Riešenie rovníc s aplikáciou na elektrické obvody
|
|
- Ζένια Ταρσούλη
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Zadanie č.1 Riešenie rovníc s aplikáciou na elektrické obvody Nasledujúce uvedené poznatky z oblasti riešenia elektrických obvodov pomocou metódy slučkových prúdov a uzlových napätí je potrebné využiť pri riešení zadania č. 1. Vzorové zadanie číslo 1 sa nachádza nižšie. Metóda slučkových prúdov je založená na poznatku, že prúdy vo vetvách stromu grafu sú jednoznačne určené prúdmi v nezávislých vetvách grafu spočíva v aplikácii 2. Kirchhoffovho zákona na všetky základné slučky grafu za predpokladu, že nimi tečie fiktívny, tzv. slučkový prúd, čím získame podmienkové rovnice pre daný obvod. Postup 1. Zvolíme si smery slučkových prúdov v jednotlivých slučkách, smery napätia na zdrojoch a prúdy pretekajúce rezistormi. R I 1 1 s3 s1 R2 I5 R I 2 U1 R5 s2 I3 3 U2 R4 2. I4 Zistíme či sa v niektorej vetve nenachádza prúdový zdroj, potom sa hodnota slučkového prúdu bude rovnať prúdu zdroja s kladným alebo záporným znamienkom závisiacim od orientácie týchto prúdov. R4 I2 S3 R4 R5 Is1 = I2 I2 S3 R5 Is1 = -I2 3. Rovnice zostavujeme nasledovne: slučkovým prúdom danej slučky vynásobíme súčet odporov danej slučky, ak niektorý rezistor susedí s ďalšími slučkami, potom odčítame ich súčin (odporu a slučkového prúdu), a nakoniec ak sa nachádza v slučke aj napäťový zdroj pričítame ho s kladným alebo záporným znamienkom podľa jeho smeru prúdenia.
2 4. Za jednotlivé odpory a napätia a prúdy zdrojov dosadíme ich hodnoty a zapíšeme do rozšírenej matice (prúdy, ktoré sme dostali v 2.bode už do tejto matice nezapisujeme), z ktorej vypočítame hodnoty zvyšných slučkových prúdov. Konštanty dávame na pravú stranu matice. Ak sme zostavili rovnice správne matica by mala byť zrkadlová vzhľadom na hlavnú diagonálu. 5. Vytvoríme si podmienkové rovnice, z ktorých dostaneme konkrétne prúdy na jednotlivých rezistoroch. Metóda uzlových napätí je založená na poznatku, že napätia na nezávislých vetvách grafu sú jednoznačne určené napätiami na vetvách stromu grafu. spočíva v aplikácii 1. Kirchhoffovho zákona na všetky nezávislé uzly grafu za predpokladu, že na vetvách stromu grafu sú fiktívne, tzv. uzlové napätia, čím získame podmienkové rovnice pre daný obvod 1. Zvolíme si smery napätia na zdrojoch, prúdy pretekajúce odpormi a refernenčný uzola označíme si aj zvyšné uzly. 0 U u1 R 1 I 1 R 2 U u2 R Rovnice pre metódu uzlového napätia tvoríme nasledovne: pre každý uzol okrem referenčného vytvoríme rovnicu tak, že napätie od uzla vynásobíme súčtom prevrátených hodnôt odporov na prislúchajúcich vetvách a od toho odčítame súčin napätí a prevrátených hodnôt z susedných uzlov. Nakoniec ešte pričítame súčin napätia na napäťovom zdroji a súčet prevrátených hodnôt na spoločnej vetve. Vo vetva s ideálnym napäťovým zdrojom je uzlové napätie rovné napätiu na zdroji. 0 I 4 U u1 R 1 I 1 R 2 U u2 R 3 1 2
3 3. Zo zostavených rovníc zostavíme rozšírenú maticu dosadením za odpory a známe napätia ich hodnoty. Konštanty dávame na pravú stranu matice. Ak sme správne zostavili rovnice mala by byť matica zrkadlová vzhľadom na hlavnú diagonálu. 4. Vypočítaním matice dostaneme hodnoty uzlových napätí z ktorých si následne vytvoríme podmienkové rovnice pre výpočet jednotlivých prúdov. ZADANIE: Z navrhnutej topológie elektrického obvodu vypočítajte prúdy vo vetvách metódou slučkových prúdov (MSP) a metódou uzlových napätí (MUN). OBSAH ZADANIA: 1. Topológia obvodu, analytický výpočet pre obidve metódy a skúška správnosti. 2. Riešenie v programovom prostredí MATLAB s využitím funkcií (MSP a MUN). [minimálne požiadavky na elektrický obvod: 3 slučky, 5 rezistorov, 2 zdroje] ÚLOHA: Vyrieš zadaný obvod pomocou metódy slučkových prúdov a uzlových napätí a vytvor v programovom prostredí MATLAB program pre výpočet prúdov tohto obvodu. R 1 =2Ω U 1 =10 V R 1 R 2 R 3 R 2 =3Ω U 2 =10 V R 3 =2Ω =3Ω =2Ω 1.a) Slučkové prúdy S1: S2: S3: R 1 R 2 R 3 I1 s 3 s 1 U 1 s 2 U 2 I 4
4 Zo získaných rovníc vieme zostaviť maticu odporov, ktorá má tvar:. => => 1.b) Uzlové napätie 0 1: U u1 2: R 1 I 1 R 2 U u2 R 3 Zo získaných rovníc zostavíme maticu odporov: 1 2 I 4 => => otázka prečo vyšli aj záporné prúdy? Pre jednotlivé výpočty si vytvoríme samostatné funkcie a pre hlavný program vytvoríme skript, v ktorom naše vytvorené funkcie použijeme. Metóda pre výpočet slučkových prúdov a prúdov v jednotlivých vetvách MSP.m function I= MSP(U,R) % Funkcia pre výpočet metódou slučkových prúdov % vytvorte maticu A, ktorá bude obsahovať hodnoty ľavých strán rovníc A = [R(1)+R(2) -R(2) 0; -R(2) R(2)+R(3)+R(4) -R(3); 0 -R(3) R(3)+R(5)] % vytvorte maticu B, ktorá bude obsahovať hodnoty pravých strán rovníc B = [ - U(1); 0; - U(2)] %výpočet uzlových napätí realizujte ľavým delením IS = A\B
5 %dopočítajte zvyšné hodnoty prúdov I(1) = -IS(1); I(2) = IS(1) - IS(2); I(3) = IS(3) - IS(2); I(4) = -IS(2); I(5) = - IS(3); Metóda výpočtu uzlových napätí a prúdov v jednotlivých vetvách MUN.m function I=MUN(U,R) %metóda uzlových napätí %vytvorte maticu A, ktorá bude obsahovať hodnoty ľavých strán rovníc A = [(1/R(1)+1/R(2)+1/R(4)) -1/R(4); -1/R(4) (1/R(3)+1/R(4)+1/R(5)) ] %vytvorte maticu B, ktorá bude obsahovať hodnoty pravých strán rovníc B = [ U(1)*(1/R(1)); -U(2)*(1/R(5))] % výpočet uzlových napätí realizujte ľavým delením Uu = A\B %dopočítajte zvyšné hodnoty prúdov I(1) = (U(1)-Uu(1))/R(1); I(2) = Uu(1)/R(2); I(3) = Uu(2)/R(3); I(4) = (Uu(1)-Uu(2))/R(4); I(5) = (Uu(2)+U(2))/R(5); Skúška správnosti výpočtu skuska.m function skuska(i) if I(1)-I(2)-I(4)<1e-6 if I(4)+I(3)-I(5)<1e-6 if I(2)-I(1)-I(3)+I(5)<1e-6 disp('prúdy vo všetkých vetvách vyhovujú 1.KZ.') else disp('prúdy vo všetkých vetvách nevyhovujú 1KZ. ') end else disp('prúdy vo všetkých vetvách nevyhovujú 1KZ. ') end else disp('prúdy vo všetkých vetvách nevyhovujú 1KZ. ') end Prečo nie je možné v Matlab-e porovnávať s 0?
6 Hlavný program načítanie hodnôt odporov a napätí a použitie nami vytvoreních funkcií MUN a MSP hl_prog.m % zadávanie hodnôt odporov R1 = input ('Zadaj hodnotu R1 = '); R2 = input ('Zadaj hodnotu R2 = '); R3 = input ('Zadaj hodnotu R3 = '); R4 = input ('Zadaj hodnotu R4 = '); R5 = input ('Zadaj hodnotu R5 = '); disp('************************************************************') % zadávanie hodnôt prúdov U1 = input ('Zadaj hodnotu napäťového zdroja U1 = '); U2 = input ('Zadaj hodnotu napäťového zdroja U2 = '); disp('************************************************************') disp('') disp('') R = [R1, R2, R3, R4, R5 ]; U = [U1, U2 ]; disp ('metoda sluckovych prudov') I=MSP(U,R) disp('****************skúška******************') skuska(i) disp('************************************************************') disp('metoda uzlovych napati') I=MUN(U,R) disp('****************skúška******************') skuska(i)
Riešenie úloh v simulačnom jazyku MATLAB s využitím skriptov a funkcií
Riešenie úloh vsimulačnom využitím skriptov s.m, ktorý slúži na ukladanie postupnosti, alebo na ukladanie užívateľských funkcií. Využívajú sa predovšetkým vtedy, keď je potrebné zadať väčšie množstvo príkazov,
Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave
iešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave Lineárne elektrické obvody s jednosmernými zdrojmi a rezistormi v ustálenom stave riešime (určujeme prúdy
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
1. VZNIK ELEKTRICKÉHO PRÚDU
ELEKTRICKÝ PRÚD 1. VZNIK ELEKTRICKÉHO PRÚDU ELEKTRICKÝ PRÚD - Je usporiadaný pohyb voľných častíc s elektrickým nábojom. Podmienkou vzniku elektrického prúdu v látke je: prítomnosť voľných častíc s elektrickým
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
RIEŠENIE WHEATSONOVHO MOSTÍKA
SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:
1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Princípy platné v elektrických obvodoch.
Kapitola 5 Princípy platné v elektrických obvodoch. 5.1 Pricíp superpozície. Princíp superpozície je užitočný pri hľadaní riešenia v lineárnych obvodoch, ktoré obsahujú dva a viac zdrojov. Môžeme ho vyjadriť
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.7 Vzdelávacia
Meranie na jednofázovom transformátore
Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.
Laboratórna práca č.1 Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Zapojenie potenciometra Zapojenie reostatu 1 Zapojenie ampémetra a voltmetra
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
v d v. t Obrázok 14.1: Pohyb nabitých častíc vo vodiči.
219 14 Elektrický prúd V predchádzajúcej kapitole Elektrické pole sme preberali elektrostatické polia nábojov, ktoré boli v pokoji. V tejto kapitole sa budeme zaoberať pohybom elektrických nábojov, ktorý
REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických
REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Otáčky jednosmerného motora
Otáčky jednosmerného motora ZADANIE: Uvažujte fyzikálno - matematický model dynamického systému, ktorý je popísaný lineárnou diferenciálnou rovnicou (LDR) 2. a vyššieho rádu. ÚLOHA: Navrhnite m-file v
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
Obr. 4.1: Paralelne zapojené napäťové zdroje. u 1 + u 2 =0,
Kapitola 4 Zdroje. 4.1 Radenie napäťových zdrojov. Uvažujme dvojicu ideálnych zdrojov napätia zapojených paralelne(obr. 4.1). Obr. 4.1: Paralelne zapojené napäťové zdroje. Napíšme rovnicu 2. Kirchhoffovho
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Ohmov zákon pre uzavretý elektrický obvod
Ohmov zákon pre uzavretý elektrický obvod Fyzikálny princíp: Každý reálny zdroj napätia (batéria, akumulátor) môžeme považova za sériovú kombináciu ideálneho zdroja s elektromotorickým napätím U e a vnútorným
Numerické metódy Zbierka úloh
Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia
Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003
Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium
Úvod do lineárnej algebry
Katedra matematiky Fakulta elektrotechniky a informatiky Technická Univerzita v Košiciach Úvod do lineárnej algebry Monika Molnárová, Helena Myšková 005 RECENZOVALI: RNDr. Štefan Schrötter, CSc. RNDr.
STRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
Elektrický prúd v kovoch
Vznik jednosmerného prúdu: Elektrický prúd v kovoch. Usporiadaný pohyb voľných častíc s elektrickým nábojom sa nazýva elektrický prúd. Podmienkou vzniku elektrického prúdu v látke je prítomnosť voľných
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Elektrický prúd v kovoch
Elektrický prúd v kovoch 1. Aký náboj prejde prierezom vodiča za 2 h, ak ním tečie stály prúd 20 ma? [144 C] 2. Prierezom vodorovného vodiča prejde za 1 s usmerneným pohybom 1 000 elektrónov smerom doľava.
1. laboratórne cvičenie
1. laboratórne cvičenie Téma: Úlohy: Určenie povrchového napätia kvapaliny 1. Určiť povrchové napätie vody pomocou kapilárnej elevácie 2. Určiť povrchové napätie vody porovnávacou metódou 3. Opísať zaujímavý
Model redistribúcie krvi
.xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele
UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia
Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach
Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan
1.4 Rovnice, nerovnice a ich sústavy
1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre
TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"
M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu
1. Určenie VA charakteristiky kovového vodiča
Laboratórne cvičenia podporované počítačom V charakteristika vodiča a polovodičovej diódy 1 Meno:...Škola:...Trieda:...Dátum:... 1. Určenie V charakteristiky kovového vodiča Fyzikálny princíp: Elektrický
Transformátory 1. Obr. 1 Dvojvinuťový transformátor. Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice:
Transformátory 1 TRANSFORÁTORY Obr. 1 Dvojvinuťový transformátor Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice: u d dt Φ Φ N i R d = Φ Φ N i R (1) dt 1 = ( 0+ 1) 1+
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
ELEKTROTECHNICKÉ PRAKTIKUM (Návody na cvičenia)
TECHNCKÁ NVEZTA V KOŠCACH FAKLTA ELEKTOTECHNKY A NFOMATKY Katedra teoretickej elektrotechniky a elektrického merania Miroslav Mojžiš Ján Molnár ELEKTOTECHNCKÉ PAKTKM (Návody na cvičenia) Košice 009 Miroslav
Numerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
Faculty of Mathematics, Physics and Informatics Comenius University Bratislava. NumDif
Numerické riešenie diferenciálnych rovníc Jela Babušíková Faculty of Mathematics, Physics and Informatics Comenius University Bratislava Klasifikácia diferenciálnych rovníc: obyčajné - počiatočná a okrajová
Riešenie sústavy lineárnych rovníc. Priame metódy.
Riešenie sústavy lineárnych rovníc. Priame metódy. Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Priame metódy 1/16 Obsah 1 Základy 2 Systémy
Goniometrické rovnice riešené substitúciou
Ma-Go-10-T List 1 Goniometrické rovnice riešené substitúciou RNDr. Marián Macko U: Okrem základných goniometrických rovníc, ktorým sme sa už venovali, existujú aj zložitejšie goniometrické rovnice. Metódy
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
PRINCÍPY MERANIA MALÝCH/VEĽKÝCH ODPOROV Z HĽADISKA POTREBY REVÍZNEHO TECHNIKA
XX. Odborný seminár PNCÍPY MEN MLÝCH/EĽKÝCH ODPOO Z HĽDSK POTEBY EÍZNEHO TECHNK 74 ýchova a vzdelávanie elektrotechnikov Doc. ng. Ľubomír NDÁŠ, PhD., Doc. ng. Ľuboš NTOŠK, PhD., katedra Elektroniky/OS
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
Obsah. 1.1 Základné pojmy a vzťahy Základné neurčité integrály Cvičenia Výsledky... 11
Obsah Neurčitý integrál 7. Základné pojmy a vzťahy.................................. 7.. Základné neurčité integrály............................. 9.. Cvičenia..........................................3
Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP
Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP 7 Obsah Analýza poruchových stavov pri skrate na sekundárnej strane transformátora... Nastavenie parametrov prvkov
Základné pojmy v elektrických obvodoch.
Kapitola Základné pojmy v elektrických obvodoch.. Elektrické napätie a elektrický prúd. Majmenáboj Q,ktorýsanachádzavelektrickompolicharakterizovanomvektoromjehointenzity E.Na takýtonábojpôsobísilapoľa
3. Meranie indukčnosti
3. Meranie indukčnosti Vlastná indukčnosť pasívna elektrická veličina charakterizujúca vlastnú indukciu, symbol, jednotka v SI Henry, symbol jednotky H, základná vlastnosť cievok. V cievke, v ktorej sa
2 Kombinacie serioveho a paralelneho zapojenia
2 Kombinacie serioveho a paralelneho zapojenia Priklad 1. Ak dva odpory zapojim seriovo, dostanem odpor 9 Ω, ak paralelne dostnem odpor 2 Ω. Ake su tieto odpory? Priklad 2. Z drotu postavime postavime
UČEBNÉ TEXTY. Pracovný zošit č.8. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.8 Vzdelávacia
Vlastnosti regulátorov pri spätnoväzbovom riadení procesov
Kapitola 8 Vlastnosti regulátorov pri spätnoväzbovom riadení procesov Cieľom cvičenia je sledovať vplyv P, I a D zložky PID regulátora na dynamické vlastnosti uzavretého regulačného obvodu (URO). 8. Prehľad
Cvičenia z elektrotechniky I
STREDNÁ PRIEMYSELNÁ ŠKOLA ELEKTROTECHNICKÁ Plzenská 1, 080 47 Prešov tel.: 051/7725 567 fax: 051/7732 344 spse@spse-po.sk www.spse-po.sk Cvičenia z elektrotechniky I Ing. Jozef Harangozo Ing. Mária Sláviková
Základné vzťahy medzi hodnotami goniometrických funkcií
Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium
Technicá univerzita v Košiciach FAKLTA ELEKTROTECHKY A FORMATKY Katedra eletrotechniy a mechatroniy MERAE A TRASFORMÁTORE Eletricé stroje / Externé štúdium Meno :........ Supina :...... Šolsý ro :.......
UČEBNÉ TEXTY. Pracovný zošit č.2. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.2 Vzdelávacia
UČEBNÉ TEXTY. Pracovný zošit č. 11. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková
Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č. 11
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014
Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
Úloha č. 8: Meranie výkonu v 3-fázovom obvode
Úloha č. 8: Meranie výkonu v 3-fázovom obvode Zadanie: ) Zmerajte činný výkon impedančnej záťaže v 3f striedavom obvode metódou 3 W- metrov. 2) Zmerajte činný výkon impedančnej záťaže v 3f striedavom obvode
Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.
Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií
R//L//C, L//C, (R-L)//C, L//(R-C), (R-L)//(R-C
halani, asi sa vám toho bude zdať veľa, ale keďže sa dlho neuvidíme, tak aby ste si na mňa spomenuli. A to je len začiatok!!! Takže hor sa študovať ;)..Janka 7. ezonančné obvody Sériový obvod:-- Môže sa
Numerické metódy matematiky I
Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Pasívne prvky. Zadanie:
Pasívne prvky Zadanie:. a) rčte typy predložených rezistorov a kondenzátorov a vypíšte z katalógu ich základné parametre. b) Zmerajte hodnoty odporu rezistorov a hodnotu kapacity kondenzátorov. c) Vypočítajte
1. OBVODY JEDNOSMERNÉHO PRÚDU. (Aktualizované )
. OVODY JEDNOSMENÉHO PÚDU. (ktualizované 7..005) Príklad č..: Vypočítajte hodnotu odporu p tak, aby merací systém S ukazoval plnú výchylku pri V. p=? V Ω, V S Príklad č..: ký bude stratový výkon vedenia?
MATEMATIKA I ZBIERKA ÚLOH
TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
PODMIENKY NA ÚSEŠNÉ ABSOLVOVANIE PREDMETU: TE1
PODMIENKY NA ÚSEŠNÉ ABSOLVOVANIE PREDMETU: TE1 Predpokladaný časový rozvrh vyučovania podľa osnov predmetu Vyučovanie tém predmetu TE1 podľa osnov predmetu v plnom rozsahu podľa platného rozvrhu na semester.
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
OTÁZKY SKÚŠKA z TE 2
OTÁZKY SKÚŠKA z TE 2 1. Elektrické obvody s periodickými neharmonickými veličinami a) vymenujte všetky možnosti pôvodu periodickej neharmonickej časovej závislosti obvodových veličín; b) uveďte všetky