Matematika Funkcia viac premenných, Parciálne derivácie

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Matematika Funkcia viac premenných, Parciálne derivácie"

Transcript

1 Matematika 2-01 Funkcia viac premenných, Parciálne derivácie

2 Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x 1, x 2,, x n a Y = y 1, y 2,, y n, potom ρ X, Y = y 1 x y 2 x y n x n 2 Množina R n na ktorej je definovaná Euklidovská metrika sa nazýva n-rozmerný Euklidovský priestor E n. ρ X, Y vzdialenosť bodov X, Y Vlastnosti Euklidovskej metriky: 1. ρ X, Y 0, ρ X, Y = 0 X = Y 2. ρ X, Y = ρ Y, X 3. ρ X, Y ρ X, Z + ρ Z, Y Matematika

3 Reálna funkcia n premenných je zobrazenie f: E n R, ktoré Každému X Df E n priradí práve jedno f X R. Množinu Df nazývame definičný obor funkcie f. Množinu Hf = y R: existuje X Df, y = f X nazývame obor hodnôt funkcie f. Množina Gf = X, f X R n+1, kde X Df sa nazýva graf funkcie f. Matematika

4 Príklad 01: Zistite definičný obor funkcie f x, y = x 2 y 2 a nakreslite graf funkcie. Matematika

5 Nech X 0 εe n. Množina G X 0, r = X E n : ρ X 0, X < r sa nazýva otvorená guľa so stredomx 0 a polomerom r. Nech X 0 εe n. Množina O X 0 sa nazýva okolie bodu X 0, ak existuje G X 0, r O X 0. Množina O X 0 = O X 0 X 0 sa nazýva redukované okolie bodu X 0. Matematika

6 Nech f je funkcia n premenných. Hovoríme, že funkcia f má v bode X 0 E n limitu L ak ku každému číslu ε > 0 existuje také redukované okolie bodu O X 0, že pre všetky XεO X 0 platí: f X L < ε Matematika

7 Veta: Nech lim f X = l 1 X A lim g X = l 2 X A Potom platí: lim f X + g X = l 1 +l 2, X A lim f X g X = l 1 l 2, X A lim f X g X = l 1 l 2, X A f X = l 1, pre l g X l lim X A Matematika

8 Nech f je funkcia n premenných. Hovoríme, že funkcia f je spojitá v bode X 0 E n, ak platí: lim X X 0 f X = f X 0. Hovoríme, že funkcia f je spojitá na množine M, ak je spojitá v každom bode X M. Matematika

9 Nech f X = f x 1, x 2, x n je funkcia n premenných a bod A = a 1, a 2,, a n Df. Funkcia φ i x i = f a 1,, a i, x i, a i+1, a n sa nazýva i ta parciálna funkcia určená funkciou f a bodom A.(funkcia jednej premennej) Matematika

10 Nech má funkcia φ i x i v bode a i deriváciu. Potom táto derivácia sa nazýva parciálna derivácia v bode A podľa premennej x i a označuje sa f x i Platí: A alebo f x i A. f x i φ i x i φ i a i A = lim x i a i x i a i Matematika

11 Nech M je množina všetkých bodov X E n v ktorých existuje parciálna derivácia f X. Potom funkcia s definičným x i oborom M ktorej hodnota v bode X je f x i parciálna derivácia funkcie f podľa premennej x i. Označujeme ju f x i alebo f xi. X sa nazýva Matematika

12 Nech f je funkcia n premenných, ktorá má parciálnu deriváciu f. Ak má funkcia f. v bode parciálnu deriváciu x i x i podľa premennej x j, potom sa táto parciálna derivácia nazýva druhá parciálna derivácia (alebo parciálna derivácia druhého rádu) funkcie f podľa x i a x j v bode A. Označujeme ju 2 f x i x j A. Matematika

13 Ak 2 f x i x j X existuje vo všetkých bodoch nejakej množiny M, potom funkcia definovaná na M, ktorá v bode X M nadobúda hodnotu 2 f x i x j derivácia funkcie f podľa x i a x j. Značí sa M, sa nazýva druhá parciálna 2 f x i x j alebo f xi x j. Matematika

14 Matematickou indukciou môžeme definovať parciálne derivácie vyšších rádov: ak je definovaná parciálna derivácia k 1 f g = rádu k 1, potom x i 1 x i2 x i k 1 je parciálna derivácia funkcie f rádu k. k f = g x i 1 x i2 x i k x i Matematika

15 Veta: Ak má funkcia f druhé parciálne derivácie ktoré sú spojité v bode A, potom platí 2 f x i x j = 2 f x i x j a 2 f x j x i. 2 f x j x i, Parciálne derivácie tejto vlastnosti nazývame zámenné Matematika

16 Nech f je funkcia n premenných, ktorá má v bode A = a 1, a 2,, a n spojité parciálne derivácie 1. rádu. Potom hovoríme, že funkcia f je diferencovateľná v bode A a df A, X = σn f i=1 A x x i a i sa nazýva totálny i diferenciál (skrátene diferenciál) funkcie f v bode A. Matematika

17 Nech funkcia f x, y má v bode A = a 1, a 2 diferenciál df A, x, y. Potom rovina s rovnicou z f A = df A, x, y sa nazýva dotyková rovina grafu funkcie f v bode T = a 1, a 2, f A. Matematika

18 Nech f je funkcia n premenných, ktorá má v bode A spojité všetky parciálne derivácie rádu k. Potom hovoríme, že funkcia f je v bode k-krát diferencovateľná a výraz k f A d k n f A, X = σ i=1 x i x i a i sa nazýva k-ty diferenciál (alebo diferenciál rádu k) funkcie f v bode A. Matematika

19 Príklad: Obzvlášť dôležitý je druhý diferenciál funkcie f v bode A, ktorý má tvar: n d 2 f A, X = i,j=1 2 f x i x j A x i a i x j a j Matematika

20 Dovidenia za týždeň Matematika

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

Reálna funkcia reálnej premennej

Reálna funkcia reálnej premennej (ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet

TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

4 Reálna funkcia reálnej premennej a jej vlastnosti

4 Reálna funkcia reálnej premennej a jej vlastnosti Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický

Διαβάστε περισσότερα

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu.

7. Dokážte, že z každej nekonečnej množiny môžeme vydeliť spočítateľnú podmnožinu. Teória množín To, že medzi množinami A, B existuje bijektívne zobrazenie, budeme symbolicky označovať A B alebo A B. Vtedy hovoríme, že množiny A, B sú ekvivalentné. Hovoríme tiež, že také množiny A, B

Διαβάστε περισσότερα

Mini minimaliz acia an BUˇ Koˇ sice 2011

Mini minimaliz acia an BUˇ Koˇ sice 2011 Mini minimalizácia Ján BUŠA Košice 2011 RECENZOVALI: Prof. RNDr. Noname, CSc. Doc. RNDr. Emanname, PhD. Prvé vydanie Za odbornú stránku učebného textu zodpovedá autor. Rukopis neprešiel redakčnou ani jazykovou

Διαβάστε περισσότερα

Obyčajné diferenciálne rovnice

Obyčajné diferenciálne rovnice (ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy

Διαβάστε περισσότερα

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus

Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus 1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových

Διαβάστε περισσότερα

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin

2. prednáška. Teória množín I. množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin 2. prednáška Teória množín I množina operácie nad množinami množinová algebra mohutnosť a enumerácia karteziánsky súčin Verzia: 27. 9. 2009 Priesvtika: 1 Definícia množiny Koncepcia množiny patrí medzi

Διαβάστε περισσότερα

Goniometrické funkcie

Goniometrické funkcie Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej

Διαβάστε περισσότερα

Príklady na precvičovanie Fourierove rady

Príklady na precvičovanie Fourierove rady Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru

Διαβάστε περισσότερα

Planárne a rovinné grafy

Planárne a rovinné grafy Planárne a rovinné grafy Definícia Graf G sa nazýva planárny, ak existuje jeho nakreslenie D, v ktorom sa žiadne dve hrany nepretínajú. D sa potom nazýva rovinný graf. Planárne a rovinné grafy Definícia

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

FUNKCIE. Funkcia základné pojmy. Graf funkcie

FUNKCIE. Funkcia základné pojmy. Graf funkcie FUNKCIE Funkcia základné pojm. Graf funkcie V prai sa často stretávame so skúmaním závislosti veľkosti niektorých veličín od veľkosti iných veličín, napríklad dĺžka kružnice l závisí od jej priemeru d

Διαβάστε περισσότερα

TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre

TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:

Διαβάστε περισσότερα

16. Základne rovinné útvary kružnica a kruh

16. Základne rovinné útvary kružnica a kruh 16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

viacrozmerných a nekonečnorozmerných priestoroch. A ako nasvedčuje jej názov, pôjde o rovnice nelineárne.

viacrozmerných a nekonečnorozmerných priestoroch. A ako nasvedčuje jej názov, pôjde o rovnice nelineárne. Nelineárna analýza 1. Úvod Na začiatok by bolo načim ako-tak vymedzit, čím sa nelineárna analýza zaoberá. Čitatel by už mal však mat dostatok skúseností, aby vedel, že je to dost t ažké u l ubovol nej

Διαβάστε περισσότερα

Funkcie komplexnej premennej

Funkcie komplexnej premennej (prezentácia k prednáške FKP/10) doc. RNDr., PhD. 1 1 ondrej.hutnik@upjs.sk umv.science.upjs.sk/analyza Prednáška 1 16. februára 2016 Podmienky Obsah nepovinná účast (!prelínanie prednášok a cvičení!)

Διαβάστε περισσότερα

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov

ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

Spojitosť a limity trochu inak

Spojitosť a limity trochu inak Spojitosť a limity trochu inak Štefan Tkačik Abstrakt Spojitosť funkcie alebo oblastí je základným stavebným kameňom matematickej analýzy. Pochopenie jej podstaty uľahčí chápanie diferenciálneho a integrálneho

Διαβάστε περισσότερα

Matematika 1 Elementárny kalkulus

Matematika 1 Elementárny kalkulus Matematika Elementárny kalkulus Úvod Prehl ad. Tieto poznámky obsahujú podklady k prednáške Matematika na špecializácii Aplikovaná informatika: jedná sa o 2 dvojhodinových prednášok doplnených dvojhodinovými

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

MATEMATIKA I ZBIERKA ÚLOH

MATEMATIKA I ZBIERKA ÚLOH TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA

Διαβάστε περισσότερα

BANACHOVE A HILBERTOVE PRIESTORY

BANACHOVE A HILBERTOVE PRIESTORY BANACHOVE A HILBERTOVE PRIESTORY 1. ZÁKLADNÉ POJMY Normovaným lineárnym priestorom (NLP) nazývame lineárny (= vektorový) priestor X nad telesom IK, na ktorom je daná nezáporná reálna funkcia : X IR + (norma)

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Kapitola K2 Plochy 1

Kapitola K2 Plochy 1 Kapitola K2 Plochy 1 Plocha je množina bodov v priestore, ktorá vznikne spojitým pohybom čiary u, ktorá nie je dráhou tohto pohybu, pričom tvar čiary u sa počas pohybu môže meniť. Čiara u sa nazýva tvoriaca

Διαβάστε περισσότερα

Diferenciálny a integrálny počet funkcií viac premenných v príkladoch

Diferenciálny a integrálny počet funkcií viac premenných v príkladoch Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Diferenciálny a integrálny počet funkcií viac premenných v príkladoch Martin Kollár, L ubica Kossaczká a Daniel Ševčovič Vysokoškolský

Διαβάστε περισσότερα

MATEMATIKA II ZBIERKA ÚLOH

MATEMATIKA II ZBIERKA ÚLOH TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA KATEDRA MATEMATIKY A DESKRIPTÍVNEJ GEOMETRIE RNDr. Pavol PURCZ, PhD. RNDr. Martina RÉVAYOVÁ MATEMATIKA II ZBIERKA ÚLOH KOŠICE 6 Copyright c 6, RNDr. Pavol

Διαβάστε περισσότερα

Tomáš Madaras Prvočísla

Tomáš Madaras Prvočísla Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,

Διαβάστε περισσότερα

Vektorové a skalárne polia

Vektorové a skalárne polia Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá

Διαβάστε περισσότερα

Súradnicová sústava (karteziánska)

Súradnicová sústava (karteziánska) Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme

Διαβάστε περισσότερα

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák

Prednáška Fourierove rady. Matematická analýza pre fyzikov IV. Jozef Kise lák Prednáška 6 6.1. Fourierove rady Základná myšlienka: Nech x Haφ 1,φ 2,...,φ n,... je ortonormálny systém v H, dá sa tento prvok rozvinút do radu x=c 1 φ 1 + c 2 φ 2 +...,c n φ n +...? Ako nájdeme c i,

Διαβάστε περισσότερα

Fakulta riadenia a informatiky Žilinskej univerzity

Fakulta riadenia a informatiky Žilinskej univerzity Fakulta riadenia a informatik Žilinskej univerzit Riaditeľ siete stravovacích zariadení dal pokn, že do každej reštaurácie, v ktorej stúpne počet hostí o viac ako 3 %, musia prijať najmenej dvoch nových

Διαβάστε περισσότερα

x x x2 n

x x x2 n Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol

Διαβάστε περισσότερα

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií

Derivácia funkcie. Pravidlá derivovania výrazov obsahujúcich operácie. Derivácie elementárnych funkcií Derivácia funkcie Derivácia funkcie je jeden z najužitočnejších nástrojov, ktoré používame v matematike a jej aplikáciách v ďalších odboroch. Stručne zhrnieme základné informácie o deriváciách. Podrobnejšie

Διαβάστε περισσότερα

Ohraničenosť funkcie

Ohraničenosť funkcie VaFu05-T List Ohraničenosť funkcie RNDr. Beáta Vavrinčíková U: V bežnom živote sa často stretávame s funkciami, ktorých hodnot sú určitým spôsobom obmedzené buď na celom definičnom obore D alebo len na

Διαβάστε περισσότερα

Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi

Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Hľadanie, skúmanie a hodnotenie súvislosti medzi znakmi Typy súvislostí javov a vecí: nepodstatné - vonkajšia súvislosť nevyplýva z vnútornej potreby (javy spoločne vznikajú, majú zhodný priebeh, alebo

Διαβάστε περισσότερα

stereometria - študuje geometrické útvary v priestore.

stereometria - študuje geometrické útvary v priestore. Geometria Geometria (z gréckych slov Geo = zem a metro = miera, t.j. zememeračstvo) je disciplína matematiky prvýkrát spopularizovaná medzi starovekými grékmi Tálesom (okolo 624-547 pred Kr.), ktorý sa

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Fakulta riadenia a informatiky Žilinskej univerzity

Fakulta riadenia a informatiky Žilinskej univerzity Poznámka k úlohám o funkciách: Ak nie je uvedené inak, je definičným oborom funkcie množina všetkých reálnych čísel, pre ktoré výraz definujúci funkciu má zmysel. 0 Ktorá z nasledujúcich funkcií nie je

Διαβάστε περισσότερα

9. kapitola. Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika. priesvitka

9. kapitola. Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika. priesvitka 9. kapitola Viachodnotové logiky trojhodnotová Łukasiewiczova logika a Zadehova fuzzy logika 1 Úvodné poznámky o viachodnotových logikách V klasickej logike existujú prípady, keď dichotomický pravdivostný

Διαβάστε περισσότερα

1.1 Zobrazenia a funkcie

1.1 Zobrazenia a funkcie 1 Teória vypočítateľnosti poznámky z prednášky #1 1.1 Zobrazenia a funkcie Definícia. Čiastočné (totálne) zobrazenie trojice (A, B, f) pre ktoré platí: f A B Ku každému vstupu a A existuje najviac jeden

Διαβάστε περισσότερα

VaFu18-T List 1. Mocninové funkcie. RNDr. Beáta Vavrinčíková

VaFu18-T List 1. Mocninové funkcie. RNDr. Beáta Vavrinčíková VaFu8-T List Mocninové funkcie RNDr. Beáta Vavrinčíková U: V tejto téme sa budeme zaoberať jednou celou skupinou funkcií. Pripomeňme si, že funkcia popisuje určitú závislosť medzi dvoma veličinami. Na

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

MATEMATICKÁ ANALÝZA 1

MATEMATICKÁ ANALÝZA 1 UNIVERZITA PAVLA JOZEFA ŠAFÁRIKA V KOŠICIACH Prírodovedecká fakulta Ústav matematických vied Božena Mihalíková, Ján Ohriska MATEMATICKÁ ANALÝZA Vysokoškolský učebný text Košice, 202 202 doc. RNDr. Božena

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

Učebný zdroj pre žiakov z predmetu Matematika

Učebný zdroj pre žiakov z predmetu Matematika STREDNÁ ODBORNÁ ŠKOLA Komenského 6, 08 7 Lipany Učebný zdroj pre žiakov z predmetu Matematika Odbor: Kozmetik a Pracovník marketingu Autorka: PaedDr. Iveta Štefančínová, Ph.D. Moderné vzdelávanie pre vedomostnú

Διαβάστε περισσότερα

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b

VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený

Διαβάστε περισσότερα

Kapitola III. FUNKCIE

Kapitola III. FUNKCIE Kapiola III. FUNKCIE DEFINÍCIA FUNKCIE Úvahy v omo odseku zanime preskúmaním dvoch známych vzorcov. Príklad. a) s = g b) P = πr Vzorec a) je dobre známy vzah pre voný pád udávajúci závislos prejdenej dráhy

Διαβάστε περισσότερα

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17

1 Polynómy a racionálne funkcie Základy Polynómy Cvičenia Racionálne funkcie... 17 Obsah 1 Polynómy a racionálne funkcie 3 11 Základy 3 1 Polynómy 7 11 Cvičenia 13 13 Racionálne funkcie 17 131 Cvičenia 19 Lineárna algebra 3 1 Matice 3 11 Matice - základné vlastnosti 3 1 Cvičenia 6 Sústavy

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG

množiny F G = {t1, t2,, tn} T a pre ľubovoľný valec C so základňou B1, B2,, Bn v bodoch t1, t2,, tn, takou, že pre t G - F je Bt = E, platí PF(C) = PG STOCHASTICKÝ PROCES Definícia stochastického procesu Definícia 1 Nech (Ω, F, P) je pravdepodobnostný priestor a nech T je podmnožina R. Pre každé t T nech X(t, ω) je náhodná premenná definovaná na pravdepodobnostnom

Διαβάστε περισσότερα

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY MINIMAXNÉ OPTIMÁLNE NÁVRHY REGRESNÝCH EXPERIMENTOV DIPLOMOVÁ PRÁCA 2014 Bc. Gabriel GROMAN UNIVERZITA KOMENSKÉHO V BRATISLAVE

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3

1 Úvod Predhovor Sylaby a literatúra Základné označenia... 3 Obsah 1 Úvod 3 1.1 Predhovor...................................... 3 1.2 Sylaby a literatúra................................. 3 1.3 Základné označenia................................. 3 2 Množiny a zobrazenia

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

Logické systémy. doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD.

Logické systémy. doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD. Logické systémy doc. RNDr. Jana Galanová, PhD. RNDr. Peter Kaprálik, PhD. Mgr. Marcel Polakovič, PhD. KAPITOLA 1 Úvodné pojmy V tejto časti uvádzame základné pojmy, prevažne z diskrétnej matematiky, ktoré

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

primitívnoufunkcioukfukncii f(x)=xnamnožinereálnychčísel.avšakaj 2 +1 = x, tedaajfunkcia x2

primitívnoufunkcioukfukncii f(x)=xnamnožinereálnychčísel.avšakaj 2 +1 = x, tedaajfunkcia x2 Neurčitý integrál. Primitívna funkcia a neurčitý integrál Funkcia F(x)sanazývaprimitívnoufunkcioukfunkcii f(x)naintervale(a,b),akpre každé x (a,b)platí F (x)=f(x). Z definície vidíme, že pojem primitívnej

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Základy matematickej štatistiky

Základy matematickej štatistiky 1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov

Διαβάστε περισσότερα

Analytická geometria

Analytická geometria Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je

Διαβάστε περισσότερα

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol

ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov

Διαβάστε περισσότερα

VaFu02-T List 1. Graf funkcie. RNDr. Beáta Vavrinčíková

VaFu02-T List 1. Graf funkcie. RNDr. Beáta Vavrinčíková VaFu0-T List Graf funkcie RNDr. Beáta Vavrinčíková U: Vieme, že funkcia vjadruje určitú závislosť medzi dvoma veličinami. Akým spôsobom b mohla bť funkcia zadaná? Ž: Stretol som sa najmä srovnicami, napríklad

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

1-MAT-220 Algebra februára 2012

1-MAT-220 Algebra februára 2012 1-MAT-220 Algebra 1 12. februára 2012 Obsah 1 Grupy 3 1.1 Binárne operácie.................................. 3 1.2 Cayleyho veta.................................... 3 2 Faktorizácia 5 2.1 Relácie ekvivalencie

Διαβάστε περισσότερα

Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11

Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11 Obsah Neurčitý integrál 7. Základné pojmy a vzťahy.................................. 7.. Základné neurčité integrály............................. 9.. Cvičenia..........................................3

Διαβάστε περισσότερα

STREDOŠKOLSKÁ MATEMATIKA

STREDOŠKOLSKÁ MATEMATIKA TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY KATEDRA MATEMATIKY A TEORETICKEJ INFORMATIKY STREDOŠKOLSKÁ MATEMATIKA pre študentov FEI TU v Košiciach Ján BUŠA Štefan SCHRÖTTER Košice

Διαβάστε περισσότερα

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú Pomocný text Číselné obory Číselné obory Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú ľudia začali vnímať. Abstrakcia spočívala v tom, že množstvo, ktoré sa snažili

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Matematika 1. (prednáška pre 1. roč. iai) V. Balek

Matematika 1. (prednáška pre 1. roč. iai) V. Balek Matematika prednáška pre. roč. iai) V. Balek . Definícia derivácie Č o j e t o m a t e m a t i c k á a n a l ý z a? Matematická analýza je náuka o deriváciach diferenciáln počet) a integráloch integráln

Διαβάστε περισσότερα

Eulerovské grafy. Príklad Daný graf nie je eulerovský, ale obsahuje eulerovskú cestu (a, ab, b, bc, c, cd, d, da, a, ac, c, ce, e, ed, d, db).

Eulerovské grafy. Príklad Daný graf nie je eulerovský, ale obsahuje eulerovskú cestu (a, ab, b, bc, c, cd, d, da, a, ac, c, ce, e, ed, d, db). Eulerovské grafy Denícia Nech G = (V, E) je graf. Uzavretý ah v G sa nazýva eulerovská kruºnica, ak obsahuje v²etky hrany G. Otvorený ah obsahujúci v²etky hrany grafu sa nazýva eulerovská cesta. Graf sa

Διαβάστε περισσότερα