Στατιστική Ι- Βασικές Εννοιες



Σχετικά έγγραφα
Στατιστική Ι- Βασικές Εννοιες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Στατιστική Ι-Μέτρα Διασποράς

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Στατιστική Ι-Πιθανότητες Ι

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

Σημειακή εκτίμηση και εκτίμηση με διάστημα. 11 η Διάλεξη

Στατιστική ΙΙ-Διαστήματα Εμπιστοσύνης Ι (εκδ. 1.1)

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

Ελλιπή δεδομένα. Εδώ έχουμε Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ενότητα 2: Μέθοδοι δειγματοληψίας & Εισαγωγή στην Περιγραφική Στατιστική

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική)

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

Εισαγωγή στην Εκτιμητική

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Στατιστική Ι-Μέτρα Θέσης

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Βασικές έννοιες της Στατιστικής: Πληθυσμός - Δείγμα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων ΙΙ

Τυχαία μεταβλητή (τ.μ.)

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Συλλογή και παρουσίαση στατιστικών δεδομένων

Θεωρητικές Κατανομές Πιθανότητας

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ & ΕΚΠΑΙΔΕΥΣΗ

3. Κατανομές πιθανότητας

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Εισαγωγή στη Στατιστική

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ Τ Α Τ Ι Σ Τ Ι Κ Η Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών

Διαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

Περιγραφική Στατιστική

Βιοστατιστική ΒΙΟ-309

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Μέρος ΙΙ. Τυχαίες Μεταβλητές

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

επ. Κωνσταντίνος Π. Χρήστου

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΝΟΤΗΤΑ: Εισαγωγικές Έννοιες ΟΝΟΜΑ ΚΑΘΗΓΗΤΗ: ΦΡ. ΚΟΥΤΕΛΙΕΡΗΣ ΤΜΗΜΑ: Τμήμα Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Βιοστατιστική ΒΙΟ-309

Στατιστική και Θεωρία Πιθανοτήτων (ΓΓ04) ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Εαρινό Εξάμηνο

Στατιστική ΙΙ- Ελεγχος Υποθέσεων ΙΙ (εκδ. 1.1)

Δειγματικές Κατανομές

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Βιοστατιστική ΒΙΟ-309

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

Στατιστική Συμπερασματολογία

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΠΟΥΔΑΣΤΗΡΙΟ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΠΑΣΠΕ ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΚΟΙΝΩΝΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΙ ΤΙΣ ΤΕΧΝΙΚΕΣ

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

P(A ) = 1 P(A). Μονάδες 7

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Διάλεξη 5: Τυχαία Μεταβλητή Κατανομές Πιθανότητας

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

Ενότητα 1: Πληθυσμός και δείγμα Είδη Μεταβλητών - Περιγραφική στατιστική

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

Σημειακή εκτίμηση και εκτίμηση με διάστημα Παραδείγματα. 12 η Διάλεξη

ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Στατιστική Επιχειρήσεων Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

Κεφάλαιο 3 Σχετική & Αθροιστική Συχνότητα Πίνακες και Ιστογράµµατα

Transcript:

Στατιστική Ι- Βασικές Εννοιες Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 1 Οκτωβρίου 2015

Περιγραφή 1

Περιγραφή του Στατιστικού προβλήματος Ορισμός της Στατιστικής Στατιστική, είναι η επιστήμη που διαχειρίζεται το τυχαίο μέσω δειγματοληψίας. Τυχαία Μεταβλητη(τ.μ) Τυχαία Μεταβλητη αποτελεί το αποτέλεσμα ενός πειράματος που διέπεται από αβεβαιότητα, πχ: το επίδεδο των τιμών, οι πωλήσεις, η ημερίσια βροχόπτωση, ο αριθμός των γεννήσεων, κ.α. Δειγματοληψία Η Δειγματοληψία, μέσω της συλλογής ενός απαραίτητου αριθμού τ.μ. μας οδηγεί σε συμπεράσματα για την τ.μ. στο δείγμα και μέσω επαγωγής στον πληθυσμό.

Περιγραφή του Στατιστικού προβλήματος Ορισμός της Στατιστικής Στατιστική, είναι η επιστήμη που διαχειρίζεται το τυχαίο μέσω δειγματοληψίας. Τυχαία Μεταβλητη(τ.μ) Τυχαία Μεταβλητη αποτελεί το αποτέλεσμα ενός πειράματος που διέπεται από αβεβαιότητα, πχ: το επίδεδο των τιμών, οι πωλήσεις, η ημερίσια βροχόπτωση, ο αριθμός των γεννήσεων, κ.α. Δειγματοληψία Η Δειγματοληψία, μέσω της συλλογής ενός απαραίτητου αριθμού τ.μ. μας οδηγεί σε συμπεράσματα για την τ.μ. στο δείγμα και μέσω επαγωγής στον πληθυσμό.

Περιγραφή του Στατιστικού προβλήματος Ορισμός της Στατιστικής Στατιστική, είναι η επιστήμη που διαχειρίζεται το τυχαίο μέσω δειγματοληψίας. Τυχαία Μεταβλητη(τ.μ) Τυχαία Μεταβλητη αποτελεί το αποτέλεσμα ενός πειράματος που διέπεται από αβεβαιότητα, πχ: το επίδεδο των τιμών, οι πωλήσεις, η ημερίσια βροχόπτωση, ο αριθμός των γεννήσεων, κ.α. Δειγματοληψία Η Δειγματοληψία, μέσω της συλλογής ενός απαραίτητου αριθμού τ.μ. μας οδηγεί σε συμπεράσματα για την τ.μ. στο δείγμα και μέσω επαγωγής στον πληθυσμό.

Γιατί χρησιμοποιούμε τη στατιστική; Στόχοι: Ερμηνεία και Πρόβλεψη τυχαίων γεγονότων σε κλάδους όπως: η αρχαιολογία(χρονολόγηση αντικειμένων), η βιολογία(επιδημιολογική ανάλυση), η γεωλογία(πρόβλεψη άριστου σημείου γεώτρησης), η δημογραφία(πρόβλεψη πληθυσμιακών μεταβολών), οι οικονομικές επιστήμες(πρόβλεψη οικονομικών κύκλων), η διοίκηση επιχειρήσεων(οργάνωση και πρόβλεψη πωλήσεων), η ιατρική(ανάλυση αποτελεσματικότητας μιας θεραπείας), η σεισμολογία(πρόγνωση επικινδύνων σεισμών), η ψυχολογία(πρόβλεψη ανθρώπινης συμπεριφοράς μετά από ερέθισμα) κ.α.

Αβεβαιότητα, Μεσότητα, Πρόβλεψη σε αρχαίες ρήσεις 1 «Βουλευόμενος, παρεδείγματα ποιού, τα παρεληλυθότα τ ων μελλόντων»,ισοκράτης(πρός Δημόνικο 34) 2 «Πρός γάρ τό τελευταίο ἐκβάν τ ων πρίν υπαρξάντων κρίνεται», Δημοσθένης(Ολυνθιακός, Α, 11) 3 «Οὔμετανοείνἀλλάπρονοείνχρήτόνἄνδρατόνσοφό»,Επίχαρμος. 4 «ΤώνἄγανγαρἄπτεταιΘεός,τάμικράδ εἴςτύχηναφείς»,πλούταρχος. 5 «Τό ν υν ἐστί μεσότης», Αριστοτέλης. 6 «Η μεσότης ἔν πάσιν ασφαλέστερον» Μένανδρος.

Γενικά είδη δεδομένων Διακριτά δεδομένα Τα Διακριτά(ασυνεχή) δεδομένα αναφέρονται σε αυτά για τα οποία μπορούμε να πάρουμε συγκεκριμένες τιμές εντός ενός διαστήματος τιμών. Οαριθμόςτωνεγγεγραμμένωνφοιτητώνμιαςσχολής: 0, 1, 2, 3,... Οαριθμόςτωνανάώραγεννήσεων: 0, 1, 2, 3,... Οαριθμόςτωναρτίων(ήπεριττών)απότηρίψηενόςζαριού nφορές: 0, 1,...,n μη-διακριτά δεδομένα Τα μη-διακριτά(συνεχή) δεδομένα αναφέρονται σε αυτά για τα οποία μπορούμε να πάρουμε απεριόριστες τιμές εντός ενός διαστήματος τιμών. Τούψοςενόςανθρώπουμπορείναπάρειτηντιμή 1, 79ή1, 79560σε μέτρα. Ηαπόδοσηενόςχρεογράφουμπορείναπάρειτηντιμή 0, 36%ή 0, 3649280%. Το επίπεδο ημερήσιας βροχόπτωσης σε έναν σταθμό μπορεί να πάρει τιμή 2, 08ή2, 089861σε cm. βεαμερ-τυ-λογ

Γενικά είδη δεδομένων Διακριτά δεδομένα Τα Διακριτά(ασυνεχή) δεδομένα αναφέρονται σε αυτά για τα οποία μπορούμε να πάρουμε συγκεκριμένες τιμές εντός ενός διαστήματος τιμών. Οαριθμόςτωνεγγεγραμμένωνφοιτητώνμιαςσχολής: 0, 1, 2, 3,... Οαριθμόςτωνανάώραγεννήσεων: 0, 1, 2, 3,... Οαριθμόςτωναρτίων(ήπεριττών)απότηρίψηενόςζαριού nφορές: 0, 1,...,n μη-διακριτά δεδομένα Τα μη-διακριτά(συνεχή) δεδομένα αναφέρονται σε αυτά για τα οποία μπορούμε να πάρουμε απεριόριστες τιμές εντός ενός διαστήματος τιμών. Τούψοςενόςανθρώπουμπορείναπάρειτηντιμή 1, 79ή1, 79560σε μέτρα. Ηαπόδοσηενόςχρεογράφουμπορείναπάρειτηντιμή 0, 36%ή 0, 3649280%. Το επίπεδο ημερήσιας βροχόπτωσης σε έναν σταθμό μπορεί να πάρει τιμή 2, 08ή2, 089861σε cm. βεαμερ-τυ-λογ

Ειδικά είδη δεδομένων Διαστρωμματικά δεδομένα Τα διαστρωμματικά δεδομένα αναφέρονται σε αυτά τα οποία συλέγονται από διάφορα στρώματα του πληθυσμοό δεδομένου χρόνου Ο πληθυσμός σε πλήθος N πρωτευουσών(διακριτή). Η απόδοση ενός χρεογράφου μια μέρα του έτους σε διάφορες αγορές του κόσμου(μη-διακριτή). Η ζήτηση ενέργειας(σε kwh) από τους ενοίκους ενός οικοδομικού τετραγώνου(μη-διακριτή). Δεδομένα χρονολογικών σειρών Τα δεδομένα χρονολογικών σειρών αναφέρονται σε αυτά τα οποία συλέγονται διαχρονικά(σε διαδοχικά χρονικά διαστήματα) δεδομένου του χώρου. Ο διαχρονικός πληθυσμός T μιας πρωτεύουσας(διακριτή). Η διαχρονική απόδοση ενός χρεογράφου(μη-διακριτή). Η διαχρονική ζήτηση ενέργειας(σε kwh) από το σύνολο των κατοίκων μιας πόλης(μη-διακριτή). βεαμερ-τυ-λογ

Παραδείγματα δεδομένων Διακριτά δεδομένα Εστω δείγμα αριθμών γεννήσεων ανά ώρα εντός ενός 24ώρου: 1 4 3 2 1 2 5 3 3 1 4 4 5 2 2 6 1 1 2 0 2 1 0 0 Τί είδους δεδομένα είναι αυτά; Πως παρουσιάζουμε τέτοιου είδους δεδομένα; x i f i 0 3 1 6 2 6 3 3 4 3 5 2 6 1 7 i=1 f i = 24 όπου f i ησυχνότητα(αριθμός)εμφάνισηςτουενδεχομένου x i. βεαμερ-τυ-λογ

f βεαμερ-τυ-λογ Ιστόγραμμα συχνοτήτων αριθμών γεννήσεων ανά ώρα 0 1 2 3 4 5 6 0 1 2 3 4 5 6 x

Παραδείγματα δεδομένων μη-διακριτά δεδομένα Εστω δείγμα από ημερίσιες μέσες τιμές αμόλυβδης βενζίνης για τους 51 νομούς της χώρας(10η Ιουνίου 2014). 1,662 1,699 1,683 1,701 1,700 1,666 1,684 1,716 1,664 1,772 1,713 1,692 1,748 1,697 1,696 1,658 1,750 1,699 1,653 1,675 1,678 1,671 1,727 1,751 1,773 1,679 1,684 1,690 1,787 1,691 1,680 1,785 1,707 1,705 1,677 1,699 1,668 1,673 1,669 1,691 1,748 1,683 1,782 1,672 1,681 1,677 1,681 1,713 1,691 1,745 1,717 Τί είδους δεδομένα είναι αυτά; Πως παρουσιάζουμε τέτοιου είδους δεδομένα;

Παραδείγματα δεδομένων μη-διακριτά δεδομένα(συν.) τιμές x i συχνότητες f i (1, 65, 1, 66] 2 (1, 66, 1, 67] 5 (1, 67, 1, 68] 9 (1, 68, 1, 69] 7 (1, 69, 1, 70] 10 (1, 70, 1, 71] 3 (1, 71, 1, 72] 4 (1, 72, 1, 73] 1 (1, 73, 1, 74] 0 (1, 74, 1, 75] 4 (1, 75, 1, 76] 1 (1, 76, 1, 77] 0 (1, 77, 1, 78] 2 (1, 78, 1, 79] 3 51=N = 14 i=1 f i όπου f i ησυχνότητα(αριθμός)εμφάνισηςτουενδεχομένου x i. βεαμερ-τυ-λογ

Ραβδόγραμμα συχνοτήτων ημερισίων μέσων τιμών αμολ. βενζίνης-ίσες τάξεις Frequency 0 2 4 6 8 10 1.60 1.65 1.70 1.75 1.80 times

Ραβδόγραμμα συχνοτήτων ημερισίων μέσων τιμών αμολ. βενζίνης-άνισες τάξεις Density 0 2 4 6 8 10 12 1.60 1.65 1.70 1.75 1.80 times

Διάγραμμα Χρονολογικών Σειρώς-Τριμηνιαία Κατανάλωση Φυσικού Αερίου(σε χιλ. kwh) Gas consumption in UK 200 400 600 800 1000 1200 1960 1965 1970 1975 1980 1985 Time

Διάγραμμα Χρονολογικών Σειρώς-Ελληνικός πληθυσμός στη Κωνσταντινούπολη(σε χιλ.) 7 Ell.plhth(se xil.) 0 50 100 150 200 250 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 1850 1900 1950 2000 Eth

Παραδείγματα δεδομένων Ερωτήματα ως προς την απεικόνηση δεδομένων 1 Πότε χρησιμοποιούμε ραβδόγραμμα και πότε ιστόγραμμα; 2 Τίπληροφορίεςεξάγουμεμέσωτηςαπεικόνησησυχνοτήτων f i ; 3 Πρέπειοιτάξειςσεέναραβδόγραμμαναείναιπάνταίσες;Εάνναιγιατί; 4 Πως παρουσιάζουμε μια χρονολογική σειρά; 5 Τί παρατηρούμε βλέποντας το διαχρονικό διάγραμμα μιας χρονολογικής σειράς; 6 Είναι ένα ιστόγραμμα ή ραβδόγραμμα χρήσιμο σε μια χρονολογική σειρά;

Διάγραμμα Χρονολογικών Σειρώς-Μεγέθους Ελληνικού εμπορικού στόλου (σεχιλ.) 000.000 KOX 0 10 20 30 40 SYN. FOR. DEK. EP.&LOIP. 2002 2003 2004 2005 2006 2007 2008 2009 2010

Περιγραφή του Στατιστικού προβλήματος Δειγματικός Χώρος(Ω)-Διακριτών τ.μ. Δειγματικός Χώρος είναι το σύνολο των δυνατών αποτελεσμάτων μιας δειγματοληψίας. 1 Ο δειγματικός χώρος της τ.μ. της ρίψης δυο νομίσματων Ω x = {KK,KΓ,ΓK,ΓΓ} 2 Οδειγματικόςχώροςτηςτ.μ.τηςρίψηςδυοζαριών Ω x = {(1, 1),(1, 2),...,(1, 6) (2, 1),(2, 2),...,(2, 6)...,...,... (6, 1),(6, 2),...,(6, 6)}

Περιγραφή του Στατιστικού προβλήματος Δειγματικός Χώρος(Ω)-μη-Διακριτών τ.μ. 1 Οδειγματικόςχώροςτηςτ.μ.τουχρόνουζωήςενόςλαμπτήρα Ω x = [0,+ ) 2 Ο δειγματικός χώρος της τ.μ. της απόδοσης ενός χρεογράφου Ω x = (,+ ) 3 Ο δειγματικός χώρος της τ.μ. της ημερήσιας βροχόπτωσης στος σταθμό μέτρησης της πόλης του Ρεθύμνου Ω x = [0,+ )

Περιγραφή του Στατιστικού προβλήματος Συχνότητα(f) Συχνότητα f i (ή f(x i ))αποτελείτοσύνολοτωνποσοτήτωντουδείγματοςπου αντιστοιχούν σε κάθε συγκεκριμένη τάξη i του δειγματικού χώρου. 1 Εστωγιακάθε αντιστοιχούν {x 1,...,x n}, {f 1,...,f n}, {f(x 1 ),...,f(x n)}, συχνότητες. Οπου για το σύνολο του δείγματος N ισχύει: N = n f i. i=1

Παράδειγμα Να καθορίσεται το δειγματικό χώρο και τις αντίστοιχες θεωρητικές συχνότητες στο παίγνιο του τάβλι.

Περιγραφή του Στατιστικού προβλήματος Αθροιστική Συχνότητα(F) ΑθροιστικήΣυχνότητα F i (ή F(x i ))αποτελείτοάθροισματωνσυχνοτήτων f i των δειγματικών σημείων i στο όριο. Εστω για κάθε έχουμε: {x 1,...,x n}, F 1 = f 1, F 2 = f 1 + f 2 F 1 + f 2,. F n 1 = f 1 + +f n 1, F n 1 = f 1 + +f n F n 1 + f n.

Παραδείγματα δεδομένων μη-διακριτά δεδομένα(συν.) τιμές x i συχνότητες f i αθροιστικέςσυχνότητες F i (1, 65, 1, 66] 2 2 (1, 66, 1, 67] 5 7 (1, 67, 1, 68] 9 16 (1, 68, 1, 69] 7 23 (1, 69, 1, 70] 10 33 (1, 70, 1, 71] 3 36 (1, 71, 1, 72] 4 40 (1, 72, 1, 73] 1 41 (1, 73, 1, 74] 0 41 (1, 74, 1, 75] 4 45 (1, 75, 1, 76] 1 46 (1, 76, 1, 77] 0 46 (1, 77, 1, 78] 2 48 (1, 78, 1, 79] 3 51=N = 14 i=1 f i όπου f i ησυχνότητα(αριθμός)εμφάνισηςτουενδεχομένου x i. βεαμερ-τυ-λογ