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

ΠΑΤΡΩΝΥΜΟ / ΟΝΟΜΑ ΣΥΖΥΓΟΥ 1 ΑΓΟΡΑΣΤΟΥ ΜΑΡΙΑ ΤΟΥ ΔΗΜΗΤΡΙΟΥ 2 ΑΘΑΝΑΣΙΑΔΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΠΑΥΛΟΥ 3 ΑΚΤΣΟΓΛΟΥ ΣΩΚΡΑΤΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ

ΠΑΤΡΩΝΥΜΟ / ΟΝΟΜΑ ΣΥΖΥΓΟΥ 1 ΑΓΟΡΑΣΤΟΥ ΜΑΡΙΑ ΤΟΥ ΔΗΜΗΤΡΙΟΥ 2 ΑΘΑΝΑΣΙΑΔΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΠΑΥΛΟΥ 3 ΑΚΤΣΟΓΛΟΥ ΣΩΚΡΑΤΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ Υποψήφιοι ημοτικοί Σύμβουλοι: ΠΑΤΡΩΝΥΜΟ / ΣΥΖΥΓΟΥ 1 ΑΓΟΡΑΣΤΟΥ ΜΑΡΙΑ ΤΟΥ ΔΗΜΗΤΡΙΟΥ 2 ΑΘΑΝΑΣΙΑΔΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΠΑΥΛΟΥ 3 ΑΚΤΣΟΓΛΟΥ ΣΩΚΡΑΤΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ 4 ΑΛΦΑΤΖΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ 5 ΑΜΟΡΓΙΑΝΟΣ ΝΙΚΟΛΑΟΣ

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Základy automatického riadenia

Základy automatického riadenia Základy automatického riadenia Predná²ka 6 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

ΠΑΥΛΙΝΑ 609315 ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ

ΠΑΥΛΙΝΑ 609315 ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ ΕΛΛΕΙΜΑΤΙΚΕΣ - ΠΛΕΟΝΑΣΜΑΤΙΚΕΣ 1 1 ΑΒΑΝΙΔΗ ΑΝΝΑ 593587 ΠΕ70 14 ΚΟΡΙΝΘΙΑ Α ΑΘΗΝΩΝ 2 ΑΒΕΡΚΙΑΔΟΥ ΠΑΤΑΡΙΝΣΚΑ ΠΑΥΛΙΝΑ 609315 ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ 3 ΑΒΟΥΡΗ ΑΙΚΑΤΕΡΙΝΗ 590405 ΠΕ16 36,917 ΖΑΚΥΝΘΟΣ ΣΕΡΡΕΣ

Διαβάστε περισσότερα

Φύλλο1. ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ

Φύλλο1. ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ Α Ανατ. Αττικής ΑΓΓΕΛΟΠΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΑ ΠΑΝΑΓΙΩΤΗΣ Αχαία ΑΓΓΕΛΟΠΟΥΛΟΥ

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Modelovanie dynamickej podmienenej korelácie kurzov V4

Modelovanie dynamickej podmienenej korelácie kurzov V4 Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.24) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.24) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 820.0 b18 2 2 25438 ΤΣΙΤΣΙΠΑΣ ΣΤΕΦΑΝΟΣ 1998 Ο.Α.ΓΛΥΦΑΔΑΣ ΙΑ 770.0 b18 3 3 24845 ΗΛΙΟΠΟΥΛΟΣ ΒΑΣΙΛΗΣ 1998 Α.Ο.Α.ΦΙΛΟΘΕΗΣ Η 750.0 b18 4 4 21565 ΘΕΟΔΩΡΟΥ

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.47) - Κορίτσια U16 (best 8μ+3δ) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ tours Βαθμ g16 1 1 22833 ΑΔΑΛΟΓΛΟΥ

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.47) - Κορίτσια U16 (best 8μ+3δ) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ tours Βαθμ g16 1 1 22833 ΑΔΑΛΟΓΛΟΥ g16 1 1 22833 ΑΔΑΛΟΓΛΟΥ ΜΑΓΔΑΛΗΝΗ 1999 Ε.Σ.Ο.ΕΠΙΚΟΥΡΟΣ ΠΟΛΙΧΝΗΣ Β 10 917.5 g16 2 2 90069 ΜΤΣΕΝΤΛΙΤΖΕ ΕΛΕΝΗ 2000 Α.Ο.Α.ΣΤΑΥΡΟΥΠΟΛΗΣ ΙΦΙΤΟΣ Β 7 666.0 g16 3 3 28688 ΣΤΑΜΑΤΟΓΙΑΝΝΟΠΟΥΛΟΥ ΒΑΣΙΛΙΚΗ 2001 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.31) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.31) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 b18 1 1 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 810.0 b18 2 2 24845 ΗΛΙΟΠΟΥΛΟΣ ΒΑΣΙΛΗΣ 1998 Α.Ο.Α.ΦΙΛΟΘΕΗΣ Η 690.0 b18 3 3 23517 ΤΣΙΡΑΝΙΔΗΣ ΕΥΣΤΑΘΙΟΣ 1998 Ο.Α.ΚΑΣΤΟΡΙΑΣ ΚΕΛΕΤΡΟΝ Γ 680.0 b18 4

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23517 ΤΣΙΡΑΝΙΔΗΣ ΕΥΣΤΑΘΙΟΣ 1998

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U18 (best4) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b18 1 1 23517 ΤΣΙΡΑΝΙΔΗΣ ΕΥΣΤΑΘΙΟΣ 1998 b18 1 1 23517 ΤΣΙΡΑΝΙΔΗΣ ΕΥΣΤΑΘΙΟΣ 1998 Ο.Α.ΘΕΣΣΑΛΟΝΙΚΗΣ Β 797.5 b18 2 2 22969 ΚΑΝΕΛΛΟΠΟΥΛΟΣ ΑΛΕΞΑΝΔΡΟΣ 1997 Α.Ο.ΤΑΤΟΪΟΥ Η 747.0 b18 3 3 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 692.5 b18 4 4

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b12 1 1 32605 ΚΥΠΡΙΩΤΗΣ ΕΥΑΓΓΕΛΟΣ 2003

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b12 1 1 32605 ΚΥΠΡΙΩΤΗΣ ΕΥΑΓΓΕΛΟΣ 2003 b12 1 1 32605 ΚΥΠΡΙΩΤΗΣ ΕΥΑΓΓΕΛΟΣ 2003 Ο.Α.ΑΘΗΝΩΝ Η 194.0 b12 2 2 31353 ΜΗΤΣΑΚΟΣ ΘΕΟΔΩΡΟΣ 2004 ΡΗΓΑΣ Α.Ο.Α.ΑΡΓΟΛΙΔΑΣ ΣΤ 74.5 b12 3 3 32680 ΦΩΤΕΙΝΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 2003 Α.Ο.Α.ΗΛΙΟΥΠΟΛΗΣ ΙΑ 68.5 b12 4 4

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U16 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b16 1 1 30186 ΠΙΤΣΙΝΗΣ ΔΗΜΗΤΡΙΟΣ 1999

Ε.Φ.Ο.Α. - Βαθμολογία 2015 (βδ.12) - Αγόρια U16 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b16 1 1 30186 ΠΙΤΣΙΝΗΣ ΔΗΜΗΤΡΙΟΣ 1999 b16 1 1 30186 ΠΙΤΣΙΝΗΣ ΔΗΜΗΤΡΙΟΣ 1999 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 810.0 b16 2 2 26317 ΚΩΣΤΑΡΑΣ ΠΑΝΑΓΙΩΤΗΣ 1999 Ο.Α.ΠΕΤΡΟΥΠΟΛΗΣ Θ 804.0 b16 3 3 25297 ΚΑΠΙΡΗΣ ΣΤΑΜΑΤΗΣ 1999 Α.Ο.Α.ΗΛΙΟΥΠΟΛΗΣ ΙΑ 682.0 b16 4 4 29817

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 17 ΠΕ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 33 ΔΕ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 41 ΠΕ/ΤΕ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 69 ΥΕ

ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 17 ΠΕ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 33 ΔΕ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 41 ΠΕ/ΤΕ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 69 ΥΕ A/A 1 2 3 4 ΕΠΙΒΛΕΠΩΝ ΦΟΡΕΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Α ΑΘΗΝΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Α ΑΘΗΝΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Α ΑΘΗΝΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Α ΑΘΗΝΑΣ ΥΠΗΡΕΣΙΑ ΤΟΠΟΘΕΤΗΣΗΣ ΔΙΟΙΚΗΤΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΑΡΙΘΜΟΣ ΘΕΣΕΩΝ ΕΠΙΠΕΔΟ ΕΚΠΑΙΔΕΥΣΗΣ

Διαβάστε περισσότερα

ΜΟΡΙΑ ΠΙΝΑΚΑ ΣΕΙΡΑ ΠΙΝΑΚΑ ΠΕΡΙΟΧΗ ΤΟΠΟΘΕΤΗΣΗΣ ΠΙΝΑΚΑΣ ΑΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΚΛΑΔΟΣ ΤΡΙΤΕΚΝΟ Σ ΔΙΕΥΘΥΝΣΗ ΕΚΠ/ΣΗΣ

ΜΟΡΙΑ ΠΙΝΑΚΑ ΣΕΙΡΑ ΠΙΝΑΚΑ ΠΕΡΙΟΧΗ ΤΟΠΟΘΕΤΗΣΗΣ ΠΙΝΑΚΑΣ ΑΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΚΛΑΔΟΣ ΤΡΙΤΕΚΝΟ Σ ΔΙΕΥΘΥΝΣΗ ΕΚΠ/ΣΗΣ 1 ΜΑΡΑΜΗ ΕΥΑΓΓΕΛΟ ΝΙΚΟΛΑΟ ΠΕ16.01 ΟΧΙ Β 1 38,715 Α Θεσσαλονίκης ΔΙΕΥΘΥΝΗ Π.Ε. ΘΕΑΛΟΝΙΚΗ Α 2 ΚΟΛΛΙΑ ΩΤΗΡΙΑ ΠΑΝΑΓΙΩΤΗ ΠΕ16.01 ΟΧΙ Β 2 17,29 Β Αθηνών ΔΙΕΥΘΥΝΗ Π.Ε. ΑΘΗΝΑ Β 3 ΔΕΠΟΤΗ ΩΤΗΡΙΟ ΚΩΝΤΑΝΤΙΝΟ ΠΕ16.01

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.01) - Αγόρια U16 κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b16 1 1 25438 ΤΣΙΤΣΙΠΑΣ ΣΤΕΦΑΝΟΣ 1998 Ο.Α.

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.01) - Αγόρια U16 κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ b16 1 1 25438 ΤΣΙΤΣΙΠΑΣ ΣΤΕΦΑΝΟΣ 1998 Ο.Α. b16 1 1 25438 ΤΣΙΤΣΙΠΑΣ ΣΤΕΦΑΝΟΣ 1998 Ο.Α.ΓΛΥΦΑΔΑΣ ΙΑ 1270,0 b16 2 2 23775 ΑΝΤΩΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 1998 Ο.Α.ΚΕΡΑΤΣΙΝΙΟΥ Θ 1180,0 b16 3 3 24845 ΗΛΙΟΠΟΥΛΟΣ ΒΑΣΙΛΗΣ 1998 Α.Ο.Α.ΦΙΛΟΘΕΗΣ Η 1030,0 b16 4 4 23517

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.43) - Κορίτσια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.43) - Κορίτσια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ Α.Λ.ΙΛΙΟΥ Θ 226.0 g12 2 2 29169 ΝΤΑΝΟΥ ΧΡΙΣΤΙΝΑ 2002 Ο.Α.ΓΟΥΔΙΟΥ ΙΑ 186.0 g12 3 3 31551 ΠΑΠΑΚΩΝΣΤΑΝΤΙΝΟΥ ΕΛΕΝΑ-ΜΑΡΙΑ 2002 ΦΘΙΩΤΙΚΟΣ Ο.Α. Ε 184.5 g12 4 4 30176 ΓΙΑΝΝΑΚΟΥ

Διαβάστε περισσότερα

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.31) - Κορίτσια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ

Ε.Φ.Ο.Α. - Βαθμολογία 2014 (βδ.31) - Κορίτσια U12 (best8) κτγρ # αα ΑΜ Ονοματεπώνυμο Έτος Σύλλογος ΕΝ Βαθμ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ g12 1 1 31873 ΓΡΙΒΑ ΒΑΣΙΛΕΙΑ 2002 ΑΙΟΛΟΣ Α.Λ.ΙΛΙΟΥ Θ 210.0 g12 2 2 30176 ΓΙΑΝΝΑΚΟΥ ΙΩΑΝΝΑ 2002 Α.Ο.Α.ΠΟΣΕΙΔΩΝ ΘΕΣΣΑΛΟΝΙΚΗΣ Β 161.0 g12 3 3 31551 ΠΑΠΑΚΩΝΣΤΑΝΤΙΝΟΥ ΕΛΕΝΑ-ΜΑΡΙΑ 2002 ΦΘΙΩΤΙΚΟΣ Ο.Α. Ε 155.0

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO

PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO ŽILINSKÁ UNIVERZITA V ŽILINE Fakulta špeciálneho inžinierstva Doc. Ing. Jozef KOVAČIK, CSc. Ing. Martin BENIAČ, PhD. PRUŽNOSŤ A PEVNOSŤ PRE ŠPECIÁLNE INŽINIERSTVO Druhé doplnené a upravené vydanie Určené

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %

Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 % Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO

Διαβάστε περισσότερα

ΊΈΧΜϋΛ01ΐΚ.0 ΕΚ11ΑΙΔΕΥΤ1Κ0 ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ

ΊΈΧΜϋΛ01ΐΚ.0 ΕΚ11ΑΙΔΕΥΤ1Κ0 ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΊΈΧΜϋΛ01ΐΚ.0 ΕΚ11ΑΙΔΕΥΤ1Κ0 ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ εχολμ ; ΔΐυΐΚΒΣΗ ΚΑΙ ΟΙΚϋΝΟΜΙΑΖ ΡΜΗΜΑ : Α01ίΣΤΐΚ1ΐ2. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΠΕΜΑ:

Διαβάστε περισσότερα

Metódy vol nej optimalizácie

Metódy vol nej optimalizácie Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných

Διαβάστε περισσότερα

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY KALIBRÁCIA JEDNOFAKTOROVÉHO MODELU ÚROKOVÝCH MIER POMOCOU VIACERÝCH KRITÉRIÍ DIPLOMOVÁ PRÁCA Bratislava 2015 Bc. Martin ƒechvala

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης

ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Αρχιτεκτόνων Μηχανικών Κρήτης ΕΠΙΤΥΧΟΝΤΕΣ ΑΕΙ 2009 Χρηστίδης Δ. Ανωγιάτη Χ. Κοκκολάκη Α. Λουράντου Α. Χασάπης Φ. Σταυροπούλου Ε. Αλωνιστιώτη Δ. Καρκασίνας Α. Μαραγκουδάκης Θ. Κεφαλάς Γ. Μπαχά Α. Μπέζα Γ. Μποραζέλης Ν. Χίνης Π. Λύτρα

Διαβάστε περισσότερα

METÓDY VNÚTORNÉHO BODU VO FINANƒNÝCH MODELOCH DIPLOMOVÁ PRÁCA

METÓDY VNÚTORNÉHO BODU VO FINANƒNÝCH MODELOCH DIPLOMOVÁ PRÁCA Fakulta matematiky, fyziky a informatiky Univerzity Komenského v Bratislave Katedra aplikovanej matematiky a ²tatistiky METÓDY VNÚTORNÉHO BODU VO FINANƒNÝCH MODELOCH DIPLOMOVÁ PRÁCA 2006 Václav Kolátor

Διαβάστε περισσότερα

I3 I4 I5 I6 I7 I8 I9 I10 I11

I3 I4 I5 I6 I7 I8 I9 I10 I11 Δ.Φ.Ο.Α. - Βαθμολογία 2013 (βδ.42) - Αγόρια U12 b12 1 1 24455 ΡΑΟΑΚΝΛΙΖΠ ΓΖΚΝΠΘΔΛΖΠ 2001 Γ.Α.Π.ΘΑΟΑΡΔ ΔΟΚΖΠ Γ 294,0 30,0 70 35 35 42 42 15 15 25 8 21 5 9 8 b12 2 2 29854 ΘΝΡΠΗΘΝΠ ΒΑΠΗΙΔΗΝΠ 2001 ΦΘΗΩΡΗΘΝΠ

Διαβάστε περισσότερα

Základy automatického riadenia

Základy automatického riadenia Základy automatického riadenia Predná²ka 8 doc. Ing. Anna Jadlovská, PhD., doc. Ing. Ján Jadlovský, CSc. Katedra kybernetiky a umelej inteligencie Fakulta elektrotechniky a informatiky Technická univerzita

Διαβάστε περισσότερα

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5

Ι Ο Λ Ο Γ Ι Μ Ο - Α Π Ο Λ Ο Γ Ι Μ Ο Μ Η Ν Ο Γ Δ Κ Δ Μ Β Ρ Ι Ο Υ 2 0 1 5 Μ Ρ : 0 9 / 0 1 / 2 0 1 6 Ρ. Ρ Ω. : 7 Λ Γ Μ - Λ Γ Μ Μ Η Γ Δ Κ Δ Μ Β Ρ Υ 2 0 1 5 Δ Γ Ρ Ϋ Λ Γ Θ Δ ΚΔ Μ Β Δ Β Ω Θ Δ Δ Ρ Υ Θ Δ 0111 Χ / Γ Δ Θ Μ Θ Δ Ρ Ω Κ - - - 0112 Χ / Γ Λ Ρ Γ Κ Δ 2 3. 2 1 3. 0 0 0, 0 0-2

Διαβάστε περισσότερα

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ ΓΥΝΑΙΚΩΝ (ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΜΟΡΙΟΔΟΤΗΣΗΣ) ΑΝΑ ΝΟΜΟ ΔΟΜΗΣ

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ ΓΥΝΑΙΚΩΝ (ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΜΟΡΙΟΔΟΤΗΣΗΣ) ΑΝΑ ΝΟΜΟ ΔΟΜΗΣ ΜΟΡΦΙΔΟΥ ΚΩΝΣΤΑΝΤΙΝΑ 60700 143,61 α:48,61 β:40 γ:0 δ:55 ΚΟΡΕΞΕΝΙΔΗΣ ΙΩΑΝΝΗΣ 557 Α2 - '"ΛΙΛΙΠΟΥΠΟΛΗ" ΤΑΧΤΣΙΔΟΥ ΑΝΑΣΤΑΣΙΑ 75784 140,00 α:50,00 β:35 γ:0 δ:55 ΠΑΠΑΔΟΠΟΥΛΟΥ ΣΤΥΛΙΑΝΗ 29971 Α2 - ΠΑΙΔΙΚΟΣ ΣΤΑΘΜΟΣ

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

ΑΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΚΛΑΔΟΣ ΤΡΙΤΕΚΝ ΠΙΝΑΚΑΣ ΟΣ ΔΙΕΥΘΥΝΣΗ ΕΚΠ/ΣΗΣ ΠΙΝΑΚΑ ΠΙΝΑΚΑ ΤΟΠΟΘΕΤΗΣΗΣ

ΑΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΚΛΑΔΟΣ ΤΡΙΤΕΚΝ ΠΙΝΑΚΑΣ ΟΣ ΔΙΕΥΘΥΝΣΗ ΕΚΠ/ΣΗΣ ΠΙΝΑΚΑ ΠΙΝΑΚΑ ΤΟΠΟΘΕΤΗΣΗΣ ΑΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΚΛΑΔ ΤΡΙΤΕΚΝ 1 ΛΙΟΛΙΟΥ ΘΕΟΧΑΡΙΑ ΑΠΤΟΛ ΠΕ32 ΟΧΙ Β 1 14,427 Β Θεσσαλονίκης ΔΙΕΥΘΥΝΣΗ Π.Ε. ΘΕΣΣΑΛΟΝΙΚΗΣ Β 2 ΨΑΡΡΗ ΑΝΑΣΤΑΣΙΑ ΠΑΝΑΓΙΩΤΗΣ ΠΕ32 ΟΧΙ Β 2 5,51 Β Αθηνών ΔΙΕΥΘΥΝΣΗ Π.Ε.

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

7η ΦΙΛΙΚΗ ΣΥΝΑΝΤΗΣΗ ΔΙΠΛΩΝ ΒΕΤΕΡΑΝΩΝ-ΑΝΕΞΑΡΤΗΤΩΝ 2013-2014. 7η ΦΙΛΙΚΗ ΣΥΝΑΝΤΗΣΗ ΔΙΠΛΩΝ ΒΕΤΕΡΑΝΩΝ-ΑΝΕΞΑΡΤΗΤΩΝ 2013-2014

7η ΦΙΛΙΚΗ ΣΥΝΑΝΤΗΣΗ ΔΙΠΛΩΝ ΒΕΤΕΡΑΝΩΝ-ΑΝΕΞΑΡΤΗΤΩΝ 2013-2014. 7η ΦΙΛΙΚΗ ΣΥΝΑΝΤΗΣΗ ΔΙΠΛΩΝ ΒΕΤΕΡΑΝΩΝ-ΑΝΕΞΑΡΤΗΤΩΝ 2013-2014 ΚΑΤΗΓΟΡΙΑ ΔΙΠΛΑ ΑΝΔΡΩΝ ΚΥΡΙΑΚΗ 9:30-11:30 Τραπέζι Νο 1 A/A A' ΟΜΙΛΟΣ 1 ΓΛΑΒΑΣ/ΧΕΛΒΑΤΖΙΑΝ 1-3 0-3 0-3 0-3 4 2 ΔΩΡΙΖΑΣ/ΛΙΑΚΟΥΤΣΗΣ 1-3 0-3 1-2 3 3 ΠΑΓΟΠΟΥΛΟΣ/ΕΥΑΓΓΕΛΙΔΗΣ 1-3 2-1 2 4 ΚΟΡΔΟΥΤΗΣ/ΓΙΑΛΟΥΡΗΣ 1

Διαβάστε περισσότερα

Numerické metódy matematiky I

Numerické metódy matematiky I Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc

Διαβάστε περισσότερα

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΕΠΙΛΑΧΟΝΤΩΝ(ΑΛΦΑΒΗΤΙΚΑ) ΑΝΑ ΔΗΜΟ ΑΙΤΟΥΝΤΟΣ

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΕΠΙΛΑΧΟΝΤΩΝ(ΑΛΦΑΒΗΤΙΚΑ) ΑΝΑ ΔΗΜΟ ΑΙΤΟΥΝΤΟΣ ΑΓΙΑΣΣΩΤΕΛΗ ΜΑΡΙΑ 18670 47,59 ΜΠΟΥΡΕΚΑΣ ΠΑΝΑΓΙΩΤΗΣ 1 30565 Α2 - Βρεφονηπιακός Σταθμός Μόριας ΑΓΟΡΑΚΗ ΦΩΤΕΙΝΗ 75762 50,36 ΜΑΧΛΕΡΑΣ ΠΡΙΚΛΗΣ - ΤΑΞΙΑΡΧΗΣ 1 20293 Α1.2 - Α' Βρεφονηπιακός Σταθμός Μυτιλήνης ΑΔΑΛΗ

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE. Ekonomická a finančná matematika DIPLOMOVÁ PRÁCA

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE. Ekonomická a finančná matematika DIPLOMOVÁ PRÁCA FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE Ekonomická a finančná matematika DIPLOMOVÁ PRÁCA apríl 2003, Bratislava Veronika Oláhová FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

ΕΚΤΕΛΕΣΗ ΠΡΟΫΠΟΛΟΓΙΣΜΟΥ

ΕΚΤΕΛΕΣΗ ΠΡΟΫΠΟΛΟΓΙΣΜΟΥ Σελίδα 1 ΕΣΟΔΑ ΚΑΕ Ονομασία ΠΡΟΫΠΟΛΟΓΙΣΘΕΝΤ ΒΕΒΑΙΩΘΕΝΤΑ ΕΙΣΠΡΑΧΘΕΝΤΑ 0113 ΕΠΙΧΟΡΗΓΗΣΕΙΣ ΓΙΑ ΜΙΣΘΟΔΟΣΙΑ ΠΡΟΣΩΠΙΚΟΥ & ΔΑΠΑΝΕΣ ΛΕΙΤΟΥΡΓΙΑΣ 1.460.000 1.314.000 1.314.000 0133 ΕΠΙΧΟΡΗΓΗΣΕΙΣ ΓΙΑ ΤΗΝ ΛΕΙΤΟΥΡΓΙΑ

Διαβάστε περισσότερα

MATEMATIKA I. Základy diferenciálneho počtu. Návody k cvičeniam pre odbory VSVH a STOP. Andrea Stupňanová, Alexandra Šipošová

MATEMATIKA I. Základy diferenciálneho počtu. Návody k cvičeniam pre odbory VSVH a STOP. Andrea Stupňanová, Alexandra Šipošová MATEMATIKA I. Základy diferenciálneho počtu Návody k cvičeniam pre odbory VSVH a STOP Andrea Stupňanová, Alexandra Šipošová MATEMATIKA I. Základy diferenciálneho počtu Návody k cvičeniam pre odbory VSVH

Διαβάστε περισσότερα

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ (ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΜΟΡΙΟΔΟΤΗΣΗΣ) ΑΝΑ ΝΟΜΟ ΔΟΜΗΣ

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ (ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΜΟΡΙΟΔΟΤΗΣΗΣ) ΑΝΑ ΝΟΜΟ ΔΟΜΗΣ ΠΕΤΡΑΚΗ ΑΝΝΑ 89570 128,02 α:53,02 β:35 γ:0 δ:40 ΧΑΡΑΛΑΜΠΙΔΟΥ ΔΑΝΑΗ-ΜΑΡΙΑ 856 Α2 - Γ' Παιδικός Σταθμός Δήμου Ξάνθης ΠΑΠΑΔΟΠΟΥΛΟΥ ΕΥΘΥΜΙΑ 66088 115,57 α:50,57 β:45 γ:0 δ:20 ΠΑΠΑΔΟΠΟΥΛΟΣ ΒΑΣΙΛΕΙΟΣ 21049 Α2

Διαβάστε περισσότερα

ΤΡΙΤΕΚΝΟΣ ΠΙΝΑΚΑΣ ΚΛΑΔΟΥ

ΤΡΙΤΕΚΝΟΣ ΠΙΝΑΚΑΣ ΚΛΑΔΟΥ 112 134 ΑΒΑΤΑΓΓΕΛΟΥ ΣΟΦΙΑ ΣΠΥΡΙΔΩΝΑΣ ΚΑΣΣΙΑΝΗ ΠΕ70 Δάσκαλοι ΟΧΙ Β 150 19 Κέρκυρα ΔΙΕΥΘΥΝΣΗ Π.Ε. ΚΕΡΚΥΡΑΣ 32 35 ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ ΣΟΦΙΑ ΠΕ70 Δάσκαλοι ΟΧΙ Β 42 28,133 Ζάκυνθος ΔΙΕΥΘΥΝΣΗ Π.Ε. ΖΑΚΥΝΘΟΥ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ 24-05-2008

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ 24-05-2008 ΚΟΡΙΝΘΟΥ 55, ΚΑΝΑΚΑΡΗ ΤΗΛ. 6 65.36, 6 64.9, FAX 6 65.366 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ 4-5-8 ΘΕΜΑ ο Α.. σχ. βιβλίο σελ. 35 Α.. σχ. βιβλίο σελ. 9 Β. α. Σωστό β. Σωστό γ. Λάθος δ. Λάθος ε. Σωστό

Διαβάστε περισσότερα

Riešenie rovníc s aplikáciou na elektrické obvody

Riešenie rovníc s aplikáciou na elektrické obvody Zadanie č.1 Riešenie rovníc s aplikáciou na elektrické obvody Nasledujúce uvedené poznatky z oblasti riešenia elektrických obvodov pomocou metódy slučkových prúdov a uzlových napätí je potrebné využiť

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΒΕΡΟΙΑΣ ΔΗΜΟΤΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΒΟΥΛΕΥΣΗΣ ΣΧΕΔΙΟ ΚΑΝΟΝΙΣΜΟΥ ΑΡΔΕΥΣΗΣ ΔΗΜΟΥ ΒΕΡΟΙΑΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΒΕΡΟΙΑΣ ΔΗΜΟΤΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΒΟΥΛΕΥΣΗΣ ΣΧΕΔΙΟ ΚΑΝΟΝΙΣΜΟΥ ΑΡΔΕΥΣΗΣ ΔΗΜΟΥ ΒΕΡΟΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΒΕΡΟΙΑΣ ΔΗΜΟΤΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΒΟΥΛΕΥΣΗΣ ΣΧΕΔΙΟ ΚΑΝΟΝΙΣΜΟΥ ΑΡΔΕΥΣΗΣ ΔΗΜΟΥ ΒΕΡΟΙΑΣ ΠΡΟΟΙΜΙΟ 1. Η γεωργία αποτελεί τον κυριότερο τομέα της πρωτογενούς παραγωγής του Δήμου Βέροιας

Διαβάστε περισσότερα

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ (ΑΛΦΑΒΗΤΙΚΑ) ΑΝΑ ΔΗΜΟ ΔΟΜΗΣ

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ (ΑΛΦΑΒΗΤΙΚΑ) ΑΝΑ ΔΗΜΟ ΔΟΜΗΣ ΑΓΓΕΛΟΥ ΑΘΑΝΑΣΙΑ - ΜΑΡΙΑ 22900 74,33 ΑΓΓΕΛΟΥ ΦΙΛΙΠΠΑ - ΑΡΓΥΡΩ 20191 Α1.1 - Βρεφονηπιακός Σταθμός "Η παρεούλα μας" ΑΓΓΕΛΟΥ ΑΝΑΣΤΑΣΙΑ 83231 87,77 ΒΙΡΛΑΣ ΙΩΑΝΝΗΣ 21836 Γ - Κοινωνική Προσπάθεια (ΚΔΑΠ) (Α'

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Page 1 of 14. α/α Α.Μ. Ονοματεπώνυμο Σύλλογος Έτος Βαθμοί Κατηγορία ΑΓΟΡΙΑ 10

Page 1 of 14. α/α Α.Μ. Ονοματεπώνυμο Σύλλογος Έτος Βαθμοί Κατηγορία ΑΓΟΡΙΑ 10 ΑΓΟΡΙΑ 10 1 36030 ΤΟΥΝΤΑΣ ΜΑΡΙΟΣ ΡΗΓΑΣ Α.Ο.Α.ΑΡΓΟΛΙΔΑΣ 2005 b10 2 35955 ΖΑΧΑΡΑΚΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Ο.Α.ΣΑΛΑΜΙΝΑΣ 2005 b10 3 34580 ΠΑΠΑΔΟΠΟΥΛΟΣ ΙΑΣΟΝΑΣ Α.Ο.ΤΑΤΟΪΟΥ 2005 b10 4 35959 ΚΟΚΚΙΝΟΣ ΙΑΣΩΝ-ΝΙΚΟΛΑΟΣ Α.Ο.Α.ΠΑΠΑΓΟΥ

Διαβάστε περισσότερα

Eulerovské grafy. Príklad Daný graf nie je eulerovský, ale obsahuje eulerovskú cestu (a, ab, b, bc, c, cd, d, da, a, ac, c, ce, e, ed, d, db).

Eulerovské grafy. Príklad Daný graf nie je eulerovský, ale obsahuje eulerovskú cestu (a, ab, b, bc, c, cd, d, da, a, ac, c, ce, e, ed, d, db). Eulerovské grafy Denícia Nech G = (V, E) je graf. Uzavretý ah v G sa nazýva eulerovská kruºnica, ak obsahuje v²etky hrany G. Otvorený ah obsahujúci v²etky hrany grafu sa nazýva eulerovská cesta. Graf sa

Διαβάστε περισσότερα

Maticové hry. doc. RNDr. tefan Pe²ko. 9. marca Katedra matematických metód a opera nej analýzy, FRI šu

Maticové hry. doc. RNDr. tefan Pe²ko. 9. marca Katedra matematických metód a opera nej analýzy, FRI šu Katedra matematických metód a opera nej analýzy, FRI šu 9. marca 2018 Antagonistický konikt dvoch hrá ov s kone nými priestormi stratégií modeluje maticová hra. Denícia 3.1 Kone nú hra s nulovým sú tom

Διαβάστε περισσότερα

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ (ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΜΟΡΙΟΔΟΤΗΣΗΣ) ΑΝΑ ΝΟΜΟ ΔΟΜΗΣ

ΟΡΙΣΤΙΚΟΣ ΠΙΝΑΚΑΣ ΩΦΕΛΟΥΜΕΝΩΝ (ΚΑΤΑ ΦΘΙΝΟΥΣΑ ΣΕΙΡΑ ΜΟΡΙΟΔΟΤΗΣΗΣ) ΑΝΑ ΝΟΜΟ ΔΟΜΗΣ ΤΣΙΟΥΚΡΑ ΝΙΚΗ 81459 129,34 α:44,34 β:45 γ:0 δ:40 ΚΙΟΥΡΟΣ ΧΡΗΣΤΟΣ 29982 Γ - ΚΔΑΠ Αθλητισμού Γρεβενών Α' Βάρδια ΚΑΡΑΓΙΑΝΝΗ ΑΡΙΣΤΟΥΛΑ 51894 125,94 α:40,94 β:35 γ:0 δ:50 ΚΑΡΑΓΙΑΝΝΗ ΕΥΑΝΘΙΑ 198 Δ - ΚΔΑΠ-ΜΕΑ

Διαβάστε περισσότερα

Úvod do modelovania a simulácie, metóda Monte Carlo

Úvod do modelovania a simulácie, metóda Monte Carlo Úvod do modelovania a simulácie, metóda Monte Carlo Prednáška 4 využitie MS Excel 13.10.2015 Ing. Marek Kvet, PhD. Modelovanie a simulácia Venuje sa štúdiu skúmaných objektov hmotného sveta - existujúcich

Διαβάστε περισσότερα

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický

Διαβάστε περισσότερα

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

Řečtina I průvodce prosincem a začátkem ledna prezenční studium Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si

Διαβάστε περισσότερα

Riadenie zásobníkov kvapaliny

Riadenie zásobníkov kvapaliny Kapitola 9 Riadenie zásobníkov kvapaliny Cieľom cvičenia je zvládnuť návrh (syntézu) regulátorov výpočtovými (analytickými) metódami Naslinovou metódou a metódou umiestnenia pólov. Navrhnuté regulátory

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ 27-03-2015 ΕΤΟΣ ΙΔΡΥΣΗΣ 1884

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ 27-03-2015 ΕΤΟΣ ΙΔΡΥΣΗΣ 1884 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ 1 η Υ.ΠΕ ΑΤΤΙΚΗΣ Γ.Ν.Α. «Ο ΕΥΑΓΓΕΛΙΣΜΟΣ- ΟΦΘΑΛΜΙΑΤΡΕΙΟ ΑΘΗΝΩΝ- ΠΟΛΥΚΛΙΝΙΚΗ»-Ν.Π.Δ.Δ. ΑΘΗΝΑ 27-03-2015 ΕΤΟΣ ΙΔΡΥΣΗΣ 1884 ΤΜΗΜΑ ΓΡΑΜΜΑΤΕΙΑΣ ΙΑΤΡΟΙ 08:00 20.00 20.00 08.00 ΓΕΝΙΚΗ ΕΦΗΜΕΡΙΑ

Διαβάστε περισσότερα

Nelineárne optimalizačné modely a metódy

Nelineárne optimalizačné modely a metódy Nelineárne optimalizačné modely a metódy Téma prednášky č. 8 Metódy transformujúce úlohu naviazaný extrém na úlohu na voľný extrém Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ

ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΜΑΘΗΜΑΤΩΝ ΤΜΗΜΑ Α1 1η ΩΡΑ ΠΑΠΟΥΤΣΗ ΣΟΦΟΥΛΗ ΣΟΦΟΥΛΗ ΟΞΟΠΟΥΛΟΥ ΣΟΦΟΥΛΗ 2η ΩΡΑ ΝΙΚΟΛΟΠΟΥΛΟΥ ΣΠΑΝΟΣ ΣΟΦΟΥΛΗ ΓΙΑΝΝΑ ΑΚΗΣ ΣΠΑΝΟΣ 3η ΩΡΑ ΜΑΡΚΑΝΤΩΝΗΣ ΜΑΡΚΑΝΤΩΝΗΣ ΚΑΛΑΒΡΙΖΙΩΤΗΣ ΧΡΙΣΤΟ ΟΥΛΗ ΝΙΚΟΛΟΠΟΥΛΟΥ 4η ΩΡΑ ΚΑΛΑΒΡΙΖΙΩΤΗΣ

Διαβάστε περισσότερα

ΑΔΑ: 64Υ9ΩΗΜ-ΑΗΙ ΑΔΑΜ: 15PROC003250014

ΑΔΑ: 64Υ9ΩΗΜ-ΑΗΙ ΑΔΑΜ: 15PROC003250014 Γούρνες 3-11-2015 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αριθμός πρωτ. 23428 ΔΗΜΟΣ ΧΕΡΣΟΝΗΣΟΥ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ ΤΙΤΛΟΣ: ΠΡΟΜΗΘΕΙΑ ΦΩΤΙΣΤΙΚΩΝ ΓΙΑ ΤΗ Δ.Ε. ΧΕΡΣΟΝΗΣΟΥ ΧΡΗΜΑΤΟΔΟΤΗΣΗ: ΕΣΟΔΑ ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ: 73.185,00 Ευρώ (µε

Διαβάστε περισσότερα

ΟΡΓΑΝΙΣΜΟΣ ΣΧΟΛΗΣ ΜΟΝΙΜΩΝ ΥΠΑΞΙΩΜΑΤΙΚΩΝ

ΟΡΓΑΝΙΣΜΟΣ ΣΧΟΛΗΣ ΜΟΝΙΜΩΝ ΥΠΑΞΙΩΜΑΤΙΚΩΝ ΠΟΛΕΜΙΚΟ ΝΑΥΤΙΚΟ ΣΧΟΛΗ ΜΟΝΙΜΩΝ ΥΠΑΞΙΩΜΑΤΙΚΩΝ ΝΑΥΤΙΚΟΥ ΟΡΓΑΝΙΣΜΟΣ ΣΧΟΛΗΣ ΜΟΝΙΜΩΝ ΥΠΑΞΙΩΜΑΤΙΚΩΝ ΝΑΥΤΙΚΟΥ ΠΡΟΕΔΡΙΚΟ ΔΙΑΤΑΓΜΑ 1338/81(Α 334) ΤΡΟΠΟΠΟΙΗΣΕΙΣ: Α. ΠΡΟΕΔΡΙΚΟ ΔΙΑΤΑΓΜΑ ΥΠ ΑΡΙΘΜ. 26/1992 (Α 7) Β.

Διαβάστε περισσότερα

M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"

M8 Model Valcová a kužeľová nádrž v sérií bez interakcie M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu

Διαβάστε περισσότερα

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...

Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,... Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia

Διαβάστε περισσότερα

ΩΡΕΣ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ

ΩΡΕΣ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ ΕΞΑΜΗΝΟ : Α' Α/Α ΩΡΕΣ ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ 1 9 00-9 45 Α2 Α3 (Α) ΠΑΙΔΑΓΩΓΙΚΗ & Α1 ΦΙΛΟΣΟΦΙΑ ΤΗΣ Α3 2 (ΜΟΥΤΗΣ) ΠΑΙΔΕΙΑΣ 10 00 10 45 (ΜΟΥΤΗΣ) ΜΑΘΗΜΑΤΙΚΑ I 3 11 00 11 45 Α1 (ΛΑΓΟΣ) Α4 Α3

Διαβάστε περισσότερα

Nekone ný antagonistický konikt

Nekone ný antagonistický konikt Katedra matematických metód, FRI šu 12. apríl 2012 V al²om výklade sa obmedzíme na také hry dvoch hrá ov H 0, v ktorých sú priestory stratégií hrá ov nekone né mnoºiny. Takýto prístup je výhodný aj v pripadoch

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ

ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΕΒΡΟΥ ΑΣΗΜΑΚΟΠΟΥΛΟΣ ΣΠΥΡΙΔΩΝ του ΔΗΜΗΤΡΙΟΥ ΚΑΛΑΪΤΖΙΔΟΥ ΑΙΚΑΤΕΡΙΝΗ του ΜΙΧΑΗΛ ΚΟΖΑΡΗΣ ΚΥΡΙΑΚΟΣ του ΧΡΗΣΤΟΥ ΜΑΛΚΟΥΚΗΣ ΒΑΣΙΛΕΙΟΣ του ΔΗΜΗΤΡΙΟΥ ΜΟΡΑΛΗΣ ΖΗΣΗΣ του ΙΩΑΝΝΗ ΕΚΛΟΓΙΚΗ ΠΕΡΙΦΕΡΕΙΑ

Διαβάστε περισσότερα

ΘΕΜΑ: Κοινοποίηση ορισµένων διατάξεων του ν. 3427/27.12.2005 (ΦΕΚ 312Α ) που αφορούν στη φορολογία εισοδήµατος φυσικών και νοµικών προσώπων.

ΘΕΜΑ: Κοινοποίηση ορισµένων διατάξεων του ν. 3427/27.12.2005 (ΦΕΚ 312Α ) που αφορούν στη φορολογία εισοδήµατος φυσικών και νοµικών προσώπων. - 125 - * ΦΟΡΟΛΟΓΙΑ ΕΙΣΟ ΗΜΑΤΟΣ * Νο. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΑΣ & ΟΙΚΟΝΟΜΙΚΩΝ ΓΕΝΙΚΗ /ΝΣΗ ΦΟΡΟΛΟΓΙΑΣ /ΝΣΗ ΦΟΡΟΛΟΓΙΑΣ ΕΙΣΟ ΗΜΑΤΟΣ ( 12) ΤΜΗΜΑΤΑ: Α - Β Γ Αθήνα, 2 Μαρτίου 2006 Αριθµ.Πρωτ.:

Διαβάστε περισσότερα

ΕΤΗΣΙΟ ΦΟΡΟΛΟΓΟΥΜΕΝΟ ΕΙΣΟΔΗΜΑ (Πραγματικό ή Τεκμαρτό) ΤΕΛΙΚΟ ΕΙΣΟΔΗΜΑ Α/Α Α.Μ. ΕΞΑΜ. ΤΜΗΜΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΛΛΑ ΠΡΟΣΤ/ΝΑ ΤΕΚΝΑ ΠΟΛΥΤΕΚΝΟΣ ΑΝΕΡΓΙΑ ΟΡΦΑΝΟΣ

ΕΤΗΣΙΟ ΦΟΡΟΛΟΓΟΥΜΕΝΟ ΕΙΣΟΔΗΜΑ (Πραγματικό ή Τεκμαρτό) ΤΕΛΙΚΟ ΕΙΣΟΔΗΜΑ Α/Α Α.Μ. ΕΞΑΜ. ΤΜΗΜΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΑΛΛΑ ΠΡΟΣΤ/ΝΑ ΤΕΚΝΑ ΠΟΛΥΤΕΚΝΟΣ ΑΝΕΡΓΙΑ ΟΡΦΑΝΟΣ ΕΤΗΣΙΟ ΦΟΡΟΛΟΓΟΥΜΕΝΟ 1 11617 11 ΛΟΓ.ΧΡ 9.190,00 9.190,00 9.190,00 ΚΑΣΤΟΡΙΑ 2 12442 10 ΛΟΓ.ΧΡ 17.954,20 2.500,00 20.454,20 3000 17.454,20 ΗΓΟΥΜΕΝΙΤΣΑ 3 12819 9 ΛΟΓ.ΧΡ 12.090,00 6.537,64 18.627,64 18.627,64

Διαβάστε περισσότερα

ΠΔΕ 152 ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ

ΠΔΕ 152 ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΠΔΕ 152 ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΑΘΗΝΑ ΙΑΝΟΥΑΡΙΟΣ 2014 1 Ερώτηση 1 Ο ρυθμός αύξησης του ονομαστικού ΑΕΠ μιας οικονομίας είναι η διαφορά του ονομαστικού ΑΕΠ ανάμεσα σε δύο έτη δια το ονομαστικό ΑΕΠ του αρχικού

Διαβάστε περισσότερα

Nεανικά Ἀγκυροβολήματα

Nεανικά Ἀγκυροβολήματα Nεανικά Ἀγκυροβολήματα Aγκυροβολή- Δ I M H N I A I O Φ Y Λ Λ A Δ I O T H Σ I E P A Σ M H T P O Π O Λ E Ω Σ I E P A Π Y T N H Σ K A I Σ H T E I A Σ Γ I A T O Y Σ N E O Y Σ T E Y X O Σ 7 2 Ι Α Ν Ο Υ Α Ρ

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Η ΓΙΔΤΘΤΝΣΡΙΑ ΠΡΩΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΣΗ Α ΓΙΔΤΘΤΝΗ Π.Δ. ΑΘΗΝΑ. Έχοντας υπόψη

Η ΓΙΔΤΘΤΝΣΡΙΑ ΠΡΩΣΟΒΑΘΜΙΑ ΔΚΠΑΙΓΔΤΗ ΣΗ Α ΓΙΔΤΘΤΝΗ Π.Δ. ΑΘΗΝΑ. Έχοντας υπόψη ΕΛΛΗΝΘΚΗ ΔΗΜΟΚΡΑΣΘΑ ΤΠΟΤΡΓΕΘΟ ΠΑΘΔΕΘΑ ΕΡΕΤΝΑ ΚΑΘ ΘΡΗΚΕΤΜΑΣΩΝ ---------- ΠΕΡΘΦΕΡΕΘΑΚΗ Δ/ΝΗ Π. ΚΑΘ Δ. ΕΚΠ/Η ΑΣΣΘΚΗ Δ/ΝΗ Α/ΘΜΘΑ ΕΚΠ/Η Α ΑΘΗΝΑ ------------ Σαρ. Γ/λζε: Γψξνπ 9 T.K. - Πφιε: 104 32 Αζήλα Ιζηνζειίδα:

Διαβάστε περισσότερα

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ

ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ. «Γ λ υ κ ό κ α λ ο κ α ι ρ ά κ ι» της Γ ω γ ώ ς Α γ γ ε λ ο π ο ύ λ ο υ ΤΑ Π ΥΧΡΩΜΑ ΜΟΛΥΒΙΑ Εφη μ ε ρ ί δ α τ ο υ τ μ ή μ α τ ο ς Β τ ο υ 1 9 ου Δ η μ ο τ ι κ ο ύ σ χ ο λ ε ί ο υ Η ρ α κ λ ε ί ο υ Α ρ ι θ μ ό ς φ ύ λ λ ο υ 1 Ι ο ύ ν ι ο ς 2 0 1 5 «Γ λ υ κ ό κ α λ ο κ α ι ρ

Διαβάστε περισσότερα

Úvod do lineárnej algebry

Úvod do lineárnej algebry Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.

Διαβάστε περισσότερα

Τύπος αιτήσεων μετάθεσης:

Τύπος αιτήσεων μετάθεσης: Κατάλογος αιτήσεων μετάθεσης Επιλεγμένες Παράμετροι: Τύπος αιτήσεων μετάθεσης: ΑΙΤΗΣΗ ΓΙΑ ΜΕΤΑΘΕΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Δ.Ε. ΑΠΟ ΠΕΡΙΟΧΗ ΣΕ ΠΕΡΙΟΧΗ [001.ΔΕ001] Σχολικό έτος: 2012-2013 Καταστάσεις αιτήσεων: Άγνωστη

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα