1. písomná práca z matematiky Skupina A
|
|
- Ἰεφθάε Κακριδής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = δ a b 3. Znázornite na číselnej osi dané čísla : 3,5; 0; 4; 1; 2,6 a určte ich absolútnu hodnotu. 4. Usporiadajte vzostupne čísla : 11; 5,8; 7,5; 13,4; 2; 8,4 5. Vypočítajte : a) 15 + ( 9) = b) 15 ( 9) 6 (+1) = c) 17,4 18,9 = d) 12. (8 10) = e) 45 : ( 0,9) = 6. V noci bola teplota vzduchu 4 C. Cez deň ukazoval teplomer +12 C. O koľko stupňov Celzia bola teplota cez deň vyššia ako v noci? 7. Obsah obdĺžnika je 6,3 m 2. Jedna strana má dĺžku 90 cm. Vypočítaj dĺžku druhej strany. 1
2 1. písomná práca z matematiky Skupina B 1. Vypočítajte : a) 75º º 13 = b) 154º 12 89º 38 = c) 27º = 2. Vypočítajte zvyšné uhly na obrázku : a γ δ α = β b 3. Znázornite na číselnej osi dané čísla : 2,5; 4; 0; 1,6; 5 a určte ich absolútnu hodnotu. 4. Usporiadajte vzostupne čísla : 14; 6,2; 5,5; 15,6; 3; 9,7 5. Vypočítajte : a) +15 (+20) = b) +18 ( 20) ( 2) c) 20,6 + 18,3 = d) (12 20) x ( 6) = e) 4,8 : ( 0,6) = 6. Teplomer ukazoval cez deň +11 C. Do rána poklesla teplota na 2 C. Vypočítaj rozdiel teplôt. 7. Obvod štvorca je 16,8 m. Vypočítaj jeho obsah. 2
3 2. písomná práca z matematiky Skupina A 1. Premeňte na jednotky uvedené v zátvorke : a) 0,55m 3 (dm 3 ) d) 5,6 hl (dm 3 ) b) 48 mm 3 (cm 3 ) e) 0,25 m 3 (hl) c) 1754 cm 3 (m 3 ) 2. Robotníci vykopali jamu v tvare kvádra s rozmermi 4,5m, 2,4m a 1,2m. Koľko m 3 zeminy vykopali? 3. Koľko papiera potrebujeme na zhotovenie škatule tvaru kocky bez vrchnáka s hranou 4,8 dm? 4. Z daných čísel 27; 84; 162; 256; 321; 780; 1122; vyberte čísla deliteľné súčasne 2 a Dané čísla rozložte na súčin prvočiniteľov : a) 48 b) 216 c) Vypíšte všetky delitele čísel : a) 24 b) písomná práca z matematiky Skupina B 1. Premeňte na jednotky uvedené v zátvorke : a) 1,4 dm 3 (cm 3 ) d) 3,5 l (cm 3 ) b) 54 dm 3 (m 3 ) e) 4,7 hl (m 3 ) c) mm 3 (dm 3 ) 2. Koľko m 3 vody sa zmestí do nádrže tvaru kocky s hranou 3,5 m? 3. Vypočítajte koľko papiera treba na zhotovenie škatule na džús tvaru kvádra s rozmermi 16cm, 9cm, 6cm. 4. Z daných čísel 27; 90; 135; 260; 825; 918; 1260; vyberte čísla, ktoré sú deliteľné súčasne 9 a Dané čísla rozložte na súčin prvočiniteľov : a) 84 b) 144 c) Vypíšte všetky delitele čísel : a) 36 b) 60 3
4 3. písomná práca z matematiky Skupina A 1. Vypočítajte najmenší spoločný násobok a najväčší spoločný deliteľ čísel 96 a Sponzor daroval žiakom 54 pier a 135 zošitov. Žiaci si dar rozdelili tak, že každý dostal rovnaký počet pier aj zošitov. Koľko žiakov bolo v triede, keď ich bolo viac ako 25? 3. V trojuholníku ABC je daná veľkosť vnútorného uhla α= a vonkajšieho uhla β = 100. Určte veľkosti zvyšných vnútorných a vonkajších uhlov trojuholníka. 4. Zostrojte trojuholník ABC, ak je daný uhol γ= 76, strana a= 5,6cm; b= 4,8cm. 5. Narysujte ľubovoľný rovnoramenný trojuholník CDE a zostrojte výšku na rameno. Výšku odmerajte a zapíšte jej veľkosť. 6. Zapíšte zlomkom v základnom tvare akou časťou hodiny je : a) 36 minút b) 75 minút 3. písomná práca z matematiky Skupina B 1. Vypočítajte najväčší spoločný deliteľ a najmenší spoločný násobok čísel 45 a Škola má 275 žiakov. Koľko žiakov išlo do divadla, keď mohli ísť v železničných vagónoch po 60 alebo vo väčších vagónoch po 80 žiakov a vždy boli vagóny plne obsadené? 3. V rovnoramennom trojuholníku ABC so základňou AB je daná veľkosť vonkajšieho uhla β = Vypočítajte veľkosti vnútorných a zvyšných vonkajších uhlov trojuholníka. 4. Zostrojte trojuholník KLM, ak je dané : k= 5,2cm, I KLM I = 65 a I LMKI = Narysujte ľubovoľný tupouhlý trojuholník EFG a zostrojte výšku na stranu FG. Výšku odmerajte a zapíšte jej veľkosť. 6. Zapíšte zlomkom v základnom tvare akou časťou metra je : a) 45 cm; b) 170 cm 4
5 4. písomná práca z matematiky Skupina A 1. Dané čísla usporiadajte vzostupne : ; ; 0,8 ; ; ; Zostrojte rovnobežník ABCD, ak a= 4,2 cm, uhlopriečka f= 6,2 cm, uhol α= Vypočítajte obvod a obsah lichobežníka ABCD (AB II CD), ak a= 7cm, b= 4 cm, c= 4 cm, d= 3,5 cm, v= 3,3 cm. 4. Koľko m 2 skla potrebovali na zasklenie 10 okien tvaru rovnostranného trojuholníka, ak dĺžka strany trojuholníka je 0,6 m a výška 0,52 m? 5. Pomocou číslic 6, 8, 9, napíšte všetky trojciferné čísla bez opakovania číslic. Koľko je takýchto čísel a koľko z nich je párnych? 4. písomná práca z matematiky Skupina B 1. Usporiadajte dané čísla zostupne : 10 6 ; 6 5 ; 15 7 ; 0,6; 5 7 ; 2. Zostrojte lichobežník ABCD (AB II CD), ak a= 5cm, b= 4cm, uhol α= 60, uhol β= Vypočítajte obvod a obsah trojuholníka ABC, ak c= 7,2 cm; a= 5,6 cm; b= 6 cm; a výška v c = 4,4 cm. 4. Koľko plechu treba na výrobu 20 kusov podložiek tvaru rovnobežníka s dĺžkou strany 12,8 cm a príslušnou výškou 4,5 cm? 5. Pomocou číslic 3, 4, 7, zapíšte všetky trojciferné čísla bez opakovania číslic. Koľko je všetkých čísel a koľko z nich je nepárnych? 5
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Zlomky sčítanie, odčítanie. A forma. B forma. 1. Kontrolná práca z matematiky 7. ročník. 1. Vypočítajte : = d) ( ) Vypočítajte : a) 5 + =
1. Kontrolná práca z matematiky 7. ročník Zlomky sčítanie, odčítanie 1. Vypočítajte : 6 2 5 7 2 2 2 a) + + = c) + = 7 3 21 9 3 3 9 3 5 1 1 + + 1 = d) ( ) 5 + 3,7 + 1 4 15 6 = 2. Vypočítajte : a) 1 5 5
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných
2. Aký obsah má vyfarbený útvar? Dĺţka strany štvorca je 3 m.
Dĺžka kružnice, obsah kruhu 1. Na obrázku je kruţnica vpísaná do štvorca so stranou 4cm a štyri kruţnicové oblúky so stredmi vo vrcholoch štvorca. ký obsah má vyfarbený útvar? 4 + π cm 16 - π cm 8π 16
4. POVRCH A OBJEM TELIES
Mgr. Mariana Sahajdová 4. POVRCH A OBJEM TELIES Obsah tematického celku: Povrch a objem kocky, kvádra a hranola Povrch a objem ihlana 4.1 Povrch a objem kocky, kvádra a hranola Základné pojmy povrch kocky
Test. Matematika. Forma A. Štátny pedagogický ústav, Bratislava NUPSESO. a.s.
Test Matematika Forma A Štátny pedagogický ústav, Bratislava Ò NUPSESO a.s. 1. Koľkokrát je väčší najmenší spoločný násobok čísel 84 a 16 ako ich najväčší spoločný deliteľ. A. B. 3 C. 6 D.1. Koľko záporných
TEST Z MATEMATIKY. Prijímacie skúšky na školský rok 2017/2018
TEST Z MATEMATIKY Prijímacie skúšky na školský rok 2017/2018 Milí žiaci, máte pred sebou test z matematiky ku prijímacím skúškam. Budete ho riešiť na dvojhárok. Najprv na nalepený štítok dvojhárku napíšte
Obvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
PYTAGORIÁDA Súťažné úlohy republikového kola 35. ročník, školský rok 2013/2014
Kategória P 6 1. Napíšte číslo, ktoré sa skrýva pod hviezdičkou: *. 5 = 9,55 2. Janko Hraško je 25 - krát menší ako Ďuro Truľo. Napíšte, koľko centimetrov meria Janko Hraško, ak Ďuro Truľo meria 1,75 metra.
Povrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
2. UHLY. Zapisovanie uhlov 1. spôsob pomocou troch bodov. Pri zápise uhla pomocou troch bodov je VRCHOL VŽDY V STREDE ZÁPISU.
2. UHLY 2.1 ZÁPIS A OZNAČOVANIE UHLOV Dve polpriamky VA, VB, ktoré majú spoločný začiatok v bode V delia rovinu na dve časti. Tieto časti nazývame uhly. UHOL je časť roviny ohraničená dvoma polpriamkami,
Povrch a objem hranola
Povrch a objem hranola D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a priamka, ktorá nie je rovnobežná s rovinou mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme priamky rovnobežné
P Y T A G O R I Á D A
30 P Y T A G O R I Á D A Súťažné úlohy a riešenia celoštátneho kola Kategórie P6 - P8 30. ročník Školský rok 2008/2009 BRATISLAVA, 2009 Súťažné úlohy celoslovenského kola. Školský rok 2008/2009. Kategória
Vyriešený test z matematiky Celoslovenské testovanie žiakov 9. ročníka ZŠ T9-2015
Vyriešený test z matematiky Celoslovenské testovanie žiakov 9. ročníka ZŠ T9-2015 Zdroj zadaní príkladov: NÚCEM - Národný ústav certifikovaných meraní vzdelávania http://www.nucem.sk/documents//26/testovanie_9_2015/testy_t9_2015/t9_2015_test_z_matemati
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
2 záhrady. Na koľko % má splnenú úlohu?
CVIČNÝ MONITOR 11 1. Zásoba materiálu pre 6 pracovníkov vystačí na 30 dní. Namiesto 6 pracovníkov firma prijala 9. Na koľko im vystačí zásoba materiálu? 2. Urč číslo, ktoré dostaneš podielom delenca -22
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku
Ma-Go-01-T List 1 Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku RNDr. Marián Macko U: Pojem goniometrické funkcie v preklade z gréčtiny znamená funkcie merajúce uhly. Dajú sa použiť v pravouhlom
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
EXTERNÁ ČASŤ NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!
KÓD TESTU 7070 MATURITA 2018 EXTERNÁ ČASŤ NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU! Test obsahuje 30 úloh. Na vypracovanie testu budete mať 150 minút. V teste sa stretnete s
Kategória P 6 1. Vypíšte nepárne číslice nachádzajúce sa vo výsledku príkladu: 2,2. 2,02. 2,002 = 2. Vypočítajte a napíšte výsledok:
Kategória P 6 1. Vypíšte nepárne číslice nachádzajúce sa vo výsledku príkladu: 2,2. 2,02. 2,002 = 2. Vypočítajte a napíšte výsledok: 5. 5 1. 5 1. 5 1. 5 1. 5 5 = ( ( ( ( ( ))))) 3. Zo štyroch kartičiek,
Kód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!
Kód testu 1203 NEOTVÁRJTE, POČKJTE N POKYN! PREČÍTJTE SI NJPRV POKYNY K TESTU! MTURIT 2015 EXTERNÁ ČSŤ Časť I Vyriešte úlohy 01 až 20 a do odpoveďového hárka zapíšte vždy iba výsledok nemusíte ho zdôvodňovať
Testy a úlohy z matematiky
Testy a úlohy z matematiky Spracovala a zostavila: c Mgr. Hedviga Soósová 008 Vydavateľ: Copyright c VARIA PRINT, s. r. o. 008. Prvé vydanie. Kontakt: VARIA PRINT, s. r. o. Mgr. Marta Varsányiová Ul. františkánov
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
1. V klobúku je 20 červených, 16 modrých a 12 žltých guličiek. Vyjadri v percentách pravdepodobnosť, že náhodne vybraná gulička je žltá.
1. V klobúku je 0 červených, 16 modrých a 1 žltých guličiek. Vyjadri v percentách pravdepodobnosť, že náhodne vybraná gulička je žltá.. Riešením rovnice 3x 6 7 0 je: A x = 0 B x = C x = 7 D x = 3. Riešením
Test z matematiky pre 9. ročník ZŠ VZOR
Meno: Priezvisko: TESTOVÁ FORMA A Test z matematiky pre 9. ročník ZŠ KÓD TESTU 0000 VZOR Milí žiaci, máte pred sebou test z matematiky. Test obsahuje 30 testových úloh. Obrázky v teste sú ilustračné. Dĺžky
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
Prvočísla a zložené čísla. a, b N: a b k N: b = a. k. Kritéria deliteľnosti v desiatkovej číselnej sústave:
Prvočísla a zložené čísla Číslo a je deliteľom čísla b (číslo b je deliteľné číslom a alebo číslo b je násobkom čísla a ) ráve vtedy, ak existuje také rirodzené číslo k, že b = a. k (ak o delení čísla
TESTOVANIE ZBIERKA ÚLOH Z MATEMATIKY
TESTOVANIE 9 2015 ZBIERKA ÚLOH Z MATEMATIKY Premena jednotiek 1.V technickom preukaze auta je uvedená jeho dĺžka 4135 mm. Koľko je to m a cm? 2.Zmestí sa do garáže dlhej 5 m auto, ktorého dĺžka je 4535
V každom prípade zapíšte vzájomnú polohu dvoch kružníc.
Kruh, kružnica 1. Polomer kružnice má veľkosť r = 5 cm, jej tetiva t = 8 cm. Vypočítaj vzdialenosť tejto tetivy od stredu kružnice.. Obsah kruhu je 78,5 cm. ký je jeho priemer? 3. Polomer kružnice k má
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU
ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU V teste, ktorý máš vyriešiť, je 20 úloh. Na prácu je určených 120 minút. Úlohy nemusíš
Obvod a obsah nepravidelného a pravidelného mnohouholníka
Obvod a obsah nepravidelného a pravidelného mnohouholníka Ak máme nepravidelný mnohouholník, tak skúsime ho rozdeliť na útvary, ktorým vieme vypočítať obsah z daných údajov najvšeobecnejší spôsob: rozdeliť
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
PYTAGORIÁDA Súťažné úlohy republikového kola 36. ročník, školský rok 2014/2015
Kategória P 6 1. Martina vypočítala súčin všetkých párnych prirodzených čísel, ktoré boli väčšie ako 43 a zároveň menšie ako 47. Napíšte výsledok, ktorý by Martina dostala, ak by sčítala číslice súčinu.
9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,
9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
MATEMATIKA - úlohy z MONITOROV a MSK
MATEMATIKA - úlohy z MONITOROV a MSK P.č. Tematické celky Strana 1 1.1 - Výroky 1 1.. - Množiny 4 3.1. - Výrazy 6 4 3.1. - Teória čísel 7 5 4.1. - Rovnice 9 6 4.. - Nerovnice 11 7 4.3. - Sústavy rovníc
Kódovanie a dekódovanie
Kódovanie a deovanie 1 Je daná množina B={0,1,2} Zostrojte množinu B* všetkých možných slov dĺžky dva 2 Je daná zdrojová abeceda A={α,β,ϕ,τ} Navrhnite príklady aspoň dvoch prostých ovaní týchto zdrojových
ZÁKLADY ELEMENTÁRNEJ GEOMETRIE
UNIVERZITA KONŠTANTÍNA FILOZOFA FAKULTA PRÍRODNÝCH VIED ZÁKLADY ELEMENTÁRNEJ GEOMETRIE ŠEDIVÝ ONDREJ VALLO DUŠAN Vydané v Nitre 2009 Fakultou prírodných vied Univerzity Konštantína Filozofa v Nitre s finančnou
Zuzana Berová, Peter Bero - Matematika pre 6. ročník - Výsledky úloh. Výsledky
Výsledky 0 1. Počtové operácie s prirodzenými číslami Zopakuj si 2/1 0 1 500 2600 4 62 3 2 456 15302 12 36 25 16 003 41630 24 000 2/2 a) 6; b) 2000 + 000; c) NEDÁ SA, lebo súčet troch po sebe idúcich čísel
1. Stereometria. 1.1 Premena jednotiek :10 :10 :10 :1000. Jednotky dĺžky: Jednotky obsahu :
1. Stereometria 1.1 Premena jednotiek Jednotky dĺžky: :10 :10 :10 :1000 Jednotky obsahu : 1 Jednotky objemu: : 1000 : 1000 : 1000 : 1000 000 000 : 10 : 10 : 10 : 100 Cvičenia: 1) Premeňte na uvedené jednotky:
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Učebný materiál pre cvičenia z matematiky v 6. ročníku ZŠ
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B
. písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
MONITOR 9 (2007) riešenia úloh testu z matematiky
MONITOR 9 (007) riešenia úloh testu z matematiky Autormi nasledujúcich riešení sú pracovníci spoločnosti EXAM testing Nejde teda o oficiálne riešenia, ktoré môže vydať ia Štátny pedagogický ústav (wwwstatpedusk)
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Maturita z matematiky T E S T Y
RNr. Mário oroš Maturita z matematiky príprava na prijímacie skúšky na vysokú školu T E S T Y Všetky práva sú vyhradené. Nijaká časť tejto knihy sa nesmie reprodukovať mechanicky, elektronicky, fotokopírovaním
22 ). Stačí, ak napíšeš, že dĺžka kružnice
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 Σ PRIJÍMACIE KÚŠKY Z MATEMATIKY Milý študent, vítame Ťa na našom gymnáziu, Gymnáziu Vazovova 6 v Bratislave. Teší nás, že si sa pri výbere školy
Objem a povrch valca, kužeľa, ihlana a gule
Objem a povrch valca, kužeľa, ihlana a ule 1. Plášť valca má rovnaký obsah ako jedna jeho podstav. Valec je vysoký 4 dm. Aký polomer má podstav tohto valca? 2. Vypočítaj objem a povrch valca, ktorého polomer
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Objem a povrch rotačného valca
Ma-Te-03-T List 1 Objem a povrch rotačného valca RNDr. Marián Macko Ž: Prečo má valec prívlastok rotačný? U: Vysvetľuje podstatu vzniku tohto telesa. Rotačný valec vznikne rotáciou, čiže otočením obdĺžnika
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
PYTAGORIÁDA Súťažné úlohy školského kola 32. ročník, školský rok 2010/2011 KATEGÓRIA P3
KATEGÓRIA P3 1. Tretiaci sa chystali do bábkového divadla. V divadle sú len štyri rady sedadiel. V prvom rade je 17 sedadiel, v druhom 15, treťom 16 a v poslednom je 20 sedadiel. Koľko detí mohlo ísť do
Školský vzdelávací program matematika 8. ročník. 1. Obsah vzdelávania učebného predmetu v 8. ročníku (rozšírený počet hodín ) Obsahový štandard
Celé čísla. Počtové výkony s celými číslami Školský vzdelávací program matematika 8. ročník 1. Obsah vzdelávania učebného predmetu v 8. ročníku (rozšírený počet hodín ) Tematický celok Témy Kladné a záporné
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013
Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013 ( Číslovanie kapitol je kvôli lepšej prehľadnosti podľa učebníc. ) Odporúčam: www.oskole.sk cez učivá, predmety a ročník navštíviť príslušné
Objem a povrch telies
Objem a povrch telies Kváder má: 8 vrcholov označujeme ich veľkými tlačenými písmenami 12 hrán hrany môžu mať tri veľkosti - a, b, c 6 stien steny sú tvorené obdĺžnikmi s rozmermi a, b, c Veľkosti troch
PYTAGORIÁDA. 9. Napíš písmeno, ktoré označuje najmenší výsledok: A: B: (17 + 8). (5 2) C: (5 2)
Súťažné úlohy okresného kola Školský rok 2006/2007 kategória P 3 1. Margitka išla s dedkom a babkou do múzea. Lístok pre dospelých stál 30 korún. Detský lístok stojí polovicu z lístka pre dospelého. Koľko
MATEMATICKÁ OLYMPIÁDA
S MATEMATICÁ OLYMPIÁDA skmo.sk 2008/2009 58. ročník Matematickej olympiády Riešenia úloh IMO. Nech n je kladné celé číslo a a,..., a k (k 2) sú navzájom rôzne celé čísla z množiny {,..., n} také, že n
stereometria - študuje geometrické útvary v priestore.
Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa
Povrch a objem zrezaného ihlana
Povrch a objem zrezaného ihlana Ak je daný jeden ihlan a zobereme rovinu rovnobežnú s postavou, prechádzajúcu ihlanom, potom táto rovina rozdelí teleso na dve telesá. Jedno teleso je ihlan (pôvodný zmenšený
Katolícka univerzita v Ružomberku Pedagogická fakulta Rovinná geometria v starej Mezopotámii Miroslava Kyrczová História matematiky h. Doc. RNDr.
Katolícka univerzita v Ružomberku Pedagogická fakulta Rovinná geometria v starej Mezopotámii Miroslava Kyrczová História matematiky h. Doc. RNDr. Štefan Tkačik, PhD..5.009 V tejto práci sa pokúsime objasniť
Goniometrické funkcie
Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej
Konštrukcia mnohouholníkov s využitím množín všetkých bodov danej vlastnosti
Ma-Ko-02-T List 1 Konštrukcia mnohouholníkov s využitím množín všetkých bodov danej vlastnosti RNr. Marián Macko U: pomínaš si zo základnej školy na konštrukciu pravidelného šesťuholníka so stranou a dĺžky
3. ročník. 1. polrok šk. roka 2016/2017
Príklady z MAT 3. ročník 1. polrok šk. roka 016/017 GONIOMETRIA 1. Načrtnite grafy daných funkcií na intervale 0, : f: y= tg x, g: y = -3.cos x, h: y = sin (x + ) -1. Určte hodnoty ostatných goniometrických
MATURITA 2012 MATEMATIKA
KÓD TESTU 606 MATURITA 202 EXTERNÁ ČASŤ MATEMATIKA NEOTVÁRAJTE POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU. Test obsahuje 0 úloh. Na vypracovanie testu budete mať 20 minút. V teste sa stretnete
Tézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty
Tézy matematika 1. Množiny, základné pojmy a vzťahy 1. Vysvetlite obsah pojmov množina, prázdna množina, disjunktné množiny, popíšte vzťahy medzi množinami (podmnožina, rovnosť množín) a operácie s množinami
Pravdivostná hodnota negácie výroku A je opačná ako pravdivostná hodnota výroku A.
7. Negácie výrokov Negácie jednoduchých výrokov tvoríme tak, že vytvoríme tvrdenie, ktoré popiera pôvodný výrok. Najčastejšie negujeme prísudok alebo použijeme vetu Nie je pravda, že.... Výrok A: Prší.
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.
Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny
wertyuiopasdfghjklzxcvbnmqwertyui Učebný odbor: 3178F00 VK opasdfghjklzxcvbnmqwertyuiopasdfg Mgr. Mária Hanková STREDNÁ ODBORNÁ ŠKOLA V LIPANOCH
qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq MATEMATIKA 2.ročník wertyuiopasdfghjklzxcvbnmqwertyui Učebný odbor:
Algebraické výrazy I.
. Kontrolná prác z mtemtik 9. ročník A form Algebrické výrz I.. Zjednodušte zpíšte, ked výrz nemá zmsel : ) ( k ) s b) k k s s. Určte njmenší spoločný násobok výrzov : ) b ; b ; b) ; ; c) ; ;. Vpočítjte
Hravá matematika 6. ročník
- Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Zbierka úloh z matematiky
Zbierka úloh z matematiky 1. Doplňte správny znak medzi čísla: 123:6 a 45:9.10 2. Ktoré najväčšie prirodzené číslo je riešením nerovnice 51 > 16 - (32-2y) 3. Traja brigádnici dostali spolu 800. Druhý dostal
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
1. Komplexné čísla. Doteraz ste pracovali s číslami, ktoré pochádzali z nasledovných množín:
1. Komplexné čísla Po preštudovaní danej kapitoly by ste mali byť shopní: poznať použitie a význam komplexnýh čísel v elektrikýh obvodoh rozumieť pojmom reálna a imaginárna časť, imaginárna jednotka, veľkosť,
Individuálny študijný plán M A T E M A T I K A - KVINTA 2011/2012
Individuálny študijný plán M A T E M A T I K A - KVINTA 2011/2012 Odporúčam: www.oskole.sk cez učivá, predmety a ročník navštíviť príslušné tematické celky 1. POLROK (Použitá učebnica Matematika pre 1.
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
Obsahový štandard. 6 základné počtové výkony (operácie); základné vedomosti z geometrie
Tematický výchovno-vzdelávací plán: MATEMATIKA Školský rok: 017/018 Škola: Súkromné športové gymnázium Trenčianske Teplice Ročník: 3. Trieda 3. OA Týždenne: 4 hodiny (ŠVP) Ročne: 13 hodín (ŠVP) Vypracované
METODICKO-PEDAGOGICKÉ CENTRUM V PREŠOVE
METODICKO-PEDAGOGICKÉ CENTRUM V PREŠOVE LADISLAV MIKA ZBIERKA GRADOVANÝCH ÚLOH K UČEBNICI MATEMATIKY PRE 7. ROČNÍK ZŠ (II. kvalifikačná práca) - 007 - OBSAH ÚVOD... RACIONÁLNE ČÍSLA. OPERÁCIE S RACIONÁLNYMI
ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1
(1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..
P Y T A G O R I Á D A
30 P Y T A G O R I Á D A Súťažné úlohy okresného kola Kategórie P3 - P8 30. ročník Školský rok 2008/2009 BRATISLAVA, 2009 Súťažné úlohy okresného kola. Školský rok 2008/2009. Kategória P 3 1. V škatuli
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Nezabudnite vyplniť všetky údaje (meno a priezvisko, škola, atď.).
INŠTRUKCIE: Samostatný hárok pre riešenie úloh (hárok pre odpovede) Nezabudnite vyplniť všetky údaje (meno a priezvisko, škola, email atď.). Testy Na vyriešenie 5 otázok máte 45 minút. Správna je vždy
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
MATEMATIKA CIELE UČEBNÉHO PREDMETU I. CHARAKTERISTIKA UČEBNÉHO PREDMETU
MATEMATIKA I. CHARAKTERISTIKA UČEBNÉHO PREDMETU Učebný predmet matematika je zameraný na rozvoj matematickej kompetencie tak, ako ju formuloval Európsky parlament: Matematická kompetencia je schopnosť
SOŠ Stará Turá Prijímacie skúšky pre šk. r. 2013/2104
Príklady doporučené na prepočítanie žiakom ZŠ k prijímacím skúškam pre šk. rok 2O13/2O14 Hrdina - Maxian : Matematika - Príklady na prijímacie skúšky na SŠ 1. Počítanie s racionálnymi číslami 16/46 Nájdite
Matematika gymnázium s osemročným vzdelávacím programom MATEMATIKA ÚVOD
MATEMATIKA ÚVOD Vzdelávací štandard pre učebný predmet matematika chápeme ako program vytvárajúci priestor na rozvíjanie individuálnych učebných ciest žiakov. Pre učiteľov slúži najmä na orientáciu v cieľoch,