Metódy vol nej optimalizácie
|
|
- Καλλιγένεια Βιλαέτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28
2 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28
3 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných dát chceme odhadnút cenu bytu v Dúbravke s rozlohou 94 m 2. rozloha (m 2 ) cena (e) p. 3/28
4 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Grafické znázornenie dát p. 4/28
5 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Lineárny model - hl adáme priamku, ktorá najlepšie vystihuje dané dáta p. 5/28
6 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Formálne - hl adáme funkciu h θ (x) = θ 0 +θ 1 x (hypotéza), resp. parametre priamky θ 0,θ 1. Označme - m - počet dátových bodov - x - vstupné premenné (rozloha bytu) - y - výstupné premenné (cena) - (x (i),y (i) ),i = 1,2,...,m - jednotlivé dátové body Myšlienka: hl adáme h θ tak, aby h θ (x (i) ) bolo čo najbližšie k y (i) pre i = 1,...,m, t. j. pre všetky dátové body Riešime Min{J(θ 0,θ 1 ) θ 0,θ 1 R}, kde J(θ 0,θ 1 ) = 1 m ( 2m i=1 hθ (x (i) ) y (i)) 2 = 1 m ( 2m i=1 θ0 +θ 1 x (i) y (i)) 2 p. 6/28
7 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Funkcia J(θ 0,θ 1 ) je konvexná kvadratická funkcia 2 premenných p. 7/28
8 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Lineárna regresia s viacerými vstupnými premennými: rozloha (m 2 ) izby vek cena (e) rôzne charakteristiky (rozloha, izby, vek) vstupné dáta x R 3 p. 8/28
9 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Označme - m - počet dátových bodov - n - počet charakteristík - x - vstupné premenné - vektory z R n - y - výstupné premenné - (x (i),y (i) ) R n+1,i = 1,2,...,m - jednotlivé dátové body - hypotéza (lineárny model) h(x) = θ 0 +θ 1 x 1 + +θ n x n - Minimalizuje sa funkcia n+1 premenných J(θ 0,θ 1,...,θ n ) - hypotéza (nelineárny model) - napr. h(x) = θ 0 +θ 1 x 1 +θ 2 x 1 x 2 +θ 3 x p. 9/28
10 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Na základe známych dát chceme zistit : = spam? ÁNO/NIE nádor = zhubný ÁNO/NIE internetová transakcia = podvod? ÁNO/NIE odhadovanie budúcej hodnoty v časovom rade (napr. cena aktíva) = stúpne? ÁNO/NIE p. 10/28
11 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Označme opät - m - počet dátových bodov - n - počet charakteristík - x R n - vstupné premenné - y {0,1} - výstupné premenné - (x (i),y (i) ) R n+1,i = 1,2,...,m - jednotlivé dátové body Zjednodušenie symboliky - Ak položíme x 0 1, tak vstupné premenné sú x = (x 0,x 1,...,x n ) = (1,x 1,...,x n ) R n+1 - Linéarna regresia - hypotéza h θ (x) = θ T x = θ 0 x 0 + +θ n x n p. 11/28
12 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Diagnostika nádorov: x 1 = polomer x 2 = plocha x 3 = textúra x 4 = symetria x 5 = konkávnost Rozpoznávanoe spamov: charakteristiky=slová x i = početnost i-teho slova p. 12/28
13 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Lineárna regresia: p. 13/28
14 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Lineárna regresia = naivné riešenie: p. 14/28
15 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Lineárna funkcia h θ (x) = θ T x nie je vhodná. Chceme aby hypotéza h θ mala vlastnosti: 1. 0 h θ (x) 1 2. h θ (x (i) ) 0.5 ak y (i) = 1 3. h θ (x (i) ) 0.5 ak y (i) = 0 Model - logistická regresia h θ (x) = g(θ T x) g(z) = 1 1+e z p. 15/28
16 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Interpretácia funkcie h θ (x) h θ (x) = P(y = 1 x;θ) Napr. ak x = [ x 0 x 1 ] = [ 1 velkost nadora ] a h θ (x) = znamená 70% pravdepodobnost, že nádor je zhubný. Pokial ide len o 0/1 predikciu, tak predpovedáme y = 1 h θ (x) 0.5 θ T x 0 y = 0 h θ (x) < 0.5 θ T x < 0 p. 16/28
17 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Prípad viacerých charakteristík - n 2. Máme danú testovaciu množinu {(x (1),y (1) ),(x (2),y (2) ),...,(x (m),y (m) )} p. 17/28
18 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Úloha: Nájst parametre θ separujúcej nadroviny θ T x = p. 18/28
19 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Lineárna regresia: Parametre θ sme hl adali metódou najmenších štvorcov Min { J lin (θ) = 1 m m i=1 1 2 ( h θ (x (i) ) y (i)) 2 θ R n+1 }, kde h θ (x) = θ T x (!) Ozn. C quad (h θ (x),y) = 1 2 (h θ(x) y) 2. Funkcia J lin (θ) = 1 m m C quad (h θ (x (i) ),y (i) ) i=1 je konvexná v θ. p. 19/28
20 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Logistická regresia: Teoreticky by sme mohli hl adat parametre θ analogicky: Min { J log (θ) = 1 m m i=1 1 2 } ( h θ (x (i) ) y (i)) 2 θ R n+1, ale h θ (x) = g(θ T x) (!) V tomto prípade však funkcia J log (θ) NIE JE konvexná. Funkciu C quad (h θ (x),y) = 1 2 (h θ(x) y) 2 nahradíme konvexnou funkciou C log (h θ (x),y) = { ln(h θ (x)) y = 1, ln(1 h θ (x)) y = 0. p. 20/28
21 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Prípad y = 1 Prípad y = 0 Ak h θ (x) = 1 tak C log = 0 Ak h θ (x) 0 tak C log + Ak h θ (x) = 0 tak C log = 0 Ak h θ (x) 1 tak C log + Interpretácia: ak h θ (x) = 0, tak predpovedáme P(y = 1 x;θ) = 0 hoci y = 1, tento prípad penalizujeme vel mi vel kými hodnotami C log. Analogicky penalizujeme v prípade h θ (x) = 1 a y = 0 p. 21/28
22 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Budeme teda riešit úlohu { Min J log (θ) = 1 m C log (h θ (x (i) ),y (i) ) i=1 } θ R n+1, kde C log (h θ (x),y) = { ln(h θ (x)) y = 1, ln(1 h θ (x)) y = 0 a h θ (x) = g(θ T x) p. 22/28
23 2. PRÍKLAD: Logistická regresia - binárna klasifikácia Budeme teda riešit úlohu { Min J lin (θ) = 1 m C log (h θ (x (i) ),y (i) ) i=1 } θ R n+1, kde a C log (h θ (x),y) = yln(h θ (x)) (1 y)ln(1 h θ (x)) h θ (x) = g(θ T x) p. 23/28
24 3. PRÍKLAD: Rekonštrukcia signálu signál je snímaný v pravidelných časových intervaloch a reprezentovaný nejakou funkciou závislou od času x i = x(t i ), i = 0,1,...,T predpokladá sa, že signál sa príliš nemení - x i x i+1 audio signál - jednorozmerný signál obrázky/video - viacrozmerné signály prijatý signál je obyčajne znečistený šumom v: x sum = x+v Úloha: odhadnút pôvodný signál x zo zašumeného signálu x sum (signal de-noising) Formulácia úlohy: Min { x x sum 2 +γφ(x) x R T+1} φ(x) je nejaká regularizačná funkcia p. 24/28
25 3. PRÍKLAD: Rekonštrukcia signálu Kvadratické vyhladenie Totálna varácia D = φ quad (x) = T i=0 (x i+1 x i ) 2 = Dx 2 2 φ tv (x) = T i=0 x i+1 x i = Dx RT (T+1) Ak je pôvodný signál hladký a šum sa prudko mení - φ quad (x) Ak sa skokovito menia hodnoty pôvodného signálu - φ tv (x) p. 25/28
26 3. PRÍKLAD: Rekonštrukcia signálu Kvadratické vyhladenie zašumený signál KV rekonštruovaný signál γ = 0.9 p. 26/28
27 3. PRÍKLAD: Rekonštrukcia signálu Totálna variácia zašumený signál TV rekonštruovaný signál γ = 0.9 p. 27/28
28 3. PRÍKLAD: Rekonštrukcia signálu Min { 1 2 Ax b 2 2 +λ Wx 1 x R n} b - rozmazaný m n obrázok reprezentovaný ako mn rozmerný vektor A lineárna transformácia reprezentujúca "rozmazanie" W ortogonálna matica reprezentujúca vlnkovú transformáciu (wavelet) Observed Image Reconstructed Image (lambda=0.001) p. 28/28
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Numerické metódy matematiky I
Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/52 Metódy minimalizácie funkcie jednej premennej Metódy minimalizácie funkcie jednej premennej p. 2/52 Metódy minimalizácie funkcie jednej
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.
Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
Nelineárne optimalizačné modely a metódy
Nelineárne optimalizačné modely a metódy Téma prednášky č. 8 Metódy transformujúce úlohu naviazaný extrém na úlohu na voľný extrém Prof. Ing. Michal Fendek, CSc. Katedra operačného výskumu a ekonometrie
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/34 Motivácia k metódam vol nej optimalizácie p. 2/34 Metódy na riešenie úloh typu min f 0 (x) x K R n (MP) kde K = {x R n f i (x) 0,i I, h
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi
Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Mini minimaliz acia an BUˇ Koˇ sice 2011
Mini minimalizácia Ján BUŠA Košice 2011 RECENZOVALI: Prof. RNDr. Noname, CSc. Doc. RNDr. Emanname, PhD. Prvé vydanie Za odbornú stránku učebného textu zodpovedá autor. Rukopis neprešiel redakčnou ani jazykovou
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
Základy matematickej štatistiky
1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet
TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Numerické metódy Zbierka úloh
Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia
Lineárne programovanie
Technická univerzita Fakulta elektrotechniky a informatiky Košice Lineárne programovanie Vysokoškolská učebnica Košice 2012 Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky Katedra
Príklady na precvičovanie Fourierove rady
Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...
Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Numerické metódy, pravdepodobnosť a matematická štatistika
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana
Matematická analýza pre fyzikov IV.
119 Dodatok - klasické riešenia PDR 8.1. Parciálne diferenciálne rovnice Príklady parciálnych diferenciálnych rovníc: Lalpaceova rovnica u = 0 Helmholtzova rovnica u = λu n Lineárna transportná rovnica
Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za
Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2
Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický
Reálna funkcia reálnej premennej
(ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
STREŠNÉ DOPLNKY UNI. SiLNÝ PARTNER PRE VAŠU STRECHU
Strešná krytina Palety 97 Cenník 2018 STREŠNÉ DOPLNKY UNI SiLNÝ PARTNER PRE VAŠU STRECHU POZINKOVANÝ PLECH LAMINOVANÝ PVC FÓLIOU Strešné doplnky UNI Cenník 2018 POUŽITEĽNOSŤ TOHOTO MATERIÁLU JE V MODERNEJ
DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)
Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
Obyčajné diferenciálne rovnice
(ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú
Modelovanie dynamickej podmienenej korelácie kurzov V4
Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať
Diferenciálne rovnice
Diferenciálne rovnice Juraj Tekel Katedra teoretickej fyziky a didaktiky fyziky FMFI UK Mlynska Dolina 842 48 Bratislava juraj(a)tekel(b)gmail(c)com http://fks.sk/~juro/phys_teaching.html Aktualizované
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet
Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy.
OBRAZOVÉ TRANSFORMÁCIE Motivácia na zlepšenie obrazu sa používajú frekvenčné metódy a priestorové metódy. Fourierova transformácia Jednorozmerný spojitý prípad Nech f(x je spojitá funkcia reálnej premennej
UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY
UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY VLASTNOSTI HODNOTOVEJ FUNKCIE ÚLOHY PARAMETRICKÉHO KVADRATICKÉHO PROGRAMOVANIA A ICH VYUŽITIE V OPTIMALIZÁCII PORTFÓLIA DIPLOMOVÁ
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu
Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm
CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ
CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11
Obsah Neurčitý integrál 7. Základné pojmy a vzťahy.................................. 7.. Základné neurčité integrály............................. 9.. Cvičenia..........................................3
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο
MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:
1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
C. Kontaktný fasádny zatepľovací systém
C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový
Defects in Hard-Sphere Colloidal Crystals
Defects in Hard-Sphere Colloidal Crystals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE. Ekonomická a finančná matematika DIPLOMOVÁ PRÁCA
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE Ekonomická a finančná matematika DIPLOMOVÁ PRÁCA apríl 2003, Bratislava Veronika Oláhová FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke
Vzorové príklady s riešeniami k lineárnej algebre a geometrie pre aplikovaných informatikov k písomke 23.5.26 Príklad č. Riešte sústavu Bx = r (B r) 2 3 4 2 3 4 6 8 8 2 (B r) = 6 9 2 6 3 9 2 3 4 2 3 2
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2
NUMERICKÁ MATEMATIKA ročník Fakulta matematiky, fyziky a informatiky Univerzita Komenského Contents I Úvod do problematiky numeriky II Počítačová realizácia reálnych čísel 3 III Diferenčný počet 5 IV CORDIC
Úvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
10 20 X i a i (i, j) a ij (i, j, k) X x ijk j :j i i: R I J R K L IK JL a 11 a 12... a 1J a 21 a 22... a 2J = a I1 a I2... a IJ = [ 1 1 1 2 1 3... J L 1 J L ] R I K R J K IJ K = [ 1 1 2 2... K
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
Numerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,