ARMA modely čast 2: moving average modely (MA)
|
|
- Παρθενορή Βουγιουκλάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25
2 V. Moving average proces prvého rádu - MA(1) ARMA modely časť 2: moving average modely(ma) p.2/25
3 Simulované dáta z minulej prednášky AR(p) proces - ACF rýchlo klesá (monotónne alebo oscilujúco), PACF sa po p hodnotách rovná nule tu je to v podstate naopak nebude to AR proces ARMA modely časť 2: moving average modely(ma) p.3/25
4 Reálne dáta s podobnou ACF Ben Vogelvang: Econometrics. Theory and Applications with EViews. Pearson Education Limited, Chapter The Box-Jenkins Approach in Practice Mesačné dáta, január september 2002 pcocoa t - cena kakaa, zlogaritmujeme a kvôli stacionarite budeme pracovat s diferenciami ARMA modely časť 2: moving average modely(ma) p.4/25
5 Reálne dáta - pokračovanie Odhadnutá ACF: Logaritmy - ACF klesá vel mi pomaly typické pre dáta, ktoré treba zdiferencovat Diferencie logaritmov - jedna výrazne nenulová autokorelácia, ostatné skoro nulové ARMA modely časť 2: moving average modely(ma) p.5/25
6 Príklad z prvej prednášky Nech u t je biely šum, definujeme Vypočítali sme: x t = u t + u t 1 E[x t ]=0, V ar[x t ]=2σ 2 { σ 2 pre τ=1 Cov[x t,x t+τ ]= 0 pre τ=2,3,... { 1/2 pre τ=1 Cor[x t,x t+τ ]= 0 pre τ=2,3,... ACF je nulová pre τ=2,3,... - presne tá vlastnost, ktorú potrebujeme ARMA modely časť 2: moving average modely(ma) p.6/25
7 Zovšeobecnenie - MA(1) proces Nech u t je biely šum, potom x t = µ+u t βu t 1 sa nazýva moving average proces prvého rádu - MA(1) Woldova reprezentácia: x t = µ+ j=0 ψ ju t j MA(1) proces: ψ 0 =1,ψ 1 = β,ψ j =0pre j=2,3,... Momenty a ACF: E[x t ]=µ, V ar[x t ]=(1+β 2 )σ 2 { βσ 2 pre τ=1 Cov[x t,x t+τ ]= 0 pre τ=2,3,... { β Cor[x t,x t+τ ]= 1+β pre τ=1 2 0 pre τ=2,3,... ARMA modely časť 2: moving average modely(ma) p.7/25
8 MA(1) proces - príklady 1. Nech u t je biely šum s rozdelením N(0,4), definujme x t = u t u t 1 Potom: E[x t ]=0, V ar[x t ]=(1+(1/2) 2 ) 4=5 Cor[x t,x t+τ ]= { 1/2 1+1/4 =2/5 pre τ=1 0 pre τ=2,3, Nech u t je biely šum s rozdelením N(0,1), definujme y t = u t +2u t 1 Potom: E[y t ]=0, V ar[y t ]=(1+4) 1=5 Cor[y t,y t+τ ]= { =2/5 pre τ=1 0 pre τ=2,3,... Procesy x t a y t majú rovnakú ACF nedajú sa rozlíšit ARMA modely časť 2: moving average modely(ma) p.8/25
9 MA(1) proces - zovšeobecnenie príkladu Majme MA(1) proces, t.j. ACF tvaru Cor[x t,x t+τ ]= { β 1+β 2 pre τ=1 0 pre τ=2,3,... Predpokladajme teraz, že máme danú hodnotu ρ 1 = ρ(1) a chceme z nej spätne určit koeficient β, t.j. ρ 1 = β 1+β 2 β=? 0.5 ρ β ARMA modely časť 2: moving average modely(ma) p.9/25
10 MA(1) proces - zovšeobecnenie príkladu Máme teda rovnicu: ρ 1 = β 1+β 2 β ρ 1 β+1=0 ρ β 1 β β dve riešenia β 1, β 2, spĺňajú β 1 β 2 =1. Procesy x t = µ+u t βu t 1, majú rovnakú ACF x t = µ+u t 1 β u t 1 Ak chceme jednoznačnú parametrizáciu, potrebujeme dodat d alšiu podmienku. ARMA modely časť 2: moving average modely(ma) p.10/25
11 Invertovatel nost procesu Budeme sa snažit zapísat proces v tvare AR( ): x t =ˆµ+u t + ψ 1 x t 1 + ψ 2 x t 2 + ψ 3 x t ak sa to dá spravit, proces sa nazýva invertovatel ný Pre MA(1) proces: x t = µ+(1 βl)u t (1 βl) 1 x t = (1 βl) 1 µ+u t (1 βl) 1 existuje pre β <1, vtedy (1+βL+β 2 L )x t = µ/(1 β)+u t x t + βx t 1 + β 2 x t =µ/(1 β)+u t ARMA modely časť 2: moving average modely(ma) p.11/25
12 MA(1) - invertovatel nost procesu Dostali sme teda podmienku invertovatel nosti MA(1) procesu: β < 1 Iný zápis tejto podmienky: máme proces x t = µ+(1 βl)u t koreň polynómu1 βl je1/β podmienka invertovatel nosti teda hovorí, že koreň 1 βl=0musí byt v absolútnej hodnote väčší ako 1, teda mimo jednotkového kruhu ARMA modely časť 2: moving average modely(ma) p.12/25
13 MA(1) - výpočet PACF Pripomeňme si všeobecný vzorec; ρ(1)... ρ(1) ρ(1) 1... ρ(2) det C A ρ(k 1) ρ(k 2)... ρ(k) (1) Φ kk = ρ(1)... ρ(k 1) ρ(1) 1... ρ(k 2) det C A ρ(k 1) ρ(k 2)... 1 Pre MA(1) proces je ρ(k)=0pre k=2,3,... ARMA modely časť 2: moving average modely(ma) p.13/25
14 MA(1) - výpočet PACF PACF sa (na rozdiel od AR procesu) nevynuluje: Φ 11 = ρ(1) 0 Φ 22 = Φ 33 = Φ 4 =... 0 det det ρ(1) ρ(1) ρ(2) 1 ρ(1) ρ(1) 1 1 A 1 A = 1 ρ(1) ρ(1) ρ(1) 1 ρ(2) ρ(2) ρ(1) ρ(3) 1 ρ(1) ρ(2) ρ(1) 1 ρ(1) ρ(2) ρ(1) 1 ρ(1) 4 (1 ρ(1) 2 ) 2 ρ(1) C A 1 C A = 1 1 ρ(1) A ρ(1) 0 1= ρ(1)2 1 ρ(1) 1 ρ(1) 2 A ρ(1) ρ(1) ρ(1) det ρ(1) 1 0 C A 0 ρ(1) ρ(1) 0 det ρ(1) 1 ρ(1) C A 0 ρ(1) 1 = ρ(1)3 1 2ρ(1) ARMA modely časť 2: moving average modely(ma) p.14/25
15 Reálne dáta - ceny kakaa Dáta zo začiatku prednášky MA(1) model pre diferencie logaritmov cien: ARMA modely časť 2: moving average modely(ma) p.15/25
16 Reálne dáta - ceny kakaa Invertovatel nost : ACF rezíduí: ARMA modely časť 2: moving average modely(ma) p.16/25
17 VI. Moving average proces q-teho rádu - MA(q) ARMA modely časť 2: moving average modely(ma) p.17/25
18 MA(q) proces - definícia a vlastnosti Nech u t je biely šum, potom x t = µ+u t β 1 u t 1 β 2 u t 2... β q u t q sa nazýva moving average proces q-teho rádu - MA(q) Woldova reprezentácia: x t = µ+ j=0 ψ ju t j MA(q) proces: ψ 0 =1,ψ 1 = β 1,...ψ q = β q,ψ j =0 pre j > q MA(q) proces je vždy stacionárny Momenty, ACF, PACF: E[x t ]=µ, V ar[x t ]=(1+β β 2 q)σ 2 Cov[x t,x t+τ ]=0 pre τ= q+1,q+2,... Cor[x t,x t+τ ]=0 pre τ= q+1,q+2,... ARMA modely časť 2: moving average modely(ma) p.18/25
19 MA(q) proces - definícia a vlastnosti Výpočet prvých q autokorelácií (môžeme uvažovat µ=0): Cov[x t,x t+τ ] = E[(u t β 1 u t 1... β q u t q ) (u t+τ β 1 u t+τ 1... β q u t+τ q )] = E[u t (u t+τ β 1 u t+τ 1... β q u t+τ q )] β 1 E[u t 1 (u t+τ β 1 u t+τ 1... β q u t+τ q )]... β q E[u t q (u t+τ β 1 u t+τ 1... β q u t+τ q )] ARMA modely časť 2: moving average modely(ma) p.19/25
20 MA(q) proces - definícia a vlastnosti Výpočet prvých q autokorelácií - pokračovanie: τ=1 γ(1)=( β 1 + β 1 β β q 1 β q )σ 2 τ=2 γ(2)=( β 2 + β 1 β β q 2 β q )σ 2... τ= q γ(q)=( β q )σ 2 PACF - dosadením vypočítaných autokorelácií do všeobecného vzorca (1) ARMA modely časť 2: moving average modely(ma) p.20/25
21 MA(q) proces - definícia a vlastnosti Invertovatel nost : x t = µ+u t β 1 u t 1 β 2 u t 2... β q u t q x t = µ+(1 β 1 L... β q L q )u t Existencia inverzného operátora (1 β 1 L... β q L q ) 1 - korene polynómu 1 β 1 L... β q L q =0musia byt mimo jednotkového kruhu ARMA modely časť 2: moving average modely(ma) p.21/25
22 Cvičenie : simulované dáta Výberová ACF a PACF z dát: PACF nie je po nejakom počte členov nulová nebude to AR proces ACF má prvé dve hodnoty výraznejšie, ostatné skoro nulové skúsime odhadnút MA(2) proces ARMA modely časť 2: moving average modely(ma) p.22/25
23 Cvičenie : simulované dáta Odhadnutý MA(2) proces: ARMA modely časť 2: moving average modely(ma) p.23/25
24 Cvičenie : simulované dáta Stacionarita - MA proces je vždy stacionárny Invertovatel nost - je invertovatel ný: ARMA modely časť 2: moving average modely(ma) p.24/25
25 Cvičenie : simulované dáta ACF rezíduí, Q štatistika - v poriadku: ARMA modely časť 2: moving average modely(ma) p.25/25
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/27
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Úvod do lineárnej algebry. Monika Molnárová Prednášky
Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR. Michal Zajac. 3 T b 1 = T b 2 = = = 2b
VLASTNÉ ČÍSLA A JORDANOV KANONICKÝ TVAR Michal Zajac Vlastné čísla a vlastné vektory Pripomeňme najprv, že lineárny operátor T : L L je vzhl adom na bázu B = {b 1, b 2,, b n } lineárneho priestoru L určený
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Modelovanie dynamickej podmienenej korelácie kurzov V4
Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Numerické metódy matematiky I
Prednáška č. 7 Numerické metódy matematiky I Riešenie sústav lineárnych rovníc ( pokračovanie ) Prednáška č. 7 OBSAH 1. Metóda singulárneho rozkladu (SVD) Úvod SVD štvorcovej matice SVD pre menej rovníc
3. prednáška. Komplexné čísla
3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet
Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
Časové rady Ján Pekár Prednáška 6 Odhady parametrov
Prednáška 6 Odhady parametrov Predošlá prednáška Výberová PACF Rekurzívne metódy: Durbin-Levinson Reprezentácia inovácií Rekurzívne metódy: Algoritmus inovácií Príklad: Algoritmus inovácií pre predpoveď
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,
Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne
Základy matematickej štatistiky
1. Náhodný výber, výberové momenty a odhad parametrov Katedra Matematických metód Fakulta Riadenia a Informatiky Žilinská Univerzita v Žiline 6. mája 2015 1 Náhodný výber 2 Výberové momenty 3 Odhady parametrov
Obyčajné diferenciálne rovnice
(ÚMV/MAN3b/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 14.3.2013 Úvod patria k najdôležitejším a najviac prepracovaným matematickým disciplínam. Nielen v minulosti, ale aj v súčastnosti predstavujú
Ján Buša Štefan Schrötter
Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako
DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)
Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy
x x x2 n
Reálne symetrické matice Skalárny súčin v R n. Pripomeniem, že pre vektory u = u, u, u, v = v, v, v R platí. dĺžka vektora u je u = u + u + u,. ak sú oba vektory nenulové a zvierajú neorientovaný uhol
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
Ειδικά Θέματα Οικονομετρίας-Χρονολογικές Σειρές ΙΙ (εκδ. 1.2)
Ειδικά Θέματα Οικονομετρίας-Χρονολογικές Σειρές ΙΙ (εκδ. 1.2) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Περιγραφή 1 Στάσιμα Υποδείγματα Χρονολογικές Σειρών
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
FUNKCIE N REÁLNYCH PREMENNÝCH
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus
1. prednáška Lineárna algebra I - pole skalárov, lineárny priestor, lineárna závislosť, dimenzia, podpriestor, suma podpriestorov, izomorfizmus Matematickým základom kvantovej mechaniky je teória Hilbertových
Numerické metódy Učebný text pre bakalárske štúdium
Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
p(α 1 ) = u 1. p(α n ) = u n. Definícia (modulárna reprezentácia polynómu). Zobrazenie
1. Rychlá Fourierová transformácia Budeme značiť teleso T a ω jeho prvok. Veta 1.1 (o interpolácií). Nech α 0, α 1,..., α n sú po dvoch rôzne prvky telesa T[x]. Potom pre každé u 0, u 1,..., u n T existuje
Metódy vol nej optimalizácie
Metódy vol nej optimalizácie Metódy vol nej optimalizácie p. 1/28 Motivácia k metódam vol nej optimalizácie APLIKÁCIE p. 2/28 II 1. PRÍKLAD: Lineárna regresia - metóda najmenších štvorcov Na základe dostupných
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
Reálna funkcia reálnej premennej
(ÚMV/MAN3a/10) RNDr. Ivan Mojsej, PhD ivan.mojsej@upjs.sk 18.10.2012 Úvod V každodennom živote, hlavne pri skúmaní prírodných javov, procesov sa stretávame so závislosťou veľkosti niektorých veličín od
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008
Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες
Integrovanie racionálnych funkcií
Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz
KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)
ALGEBRA. Číselné množiny a operácie s nimi. Úprava algebrických výrazov
ALGEBRA Číselné množiny a operácie s nimi. Úprava algebrických výrazov Definícia Množinu považujeme za určenú, ak vieme o ľubovoľnom objekte rozhodnúť, či je alebo nie je prvkom množiny. Množinu určujeme
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0
Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib
Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. κ Μηx. Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Μονάδα Προβλέψεων & Στρατηγικής Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Funkcie - základné pojmy
Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny
Matematická analýza pre fyzikov IV.
119 Dodatok - klasické riešenia PDR 8.1. Parciálne diferenciálne rovnice Príklady parciálnych diferenciálnych rovníc: Lalpaceova rovnica u = 0 Helmholtzova rovnica u = λu n Lineárna transportná rovnica
Riešenie sústavy lineárnych rovníc. Priame metódy.
Riešenie sústavy lineárnych rovníc. Priame metódy. Ing. Gabriel Okša, CSc. Matematický ústav Slovenská akadémia vied Bratislava Stavebná fakulta STU G. Okša: Priame metódy 1/16 Obsah 1 Základy 2 Systémy
Stationary ARMA Processes
Stationary ARMA Processes Eduardo Rossi University of Pavia October 2013 Rossi Stationary ARMA Financial Econometrics - 2013 1 / 45 Moving Average of order 1 (MA(1)) Y t = µ + ɛ t + θɛ t 1 t = 1,..., T
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich
Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:
Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8
Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών Φοιτητής: Μαρκόπουλος
Vlastnosti regulátorov pri spätnoväzbovom riadení procesov
Kapitola 8 Vlastnosti regulátorov pri spätnoväzbovom riadení procesov Cieľom cvičenia je sledovať vplyv P, I a D zložky PID regulátora na dynamické vlastnosti uzavretého regulačného obvodu (URO). 8. Prehľad
Polynómy. Hornerova schéma. Algebrické rovnice
Polynómy. Hornerova schéma. Algebrické rovnice Teoretické základy Definícia 1 Nech (koeficienty) a 0, a 1,..., a n sú komplexné čísla a nech n je nezáporné celé číslo. Výraz P n (x) = a n x n + a n 1 x
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti
4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme
I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h
A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M
Fakulta matematiky, fyziky a informatiky. Univerzita Komenského. Contents I. Úvod do problematiky numeriky 2
NUMERICKÁ MATEMATIKA ročník Fakulta matematiky, fyziky a informatiky Univerzita Komenského Contents I Úvod do problematiky numeriky II Počítačová realizácia reálnych čísel 3 III Diferenčný počet 5 IV CORDIC
Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach
Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan
Forecasting the Number of International Tourists in Thailand by using the SARIMA Intervention Model
ก ก ก SARIMA Intervention Forecasting the Number of International Tourists in Thailand by using the SARIMA Intervention Model 1 กก 2 1. 2. Akarapong Untong 1 and Paweena Khampukka 2 1. Social Research
Príklady na precvičovanie Fourierove rady
Príklady na precvičovanie Fourierove rady Ďalším významným typom funkcionálnych radov sú trigonometrické rady, pri ktorých sú jednotlivé členy trigonometrickými funkciami. Konkrétne, jedná sa o rady tvaru
ΕΠΙΤΡΟΠΗ ΜΕΛΕΤΗΣ ΕΠΙΠΤΩΣΕΩΝ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ
ΕΠΙΤΡΟΠΗ ΜΕΛΕΤΗΣ ΕΠΙΠΤΩΣΕΩΝ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ Η ΕΠΙ ΡΑΣΗ ΤΗΣ ΜΕΣΗΣ ΜΗΝΙΑΙΑΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΘΝΗΣΙΜΟΤΗΤΑ ΚΑΙ ΝΟΣΗΡΟΤΗΤΑ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΑΤΤΙΚΗΣ ΤΗΝ ΠΕΡΙΟ Ο 2000-2005 ΣΥΝΤΕΛΕΣΤΕΣ ΗΜΟΣΘΕΝΗΣ ΠΑΝΑΓΙΩΤΑΚΟΣ,
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Μοντέλα χρονολογικών σειρών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Úvod 2 Predhovor... 2 Sylaby a literatúra... 2 Označenia... 2
Obsah Úvod Predhovor Sylaby a literatúra Označenia Euklidovské vektorové priestory 3 Skalárny súčin 3 Gram-Schmidtov ortogonalizačný proces 8 Kvadratické formy 6 Definícia a základné vlastnosti 6 Kanonický
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA (p,d,q)
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια 1 ΥΠΟΔΕΙΓΜΑΤΑ
Lecture 2: ARMA Models
Leture 2: ARMA Models Bus 41910, Autumn Quarter 2008, Mr Ruey S Tsay Autoregressive Moving-Average (ARMA) models form a lass of linear time series models whih are widely appliable and parsimonious in parameterization
2 Chyby a neistoty merania, zápis výsledku merania
2 Chyby a neistoty merania, zápis výsledku merania Akej chyby sa môžeme dopustiť pri meraní na stopkách? Ako určíme ich presnosť? Základné pojmy: chyba merania, hrubé chyby, systematické chyby, náhodné
Χρονοσειρές - Μάθημα 5
Χρονοσειρές - Μάθημα 5 Εκτίμηση μοντέλου MA(q) στοχαστική διαδικασία AR() X X X X Z Z ~ WN(, Z) στοχαστική διαδικασία MA(q) X Z Z Z Z q q στοχαστική διαδικασία ARMA(,q) X X X X Z Z Z Z q q Εκτίμηση διαδικασίας
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
Goniometrické rovnice riešené substitúciou
Ma-Go-10-T List 1 Goniometrické rovnice riešené substitúciou RNDr. Marián Macko U: Okrem základných goniometrických rovníc, ktorým sme sa už venovali, existujú aj zložitejšie goniometrické rovnice. Metódy
Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5
5ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5ο Μάθημα Πιθανότητες
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Gramatická indukcia a jej využitie
a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)
Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος
Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 30 Περιεχόμενα
Numerické metódy, pravdepodobnosť a matematická štatistika
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Strana 1 z 262 Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Strana
Analyze/Forecasting/Create Models
(εκδ 11) (εκδ 11) Σχολή Κοινωνικών Επιστημών Τμήμα Οικονομικών Επιστημών 24 Οκτωβρίου 2014 1 / 12 Εισαγωγή (εκδ 11) 1 2 2 / 12 ΧΣ (εκδ 11) ΧΣ μέσω υποδειγμάτων ARIM A/SARIM A Αϕου δημιουργήσουμε τον χώρο
Numerické metódy, pravdepodobnosť a matematická štatistika. Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER
Numerické metódy, pravdepodobnosť a matematická štatistika Ján BUŠA Viktor PIRČ Štefan SCHRÖTTER Košice 2006 RECENZOVALI: Prof. RNDr. Jozef Doboš, CSc. Doc. RNDr. Vladimír Penjak, CSc. Prvé vydanie Za
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa