Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Σχετικά έγγραφα
Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Κανόνες παραγώγισης ( )

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

11 Το ολοκλήρωµα Riemann

Περιεχόµενα. 1 Ολοκληρώµατα ιπλό Ολοκλήρωµα... 1

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

14 Εφαρµογές των ολοκληρωµάτων

Το θεώρηµα πεπλεγµένων συναρτήσεων

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Το θεώρηµα Αλλαγής µεταβλητής και οι µετασχηµατισµοί συντεταγµένων

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών


Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ


Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Ανασκόπηση-Μάθημα 24, 25 Διπλό ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής

x 2 = x x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

Ανοικτά και κλειστά σύνολα

ΚΕΦΑΛΑΙΟ 4 ΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. είναι διαµερίσεις των κλειστών διαστηµάτων [α,b] και [c,d] αντιστοίχως της µορφής

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

1 Το ϑεώρηµα του Rademacher

12 Το αόριστο ολοκλήρωµα

Αρµονική Ανάλυση. Ενότητα: Χώροι L p. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .

Κεφάλαιο 6 Παράγωγος

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι ( )

Ο ΕΥΚΛΕΙ ΕΙΟΣ ΧΩΡΟΣ. Το εσωτερικό γινόµενο

Αρµονική Ανάλυση. Ενότητα: Προσεγγίσεις της µονάδας και Αθροισιµότητα. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Στροβιλισµός πεδίου δυνάµεων

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση


ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

Αριθµητική Παραγώγιση και Ολοκλήρωση

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Ο ΕΥΚΛΕΙ ΕΙΟΣ ΧΩΡΟΣ. Το εσωτερικό γινόµενο

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1.

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Απαντήσεις Διαγωνισµού Μηχανικής ΙΙ Ιουνίου Ερώτηµα 2

( a) ( ) n n ( ) ( ) a x a. x a x. x a x a

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

11ο Πανελλήνιο Συνέδριο της ΕΕΦ, Λάρισα 30-31/03, 1-2/04/2006. Πρακτικά Συνεδρίου

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

6. Αρµονικές συναρτήσεις και συνοριακά προβλήµατα (Dirichlet).

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

x - 1, x < 1 f(x) = x - x + 3, x

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

KΕΦΑΛΑΙΟ 3. Πλεγµένες συναρτήσεις- Ανάπτυγµα Taylor-Aκρότατα

5 Γενική µορφή εξίσωσης ευθείας

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Υπόδειξη. (α) Άµεσο αφού κάθε υποσύνολο µηδενικού συνόλου είναι µετρήσιµο.

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Μη Γραµµική Συναρτησιακή Ανάλυση Το Θεώρηµα των Cauchy, Lipschitz, Picard.

4 Συνέχεια συνάρτησης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

1 Ορισµός ακολουθίας πραγµατικών αριθµών

5. Σειρές Taylor και Laurent. Ολοκληρωτικά υπόλοιπα και εφαρµογές.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ

Γραµµική Αλγεβρα Ι. Ενότητα: Γραµµικές απεικονίσεις. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ. f x > κοντά στο x0.

Σχολικός Σύµβουλος ΠΕ03

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

[ ], σχηµατίζουµε το άθροισµα. Το άθροισµα αυτό είναι µια δυαδική πράξη η οποία αντιστοιχεί στις ακολουθίες f [ 1

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η


11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

Transcript:

8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα. Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός πολλαπλού ολοκληρώµατος µε διαδοχική ολοκλήρωση και είναι το θεώρηµα Fubini και το δεύτερο που θα εξετάσουµε αργότερα µε την αλλαγή µεταβλητής. ιατυπώνουµε το θεώρηµα Fubini προς το παρόν για συναρτήσεις δύο µεταβλητών. = a, b, κλειστό ορθογώνιο 8. Θεώρηµα (Fubini ) Έστω [ ] [ ] στον και f : φραγµένη συνάρτηση. (ι) ν η f είναι συνεχής στο τότε b b f (, = f (, = f (, a a f (, a, b. όπου το σύµβολο b, σηµαίνει ότι η συνάρτηση [ ] ( ) a ολοκληρώνεται στο [ ] a, b f, (ιι) Έστω ότι η f είναι ολοκληρώσιµη στο. ν επιπλέον τα ολοκληρώµατα f (, υπάρχουν για κάθε [ a, τότε ( η [ ] ( ) a, b f, ολοκληρώνεται στο [ a, b ] και) ισχύει f (, = f (,. b νάλογα αν τα ολοκληρώµατα f (, υπάρχουν για κάθε [, ] a b a τότε b f (, = f (,. a Συνεπώς αν όλες αυτές οι συνθήκες ισχύουν ταυτόχρονα τότε b b f (, = f (, = f (,. a a Παρατηρήσεις. ) Οι υποθέσεις που κάναµε στον ισχυρισµό (ιι) του θεωρήµατος είναι περισσότερες απ ότι στον (ι). Είναι όµως αναγκαίες γιατί αν η f δεν είναι παντού συνεχής δεν έπεται αναγκαία ότι το ολοκλήρωµα f (, ) υπάρχει για κάθε [ a,. θα ) Ένα ανάλογο αποτέλεσµα ισχύει και για συναρτήσεις n µεταβλητών µε n. f : a, b, u, v Ι= f,, z z είναι η ν π.χ. η [ ] [ ] [ ] είναι συνεχής και ( ) τιµή του τριπλού ολοκληρώµατος, τότε υπάρχουν! = 6 διαδοχικά ολοκληρώµατα

88 της συνάρτησης f (,, z ) όλα µεταξύ τους ίσα. Π.χ. b v v b Ι= f (,, z) z = f (,, z) z a u u a Ποιοτική εξήγηση του θεωρήµατος Fubini Έστω :[, ] [, ] f a b συνεχής µε f. ν τεµαχίσουµε τον όγκο κάτω από το γράφηµα της f σε λεπτές φέτες π.χ. παράλληλες µε το zεπίπεδο, τότε προσεγγιστικά ο όγκος αυτός ισούται µε το άθροισµα των ποσοτήτων f (,, αφού f (, είναι το εµβαδόν κάτω από το γράφηµα της f :, f,. [ ] ( ) b Έπεται προφανώς ότι: f (, = f (, (). a Με ανάλογη διαδικασία τεµαχισµού σε φέτες παράλληλες µε το z επίπεδο b καταλήγουµε στον τύπο f (, = f (, () a Τελικά από τις () και () λαµβάνουµε τον τύπο του Fubini: b b f (, = f (, = f (,. a a Ως ένα αλγεβρικό ανάλογο του θεωρήµατος Fubini αναφέρουµε και την γνωστή n n n ταυτότητα: aκλ = aκλ κ, λ= κ= λ= Το θεώρηµα Fubini µπορεί να χρησιµοποιηθεί και για τον υπολογισµό ολοκληρωµάτων συναρτήσεων που δεν είναι ορισµένες αναγκαία σε ορθογώνια του. υτό µπορεί να γίνει αν το συνδυάσουµε µε τα αποτελέσµατα των προηγουµένων παραγράφων. Στην πράξη έχουµε το ακόλουθο πολύ χρήσιµο αποτέλεσµα που είναι συνέπεια του θεωρήµατος Fubini.

89 8. Θεώρηµα Έστω ϕ, ψ :[ a, συνεχείς συναρτήσεις ώστε ϕ( ) ψ( ) για κάθε [ a,. Θέτοµε D= (, : a b και ϕ( ) ψ( ). { } b ψ( ) Έστω f : D συνεχής. Τότε f (, = f (, D a. ϕ( ) πόδειξη: Παρατηρούµε ότι το D είναι συµπαγές υποσύνολο του ( γιατί; ) = a, b, κλειστό και η f ως συνεχής στο D είναι φραγµένη. Έστω [ ] [ ] ορθογώνιο ώστε D ( µπορούµε να πάρουµε ως min { ϕ( ) : [ a, } = ma { ψ( ) : [, ] } αφού οι, f (,, αν (, D g : ώστε g(, =, αν (, D = και ϕψ είναι συνεχείς). Ορίζουµε την συνάρτηση Τα σηµεία ασυνέχειας της g είναι όλα στο σύνορο του D, το οποίο είναι ένωση των γραφηµάτων των συναρτήσεων ϕψ, και δύο κατακόρυφων ευθυγράµµων τµηµάτων του, έτσι το D έχει διδιάστατο µέτρο µηδέν και η g από το θεώρηµα.9 της σελίδας 6 ( ή το πόρισµα. της σελίδας 6 ) είναι ολοκληρώσιµη. f, = g, () Έπεται ότι ( ) ( ) D πό το θεώρηµα Fubini έχουµε g(, (, ) b = g a (), αφού τα ολοκληρώµατα g(, υπάρχουν για κάθε [ a, ψ( ) (, ) = (, ) g f (). ϕ( ) και µάλιστα, ( Η συνάρτηση [, ] g(, είναι ολοκληρώσιµη για κάθε [ a, είναι φραγµένη και ενδεχοµένως ασυνεχής µόνο στα σηµεία ϕ ( ) και ψ ( ) ). πό τις εξισώσεις (),() και () έπεται το συµπέρασµα. αφού Παρατηρήσεις ) Ένας ανάλογος τύπος ισχύει και για σύνολα της µορφής, D, :, και ϕ ψ ϕψ, :, συνεχείς = {( ) [ ] ( ) ( )} όπου [ ] συναρτήσεις και ϕ( ψ( για κάθε [, ]. ν : f D συνεχής ψ( ) συνάρτηση τότε: f (, = f (, D. ϕ( Σηµειώνουµε ακόµη ότι το θεώρηµα 8. ισχύει και µε την υπόθεση ότι η f είναι ορισµένη στο εσωτερικό int( D ) του D και είναι συνεχής και φραγµένη εκεί ( γιατί; ). ες επίσης και την άσκηση (β) αυτής της παραγράφου. ) Τα υποσύνολα του που εµφανίζονται στην διατύπωση του θεωρήµατος 8. καθώς και στην παρατήρηση () ονοµάζονται χωρία του τύπου και του τύπου. Μερικές φορές ονοµάζονται και απλά αντίστοιχα απλά σύνολα.

9 Χωρία τύπου ονοµάζονται αυτά που µπορούν να έχουν ταυτόχρονα και τις δύο περιγραφές, δηλαδή να είναι του τύπου αλλά και του τύπου. Ένα τέτοιο παράδειγµα είναι ο µοναδιαίος δίσκος. Συνήθως τα χωρία τύπου, και, αναφέρονται και ως στοιχειώδη χωρία. Παρατηρούµε ότι ένα στοιχειώδες χωρίο είναι συµπαγές υποσύνολο του. ) Στην περίπτωση που στο θεώρηµα 8. ( πόρισµα του Fubini ) έχουµε f (, ) = για (, D τότε, = ( D) = Πράγµατι, b το εµβαδό του D. D ψ( ) b ψ( ) (, ) (, ) = ( ψ( ) ϕ( )) f = f = ϕ( ) ϕ( ) D a a b a = το εµβαδόν του χωρίου D, όπως γνωρίζουµε και από το Λογισµό της µιας µεταβλητής (πρβλ και µε τον ορισµό.8 του όγκου ενός Joran µετρήσιµου συνόλου στην σελίδα 4).

9 Το θεώρηµα µέσης τιµής για πολλαπλά ολοκληρώµατα Όπως και στον Λογισµό της µιας µεταβλητής τα πολλαπλά ολοκληρώµατα ικανοποιούν µια ιδιότητα µέσης τιµής. n 8. Λήµµα Έστω Joran µετρήσιµο και f, g : ολοκληρώσιµες συναρτήσεις, τότε ισχύουν (ι) ν f g f g f g. ( δηλαδή ( ) ( ) για κάθε ) τότε ( ) ( ). (ιι) ν f ( ) Μ για κάθε τότε f ( ) Μ V( ) πόδειξη: ρκεί να αποδείξουµε την ανισότητα όταν είναι κλειστό ορθογώνιο n του g f. πό τον ορισµό του ολοκληρώµατος iemann έπεται ότι ( ) και συνεπώς έπεται η ζητούµενη ανισότητα. (ιι) Η f ( ) Μ για κάθε ισοδυναµεί µε την Μ f ( ) Μ για κάθε () Επειδή οι σταθερές(όταν είναι ορισµένες σε Joran µετρήσιµα σύνολα) είναι ολοκληρώσιµες και Μ =Μ V( ) ( Πρβλ το παράδειγµα µετά την Προτ. 6.). Έπεται από την () ότι, Μ V( ) f ( ) Μ V( ) ανισότητα. και άρα η προς απόδειξη 8.4 Θεώρηµα ( µέσης τιµής για ολοκληρώµατα ). ν η f : είναι συνεχής και το Joran µετρήσιµο συµπαγές και συνεκτικό, τότε υπάρχει ώστε f ( ) = f ( ) V( ). ν V( ), η ποσότητα. πόδειξη: Έστω f ( ) V ονοµάζεται η µέση τιµή της f επί του ( ) λ= V f ( ) ( ). ( ν ( ) V = τότε το αποτέλεσµα έπεται προφανώς από τον ισχυρισµό (ιι) του Λήµµατος 8. ). Θέτοµε m min f : Μ= ma f : ( επειδή f συνεχής και = { ( ) } και { ( ) } συµπαγές η f έχει µέγιστη και ελάχιστη τιµή στο ). Συνεπώς m f ( ) Μ για κάθε., Άρα από το Λήµµα 8. έπεται ότι m V( ) = m f ( ) Μ =Μ V( ) ή m f ( ) Μ V ( )

9 D = + = + = + = ( ) ( ) = + 4 = = 8 4 = + = 4. + 8 = ) Υπολογισµός όγκου µε χρήση διπλού ολοκληρώµατος Να βρεθεί ο όγκος του στερεού που φράσσεται από πάνω από το επίπεδο z= και από κάτω στο επίπεδο από το πρώτο τεταρτηµόριο D του µοναδιαίου δίσκου +. Λύση Η συνάρτηση z f (, (, ) = που ολοκληρώνουµε στο D είναι η z= f = ( η δεύτερη προβολή π : ) Το D είναι χωρίο του τύπου. Εποµένως ο ζητούµενος όγκος V υπολογίζεται µε δύο τρόπους: ως: ( ) {, :, } {(, :, } D= ( τύπου ) = ( τύπου ) Για τον υπολογισµό της παράγουσας, ( ) u=. Έπεται ότι, ( ) u ( ) = u =. u= V = = D =. Υπολογίζουµε το δεύτερο διαδοχικό ολοκλήρωµα και έτσι βρίσκουµε: V = = ( ) = ( ) =. Το D περιγράφεται = = uu =, θέτοµε u =, συνεπώς

96 λλαγή της σειράς ολοκλήρωσης Έστω D χωρίο τύπου και f : D συνεχής συνάρτηση. Το D περιγράφεται µε δύο τρόπους ( ως τύπου και ) και άρα D=, : a b και ϕ ϕ = {( ) ( ) ( )} = (, : και ψ ( ψ ( { }. Έχουµε εποµένως τους τύπους: b ϕ( ) ψ ( ) f (, = f (, = f (, D a ϕ( ) ψ( ). ν θέλουµε να υπολογίσουµε το ένα από τα δύο διαδοχικά ολοκληρώµατα και τελικά το διπλό ολοκλήρωµα f (, - µπορούµε να το κάνουµε D υπολογίζοντας το άλλο ( εκείνο που υπολογίζεται ευκολότερα ). υτή η τεχνική λέγεται αλλαγή της σειράς ολοκλήρωσης Παραδείγµατα. )Να υπολογισθεί το εµβαδόν του χωρίου που ορίζεται ( φράσσεται) από την παραβολή = και την ευθεία =. Λύση Το χωρίο D είναι του τύπου και του τύπου, αφού D D, :,, :, + + = {( ) } = ( ) D {(, :, + } Σχήµα Ι Περιγραφή τύπου :, { } 4 f( ) = - g( ) = - - -4

f( ) = - 4 g( ) = 9 - - -4 Σχήµα ΙΙ Περιγραφή τύπου : Υπολογίζοντας το εµβαδόν του D ως χωρίο του τύπου, έχοµε: ( D) = = = ( ) ( ) = ( + ) = D 9 + = ν, όµως, θεωρηθεί ως χωρίο τύπου, είναι αναγκαίο να το διασπάσουµε σε δύο µέρη ( χωρία) όπως στο Σχήµα ΙΙ. D δίδεται από το άθροισµα των διαδοχικών Εποµένως το εµβαδόν ( ) ολοκληρωµάτων: ( ) = D = + D D Είναι σαφές ότι ο υπολογισµός του εµβαδού ( ) + + 9 + =... =. + D θεωρώντας το D ως χωρίο τύπου είναι συντοµότερος. Σηµείωση Τα σηµεία τοµής της παραβολής = και της ευθείας = βρίσκονται λύνοντας την εξίσωση = + = = ή =. = ( )( ) Άρα τα σηµεία τοµής είναι τα (, ), (, ). πό το προηγούµενο παράδειγµα συµπεραίνουµε ότι η µορφή του χωρίου ολοκλήρωσης D µπορεί να καθορίζει ποια διάταξη ( διαδοχικής ) ολοκλήρωσης είναι περισσότερο κατάλληλη για τον υπολογισµό µας. Όπως θα δούµε όµως στο επόµενο παράδειγµα η προς ολοκλήρωση συνάρτηση παίζει και αυτή ρόλο στην επιλογή της σειράς ολοκλήρωσης. )Υπολογίστε το διαδοχικό ολοκλήρωµα e.

98 Λύση εν µπορούµε να υπολογίσουµε το δοσµένο ολοκλήρωµα µε την διάταξη η οποία δίδεται καθώς η παράγουσα της συνάρτησης e δεν είναι στοιχειώδης συνάρτηση ( δεν µπορεί να υπολογισθεί ) Έτσι το δοσµένο ολοκλήρωµα θα υπολογισθεί αντιστρέφοντας την σειρά ολοκλήρωσης. Το χωρίο ολοκλήρωσης δίδεται στο ακόλουθο σχήµα και είναι βέβαια τύπου. Παρατηρούµε e = e = D () ( e = e = e = e e ) = ( ) {(, ) :, } (, :, e D= (τύπου ) { } ότι, = ( τύπου ) () Για τον υπολογισµό της παραγούσης e, θέτοµε u= άρα u=. Έπεται ότι, u e = e = e u = u e. u= Παράδειγµα. Να υπολογιστούν τα ολοκληρώµατα: () και () ( + ). ( + ) Λύση () Πρόκειται για µία από τις δύο εκφράσεις του διπλού ολοκληρώµατος στο ακόλουθο χωρίο D που είναι τύπου, D + ( ) τύπου {(, ) : και } = ( ) D= τύπου {, : και } Ισχύει ότι, D( ) = + ( + ) χ = ( + ) τύπου. τύπου Το δοσµένο διαδοχικό ολοκλήρωµα υπολογίζεται δύσκολα. Έτσι,

99 υπολογίζουµε το δεύτερο διαδοχικό ολοκλήρωµα που προκύπτει από την έκφραση του D ως χωρίο τύπου. Έτσι έχουµε: = = ( + ) ( ) = + = = ( + ) ( + 4 ) u u ( ) u = + = = 6 6 4 * Εδώ χρησιµοποιούµε την αλλαγή µεταβλητής () Όσον αφορά το ο διαδοχικό ολοκλήρωµα το χωρίο ολοκλήρωσης είναι το ( ) 4 u 4 6 4 6 4 4 = u= + u= τύπου, αλλά και τύπου, αν γραφεί ως ( ) Παρατηρηση.Το ολοκλήρωµα ( + ), παρατηρούµε ότι {, : και } D= και είναι {, : και } D= Έτσι αντί του δοθέντος διαδοχικού ολοκληρώµατος, που υπολογίζεται δύσκολα υπολογίζουµε το διαδοχικό ολοκλήρωµα που προκύπτει από την έκφραση του D ως χωρίο τύπου. = = ( + ) ( + ) = 4 = + ( ) ( ) ( ) + = = + = 6 6 u = 6 = Το 6 64 6 64 Ι= e του παραδείγµατος (), υπολογίζεται και µε ολοκλήρωση κατά µέρη: Θέτοµε G( ) = e, [,] παρατηρούµε ότι G( ) = e e G '( ) = e, [,]. Άρα, ( ) ' ( ) ( ) '( ) Ι= G = G = G G = G e e e ( ) ( ) = =... = ( ). και u u