A 1 A 2 A 3 B 1 B 2 B 3



Σχετικά έγγραφα
m i N 1 F i = j i F ij + F x

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

m 1, m 2 F 12, F 21 F12 = F 21


"BHFC8I7H=CB HC &CH=CB 5B8 &CA9BHIA

!"#$ % &# &%#'()(! $ * +

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές

Φυσική για Μηχανικούς

v := dr dt r = r 1 + r 2

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ευστάθιος Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟN ΑΘΗΝΩΝ,, ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ. ΚΥΛΙΣΗ, ΡΟΠΗ και ΣΤΡΟΦΟΡΜΗ

Φυσική για Μηχανικούς

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β

ΦΥΕ14-5 η Εργασία Παράδοση

Μοντέρνα Θεωρία Ελέγχου

ΣΥΝΟΨΗ 2 ου Μαθήματος

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

Φυσική για Μηχανικούς

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ. Εξέταση στη Μηχανική Ι Περίοδο Σεπτεµ ρίου 25Σεπτεµ ρίου2007

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2015

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Έργο Κινητική Ενέργεια. ΦΥΣ Διαλ.16 1

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Φυσική Προσανατολισμού, Θετικών Σπουδών. Ημερομηνία: 13 Ιουνίου 2018

) A a r a. Κίνηση σωματιδίου κάτω από επίδραση δύναμης. T = 1 2 m (!r 2 + r 2!θ 2. A a r a + C. = Ar a 1 dr V = F = V r V = Fdr

x sin 3x 3 sin 3x dx = 3 + C = ln x = x2 ln x d 2 2 ln x 1 x 2 x2 x2 e x sin x dx) e 3x 2x dx = ( 1 3 )x2 e 3x x 2 e 3x 3 2x 3 8x 2 + 9x + 1 4x + 4

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

Αναλυτική Μηχανική. Κεφάλαιο 2. Περίληψη. Προαπαιτούμενες γνώσεις

Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή

Περιεχόμενα. A(x 1, x 2 )

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 24 Σεπτεμβρίου 2018

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 17 Φεβρουαρίου 2015

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Aριστοβάθμιο Ενδεικτικε ς απαντή σεις στή φυσική Προσανατολισμου Πανελλή νιες

Κεφάλαιο 2 ΚΙΝΗΜΑΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι.

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός.

ΣΥΝΟΨΗ 1 ου Μαθήματος

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 13 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ

ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 4 Ο

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΦΥΣ. 131 Τελική Εξέταση: 13-Δεκεμβρίου-2006

ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΤΑΒΑΣΗ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ Γ

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ

ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

ΦΥΣΙΚΗ Ι. ΤΜΗΜΑ Α Ε. Στυλιάρης

Lifting Entry (continued)


11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

1 + Φ r /c 2 = 1 (1) (2) c 2 k y 1 + (V/c) 1 + tan 2 α = sin α (3) tan α = k y k x

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis

Φυσική για Μηχανικούς

f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr

ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού

Α Ρ Ι Θ Μ Ο Σ : 6.913

Ευσταθής - Ασταθής ισορροπία

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

Alterazioni del sistema cardiovascolare nel volo spaziale


Αυτόματος Έλεγχος. Ενότητα 2 η : Ανάπτυξη και Ανάλυση Προτύπων Δυναμικών Συστημάτων στον Αυτόματο Έλεγχο. Παναγιώτης Σεφερλής

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Φυσική Προσανατολισμού, Θετικών Σπουδών. Ημ/νία: 23 Μαΐου 2016

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β. β) Από το πυθαγόρειο θεώρηµα στο ορθογώνιο τρίγωνο ΚΛΣ ( ˆK = 90 0 ) παίρνου- 4 = 25λ 1

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΑΣΚΗΣΕΙΣ 2

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis

ΕΙΔΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

Jeux d inondation dans les graphes

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

ΣΥΝΟΨΗ 3 ου Μαθήματος

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! = mg " L & $ !

Ροπή δύναµης Μεθοδολογία ασκήσεων

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

Φυσική Ι. Σταύρος Κομηνέας. Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών. Πανεπιστήμιο Κρήτης


Φυσική Ι. Σταύρος Κομηνέας. Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών. Πανεπιστήμιο Κρήτης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ

Τεχνολογικό Πανεπιστήµιο Κύπρου

ΑΣΚΗΣΕΙΣ επάνω στην ύλη της Προόδου 1 Δ. ΚΟΥΖΟΥΔΗΣ. Τμήμα Χημικών Μηχανικών, Χειμερινό Εξάμηνο 2015

Κεφάλαιο 7. Στροφορμη Δυναμικη Στερεου Σωματος {Στροφική και Μεταφορική Κίνηση Στερεού Σώματος, Αρχή Διατήρησης Στροφορμής}

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες

Φυσική για Μηχανικούς

4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής

Transcript:

16 0 17 0 17 0 18 0 18 0 19 0 20 A

A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3

W = F s τ = r F

m A F = m A a m B F = G Mm B R 2 = m B g g = GM/R 2 a = m B m A g a = g m A = m B Kg Kg 1m/s 2 N = Kg m/s 2

v = d r dt r v = 0 m F = m a = m d2 r dt 2 p = m v m

F = d dt (m v) = d ( p) = p dt F = m d dt ( v) = md2 r dt 2 = m a d 2 r dt 2 = F m x d 2 x dt 2 = F m d x dt = F m t + c v(0) = v 0 c = v 0 x(t) = F 2m t2 + v 0 t + x 0 F = 0 0 = m a m S

S S S v 0 S m S v 0 S S S m S F 21 F 12 F 21 F 21 F 21 F 12 = F 21 a I = ω 2 R ω = 2π/T T = 24 3600sec R 6.45 10 6 m a I g/290

F 1 = p 1 = F 12 + F ext 1 F 2 = p 2 = F 21 + F ext 2 F i = p 1 p = p 1 + p 2 p = p 1 + p 2 = F 12 + F 1 ext + F 21 + F 2 ext F 12 = F 21 p = F 1 ext + F 2 ext p = 0 F ext = 0 p = constant

q 1 x v 1 q 2 y v 2 q 1 B 1 q 2 B 1 q 2 z q 2 F 21 = q 2 v 2 B 1 x B 2 q 2 z F 12 = q 1 v 1 B 2 q 1 y F21 + F 12 0 z B 1 x 1 2 F21 12 B F 2 y B

(x, y) x = x(t), y = y(t) x, y x = r ϕ y = r ϕ r = (x 2 + y 2 ) 1 2 ϕ = 1 y r = 1 x r r = r(t), ϕ = ϕ(t) ϕ ϕ [ π, π] ê r, ê ϕ r(t) r(t) = rê r ê r = î ϕ + ĵ ϕ ê ϕ ê ϕ = î ϕ + ĵ ϕ ê r, ê ϕ î, ĵ ϕ dê r dϕ = î ϕ + ĵ ϕ ê ϕ dê ϕ dϕ = î ϕ + ĵ ϕ ê r

t v(t) = d v dt d r(t) dt = d{r(t)ê r(t)} dt = dr(t) ê r (t) + r(t) dê r(t) dt dt dê r(t) dt = dϕ dt êϕ v(t) = dr dt êr + r dϕ dt êϕ [ d 2 ( ) ] r dϕ 2 [ ] α(t) = dt 2 r ê r + r d2 ϕ dt dt 2 + 2dr dϕ ê ϕ dt dt α(t) = α r ê r + α ϕ ê ϕ F = F r ê r + F ϕ ê ϕ ( ) F r = m d2 r dϕ 2 dt 2 mr dt F ϕ = mr d2 ϕ dt 2 + 2mdr dϕ dt dt F r F ϕ = 0

x, y, z r, θ, ϕ x = r θ ϕ, 0 r < y = r θ ϕ, 0 ϕ 2π z = r θ, 0 θ π r = r = x 2 + y 2 + z 2 r = r(t), θ = θ(t), ϕ = ϕ(t) r = rê r ê r = ϕ θ î + ϕ θ ĵ + θ ˆk r ê r dê r dt = 0 dê r ê r dt dê r dt = θ ê r θ + ϕ ê r ϕ = θ ê θ + ϕ θê ϕ

ê θ = ( ϕ î + ϕ ĵ) θ θ ˆk ê ϕ = ϕ î + ϕ ĵ ê r ê r, ê θ, ê ϕ ê θ r (xy) z ê ϕ (xy) x 1, x 2, x 3 θ ê r θ ê θ = ˆk

ê ϕ dê θ dt = θ ê θ θ + ϕ ê θ ϕ = θ ê r + ϕ θê ϕ dê ϕ dt = ϕ( ϕî + ϕĵ) θ dê ϕ dt θ dê ϕ dt = ϕ θ ( ϕî + ϕĵ) = ϕ(ê r θˆk) = ϕ(ê r θ( θê r θê θ )) θ dê ϕ dt = ϕ( 2 θê r + θ θê θ ) ˆv = d r dt = ṙê r + r dê r dt = ṙê r + r θê θ + r ϕ θê ϕ v = v r ê r + v θ ê θ + v ϕ ê ϕ v(t) = ṙê r + r θê θ + r ϕ θê ϕ

a = a r ê r + a θ ê θ + a ϕ ê ϕ a r = r r θ 2 r ϕ 2 2 θ a θ = r θ + 2ṙ θ r ϕ 2 θ θ a ϕ = r ϕ θ + 2ṙ ϕ θ + 2r ϕ θ θ F = m a = ma r ê r + ma θ ê θ + ma ϕ ê ϕ

m v 0 δv 0 R t δt = 2π R δv 0 ; t l 0 = v 0 t v 0 +δv 0 l = (v 0 + δv 0 )t = l 0 + δl t δt δl = δv 0 t δl 0 = (δv 0 2)π R δv 0 = 2πR! m A F = m A a m B F = G Mm B R 2 a = G Mm B R 2 = m B g m A m A a = g m A = m B

F = ke x/λ m x 0 = 0 v 0 > 0 x v = 0 x m d2 x = k e x/λ dt2 F (x) d 2 x dt 2 = d dx dv (v) = dt dt dx = v dv dx v dv = k e x/λ dx v 2 v 2 0 = 2kλ m ( ) e x/λ 1 v 2 = 2kλ m v 0 > 0 v = v 20 ( v2 1 e x/λ) x v = v 2 0 v2 v 0 = v dx dt = v = v0 2e x/λ = v 0 e x/2λ x(t) = 2λ (1 + v 0t 2λ ) v(t) = v 0 1 + v 0t 2λ

µ m m l θ ϕ = ω r = λ e ωt F N m M m 1 m 2 > m 1 F

m M F m 1 M T T m 2 B F T ` T T B 1 B 2 F = k k > 0 x 3 x 0 v 0 = 0

x = 0 2α l v 0 = gl α. dê ϕ dt = ϕ( θê r + θê θ ) θ( ϕî + ϕĵ) = ê r θˆk m R T e er B v 0 v0 2 /g = 1m (x, y) y (x, y) ) y = v2 0 (1 g2 2g v0 4 x 2 y = 1 2 (1 x2 )

m v 0 C 0 < ϕ 0 < π 2 ϕ ϕ 0 C D = 1 f(v) = bv cv 2 v b, c b = β D, β = 1.6 10 4 Ns/m 2 c = γ D 2, γ = 0.25Ns/m 4 t = 0 v 0 = 0.625 m/s M = bτ 0 τ 0 = 1 s t v 0 /2 AB m ϕ OA F = kx k x m x = a (ω 1 t), y = b (ω 2 t) y T A 0 P O Q x O B

x, y m v M ṙ = r = 0 ϕ = 0 f r = r r ϕ 2 = r ϕ 2 T = R ϕ 2 ϕ = ω = v/r T = mrv 2 /R 2 = mv 2 /R a r = r r ϕ 2 = ( ω) 2 r 0 e ωt rω 2 = 0 a ϕ = r ϕ + 2ṙ ϕ = 2rω 2 F = (Nm)a a = F Nm a T 1 T 1 = ma = m F Nm = F N m M

T 2 T 1 T 2 T 1 = ma T 2 = T 1 + ma = 2F N n T n = nf N m 2 T = M 2 = m 2 g m 1 a T = m 1 a a = m 2 m 1 g M F = (M + m 1 + m 2 )a = (M + m 1 + m 2 ) m 2 m 1 g θ = a r = l F r F r = m ( r r θ 2 r ϕ 2 2 θ ) 2 α θ=a,r=l r mg α g ϕ α = l α v = ωr ω = ϕ, R = l α v = gl α

F r = (T + B ϕ) F ϕ = B ϕ F r = m( r r ϕ 2 ) F ϕ = m(r ϕ + 2ṙ ϕ) r = R ṙ = r = 0 mr ϕ 2 = T + mg ϕ R ϕ = g ϕ T 0 v gr R ϕ + g ϕ = 0 ϕ = ϕ d dϕ ϕ ( d ϕ 2 + 2g ) dϕ R ϕ = 0 ϕ 2 + 2g R ϕ = C dϕ C 2 ϕ = g R dt

C ϕ = π/2 v 1 = gr C = 3g/R dϕ g = 3 2 ϕ R dt ϕ E( π 2ϕ g, 4) = 4 R t x = v 0 t ϕ y = v 0 t ϕ 1 2 gt2 y = x ϕ 1 2 g v 2 0 x 2 2 ϕ ϕ = 0 y = 0 x = v 0 t ϕ 0 x dy dϕ = x ( 2 1 gx ) ϕ v0 2 ϕ = 0 ϕ = v2 0 gx ) y = v2 0 (1 g2 2g v0 4 x 2 y = 1 2 (1 x2 ) y = v 0 t ϕ 1 2 gt2 x = v 0 t ϕ

0 C 0 ϕ 0 ϕ 0 C y x = ϕ 0 t τϵλ. = = 2v 0 (ϕ ϕ 0 ) g ϕ 0 l l = x = v 0t τϵλ. ϕ = 2v2 0 ϕ (ϕ ϕ 0) ϕ 0 ϕ 0 2 ϕ 0 dl dϕ = 0 ϕ = ϕ 0 2 + π 4 l = v 2 0 g(1 + ϕ 0 )

f( v) f( v) b v c v v + = bvê v cv 2 ê v + ê v v b β d, c = γ d 2 d α, β γ/β 1.6 10 3 s/m 2 f 2 1.6 10 3 (sec/m 2 ) d v f 1 v = 10m/s d = 5cm f 2 /f 1 800 v 5 10 5 m/s d 10 6 m f 2 /f 1 10 7

f 2 /f 1 R = ρ η d v R R f = b v, b > 0 b Kg/s m v = bv dv dt = m b v m b τ = m b, b 0 dv v = dt τ, τ 0 t 0 = 0 v 0 b 0 v v 0 = t τ v = v 0 e t/τ t 0 = 0 x 0 = 0 x(t) = v 0 τ (1 e t/τ )

x 0.50 x v 0 t 0.45 0.40 0.35 0.5 1.0 1.5 2.0 2.5 3.0 t x(t) t = 0 x(0) = 0 t x(t ) = v 0 τ(1 0) = v 0 τ x = v 0 τ τ v 0 m g y 0 v 0 f(v) = bv m dv dt = mg bv v > 0 v 0 > 0 t 0 = 0 τ = m/b b 0 τ dv dt = gτ v

-b mg bv v 0 < gτ v oρ = gτ v oρ dv v oρ v = d(v oρ v) = dt v oρ v τ v oρ v v oρ v 0 = t τ v = v oρ + (v 0 v oρ ) e t/τ v 0 > v oρ v 0 = v oρ y(t) = y 0 + v oρ t + (v 0 v oρ ) τ (1 e t/τ ) y

v v 0 v ΟΡ. 1.4 1.2 1.0 0.8 0.6 1 2 3 4 t mg f(u) m dv dt = mg bv τ 0, τ v = v oρ + (v 0 + v oρ ) e t/τ y(t) = y 0 v oρ t + (v 0 + v oρ ) τ(1 e t/τ ) v 0 = v 0x î + v 0y ĵ t 0 = 0 x 0 = y 0 = 0 x, y x(t) = v 0x τ(1 e t/τ ) y(t) = v oρ t + (v 0y + v oρ ) τ(1 e t/τ )

y = y(x) x(t) 1 e t/τ = x v 0x τ t = τ (1 x v 0x τ ) y(t) y(x) = v 0y + v oρ v 0x x + v oρ τ (1 x v 0x τ ) x y = 0 y = κx + λ (1 x µ ) κ = v 0y + v oρ v 0x λ = v oρ τ µ = v 0x τ x max y = 0 x κx + λ (1 x µ ) = 0 x 2 x 3 (1 x µ ) x µ 1 2 µ 2 1 3 µ 3... (1 x µ ) x µ 1 2 x 2 µ 2

x = 2µ( κµ λ 1) κ, µ, λ x = 2 v 0xv 0y g ( x κx = λ µ + 1 x 2 2 µ 2 + 1 x 3 ) 3 µ 3 x 2µ ( κµ ) x = 2µ λ 1 2 x 2 3 µ 2 g x 2 + x 2 v 0xv 0y = 0 3 v 0x v oρ g x ( ) x max = 3 v 0x v oρ 1 + 1 + 16 v 0y 4 g 3 v oρ 1 + x 1 + 1 2 x + 1 8 x2 x max = 2 v ( 0xv 0y 1 4 ) v 0y g 3 v oρ v 2 t 0 = 0 x 0 = 0 v 0 > 0

x 1.5 1.0 Linear Quadratic 0.5 1 2 3 4 t x(t) f(v) = cv 2 m dv dt = cv2 τ = m cv 0 v(t) = v 0 1 + t τ t x(t) = v 0 τ (1 + t/τ) x = v 0 τ

v 2 cv 2 m dv = mg cv2 dt mg = cv 2 mg v oρ = c dv 1 v2 v 2 oρ dv 1 v + dv v oρ 1 + v = gdt v oρ v 0 = 0 v oρ v v oρ + v = 2 gt v oρ = 2gdt v = v oρ gt v oρ z z z 3 /3 ( v(t) gt 1 1 ( ) ) gt 2 3 y(t) = v oρ 2 g v oρ gt ( ) v oρ ( z) z 2 /2 z 4 /12 ( y(t) 1 2 gt2 1 1 ( ) ) gt 2 6 v oρ

ρ Q ρ a v τ E v τ Q = (ρ ρ a)v g (1 + v τ ) E v τ D = 1 f(v) = bv cv 2 v b, c b = β D, β = 1.6 10 4 Ns/m 2 c = γ D 2, γ = 0.25Ns/m 4 t = 0 v 0 = 0.625 m/s M = bτ 0 τ 0 = 1 s t v 0 /2 i m bv+cv 2 c = 2b 2 /(mg) m/b = τ. m v = mg bv cv 2 v = 0 mg = bv t + cv 2 t v t = b ± b 2 + 4mgc c v t = 1 2 gτ m n F res = kv n Newton m dv dt + kvn = 0

n t v(0) = v 0, x(0) = 0 R ρ ρ m f = π 5 ρ mr 2 v 2 h λv 3 /2 x v 0 t(1 1 t 4 τ ) v 0 f = cv 2 dv dt = g(1 + v2 /v 2 ρ) h = v2 ρ 2g ) (1 + v2 v 2 ρ dv dt = dy dv dt dy = v dv dy = 1 dv 2 2 dy