Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Σχετικά έγγραφα
Sampling Basics (1B) Young Won Lim 9/21/13

Spectrum Representation (5A) Young Won Lim 11/3/16

Digital Signal Octave Codes (0B)

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

BandPass (4A) Young Won Lim 1/11/14

CORDIC Background (4A)

CORDIC Background (2A)

Lecture 12 Modulation and Sampling

3 Frequency Domain Representation of Continuous Signals and Systems

Trigonometry Functions (5B) Young Won Lim 7/24/14

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

CT Correlation (2B) Young Won Lim 8/15/14

LTI Systems (1A) Young Won Lim 3/21/15

Fourier transform of continuous-time signals

6.003: Signals and Systems

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Fourier Transform. Fourier Transform

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ω = radians per sec, t = 3 sec

Fourier Series. Fourier Series

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8)

6.003: Signals and Systems. Modulation

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

HMY 220: Σήματα και Συστήματα Ι

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

x[n] x(nt s ) y c x c Discrete Time System D /C Conversion C/D Conversion Conv. From continous to discrete and from discrete to continous x trne

Ψηφιακή Επεξεργασία Φωνής

Εισαγωγή στη Σχεδίαση RF Κυκλωμάτων

Δειγματοληψία και ανακατασκευή αναλογικών σημάτων

HMY 220: Σήματα και Συστήματα Ι

D-Wave D-Wave Systems Inc.

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Example Sheet 3 Solutions

Assignment 1 Solutions Complex Sinusoids

MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

6.003: Signals and Systems. Modulation

Tables in Signals and Systems

ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS

Σήματα και Συστήματα ΙΙ

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

HMY 220: Σήματα και Συστήματα Ι

Fundamentals of Signals, Systems and Filtering

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Cubic Γ-n normed linear spaces

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 6

Riemann Hypothesis: a GGC representation

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

Matrices and Determinants

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Διαμόρφωση Γωνίας (Angle Modulation) - 2

ST5224: Advanced Statistical Theory II

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

Θεωρία Σημάτων και Γραμμικών Συστημάτων

Introduction to Time Series Analysis. Lecture 16.

HMY 220: Σήματα και Συστήματα Ι

Audio Engineering Society. Convention Paper. Presented at the 120th Convention 2006 May Paris, France

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Lifting Entry (continued)

The canonical 2nd order transfer function is expressed as. (ω n

27/4/2009. Για την υλοποίηση τέτοιων αλγορίθμων επεξεργασίας απαιτείται η χρήση μνήμης. T η περίοδος δειγματοληψίας. Επίκ. Καθηγητής.

INDIRECT ADAPTIVE CONTROL

Ψηφιακές Επικοινωνίες

Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση?

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

HMY 220: Σήματα και Συστήματα Ι

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Finite Field Problems: Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1


Χρονοσειρές Μάθημα 3

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

e (4+j2πf)t dt (5) (0 1)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

The Project Gutenberg EBook of Gerodimos Pamphletes, by Argyris Eftaliotis

A Simple Version of the Lucas Model

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Section 8.3 Trigonometric Equations

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1

Ψηφιακή Επεξεργασία Φωνής

Chapter 6 BLM Answers

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Σήματα και Συστήματα στο Πεδίο της Συχνότητας

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Σήματα διακριτού χρόνου

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Fourier Analysis of Waves

Strain gauge and rosettes

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Uniform Convergence of Fourier Series Michael Taylor

Εφαρμογή στις ψηφιακές επικοινωνίες

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

What happens when two or more waves overlap in a certain region of space at the same time?

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Transcript:

ni-aliasing Prefiler (6B)

Copyrigh (c) Young W. Lim. Permission is graned o copy, disribue and/or modify his documen under he erms of he GNU Free Documenaion License, Version. or any laer version published by he Free Sofware Foundaion; wih no Invarian Secions, no Fron-Cover exs, and no Back-Cover exs. copy of he license is included in he secion eniled "GNU Free Documenaion License". Please send correcions (or suggesions) o youngwlim@homail.com. his documen was produced by using OpenOffice and Ocave.

Sampler Ideal Sampling x() Pracical Sampling τ x() = x(n ) δ( n ) x() x(n ) p( n ) CF CF X ( f ) = x() e j π f d? 6B Prefiler 3

Zero Order Hold (ZOH) / rec( ) / τ x ZOH ( ) = n= / n x[n] rec( ) 6B Prefiler 4

Square Wave CFS () Coninuous ime Fourier Series C k = x( ) e j k d x() = n= C k e + j k C k = + / x / ( ) e j k d = π Fundamenal Frequency C k = / + / x () e j k d + / j k = / e [ d = + / e j k j k ] / C k sin(k /) k / = e j k / e + j k / = sin (k /) j k k / k = / C k + Period = 6B Prefiler 5

Square Wave CFS () C k = sin(k / ) k / = sin( k /) k / = π Fundamenal Frequency sin(k /) = sin(k //) = sin(k π/ ) = C k C k = k = ±, ±4, ±6, = ±, ±4, ±6, sin (k /) k / k a k + Period = = / π 6B Prefiler 6

CF and CFS Coninuous ime Fourier ransform periodic Coninuous ime Signal X j = x e j d x = X j e j d + Coninuous ime Fourier Series Periodic Coninuous ime Signal C k = x( ) e j k d x() = n= C k e + j k Period = + + Period = 6B Prefiler 7

CF CFS periodic Coninuous ime Signal Coninuous ime Fourier ransform x( ) + s, x () x( ) Periodic Coninuous ime Signal Coninuous ime Fourier Series = π Period = + x () = n= x( n ) + 6B Prefiler 8

CF and CFS as, = = / C k sin(k /4) k / + + + + = 4 = / 4 C k sin(k /8) k / + + + 4 4 = 8 = /8 C k sin(k /6) k / + + 8 8 6B Prefiler 9

= = Sampling () Ideal Sampling Pracical Sampling τ X X τ τ 6B Prefiler

= = Sampling () Ideal Sampling Frequency Domain CF X * CF = π CF 6B Prefiler

= = Sampling (3) Pracical Sampling Frequency Domain τ CF X * τ CF = π a k sin (k /) k / k τ CF 6B Prefiler

Convoluion wih Impulse rain X (w) G() = X () F () = F (w) X ( w)d w F () X ( w) flip F () X ( w) shif F () F (w) 6B Prefiler 3

Convoluion wih Sinc Impulse rain X (w) G() = X () F () = F (w) X ( w)d w F () X ( w) flip F () X ( w) shif F () F (w) 6B Prefiler 4

CF of Sampled Signal x() = x (n ) δ( n ) CF π π X ( f ) = + π x() e j π f d + π = x(n ) δ( n ) e j π f d = x(n ) e j π f n d x() = x (n ) δ( n ) CF X ( f ) = x(n ) e j π f n 6B Prefiler 5

Periodiciy in Frequency f s π π + π + π f s = π f s = π = π f = x() = x(n ) δ( n ) CF X ( f ) = x(n ) e j π f n e jπ( f + f s) n = e j π( f ) n f s = Period = Sampling Frequency f s X ( f ) = X ( f + f s ) 6B Prefiler 6

ime Sequence x() x() x() x() Conver o ime Sequence x[n] Ideal Sampling p( ) = δ( n ) Sampling Period p( ) x[n] ime Sequence 6B Prefiler 7

DF of a ime Sequence x() x() = x (n ) δ( n ) CF π X ( f ) = π + π + π x(n ) e j π f n x[n] = x(n ) π π + π + π x[n], Sampling Period DF X ( f ) = x [n] e j π f n Here, X(f) does no denoe he CF of x() 6B Prefiler 8

Discree ime Fourier ransform () x[n] = x(n ) π π + π + π x[n], Sampling Period DF X ( f ) = x[n] e j π f n Normalized ngular Frequency π f = π f / = π f f s = 4π π +π +4π = DF x[n], Sampling Period X (e j ) = x[n] e j n 6B Prefiler 9

Discree ime Fourier ransform () π π + π + π f s = π f s = π = f s f s + f s + f s f X ( f ) = x[n] e j π f n + + f / f s Normalized ngular Frequency π f = π f / = π f = f s 4π π +π +4π = π f / f s X (e j ) = x[n] e j n = π f 4π f s π f s +π f s +4π f s Nyquis Inerval 6B Prefiler

Discree ime Fourier ransform (3) π π + π + π f s = π f s = π = X ( f ) bsolue Frequency X ( f ) = x[n] e j π f n f s f s + f s + f s f Normalized ngular Frequency π f = π f / = π f = f s X (e j ) Normalized ngular Frequency uni circle emphasize he periodic naure X (e j ) = x[n] e j n 4π π +π +4π = π f / f s 6B Prefiler

Fourier Series Inerpreaion π π + π + π x() = x (n ) δ( n ) CF X ( f ) = x(n ) e j π f n f s / x(n ) = f s + f s / X ( f ) e + j π f n df CFS X ( f ) = x(n ) e j π f n +π = π = π f / f s X () e + j n d π d f f s = d π Fourier Series Coefficiens x(n ) X ( f ) Coninuous Periodic Funcion View as a Fourier Series Expansion 6B Prefiler

Numerical pproximaion X ( f ) = lim X ( f ) x() CF X ( f ) = x() e + j π f d f x(n ) e j π f n x() X ( f ) X ( f ) x() = CF π π x (n ) δ( n ) X ( f ) = + π + π x(n ) e j π f n 6B Prefiler 3

= Specrum Replicaion () Ideal Sampling x() x() = x(n ) δ( n ) X s() = δ( n ) s() = e + j π m f s m = x() = x( ) e + j π m f s x() Shif Propery X ( f ) = X ( f m f s ) 6B Prefiler 4

= Specrum Replicaion () S ( f ) = δ( f m f s ) m = Frequency Domain X ( f ) Convoluion in Frequency X ( f ) = X ( f ) S ( f ) = X ( f f ' )S ( f ' ) d f ' S ( f ) * = m = X ( f f ' )δ( f ' m f s ) d f ' π π + π + π X ( f ) = X ( f m f s ) X ( f ) π π + π + π 6B Prefiler 5

X i ( f ) X ( f ) X ( f ) nalog signal Ideal Prefiler H(f) Bandlimied signal Ideal Sampler - DC Sampled signal f s f s + f s f s 4 f s 3 4 f s f s 6B Prefiler 6

6B Prefiler 7

6B Prefiler 8

References [] hp://en.wikipedia.org/ [] J.H. McClellan, e al., Signal Processing Firs, Pearson Prenice Hall, 3 [3] graphical inerpreaion of he DF and FF, by Seve Mann [4] R. G. Lyons, Undersanding Digial Signal Processing, 997 [5] VR: Enhancing DC resoluion by oversampling [6] S.J. Orfanidis, Inroducion o Signal Processing www.ece.rugers.edu/~orfanidi/inrosp