Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015



Σχετικά έγγραφα
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 9

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

b proj a b είναι κάθετο στο

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι Εξετάσεις (Λύσεις)

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)

Λύσεις στο επαναληπτικό διαγώνισμα 3

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Γιάνναρος Μιχάλης. 9x 2 t 2 7dx 3) 1 x 3. x 4 1 x 2 dx. 10x. x 2 x dx. 1 + x 2. cos 2 xdx. 1) tan xdx 2) cot xdx 3) cos 3 xdx.

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ Οι συντεταγμένες ενός σημείου Απόλυτη τιμή...14

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.

x sin 3x 3 sin 3x dx = 3 + C = ln x = x2 ln x d 2 2 ln x 1 x 2 x2 x2 e x sin x dx) e 3x 2x dx = ( 1 3 )x2 e 3x x 2 e 3x 3 2x 3 8x 2 + 9x + 1 4x + 4

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 4


1 3 (a2 ρ 2 ) 3/2 ] b V = [(a 2 b 2 ) 3/2 a 3 ] 3 (1) V total = 2V V total = 4π 3 (2)

x 3 D 1 (x 1)dxdy = dydx = (x 1)[y] x x 3 dx + x)dx = 3 x5

σ (9) = i + j + 3 k, σ (9) = 1 6 k.


ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη

 = 1 A A = A A. A A + A2 y. A = (A x, A y ) = A x î + A y ĵ. z A. 2 A + A2 z

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

2x 2 + x + 1 (x + 3)(x 1) 2 dx, 2x (x + 1) dx. b x 1 + x dx x x 2 1, 6u 5 u 3 + u 2 du = 6u 3 u + 1 du. = u du.

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος

ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Συναρτήσεις Πολλών Μεταβλητών

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

x + ax x x 4 να είναι παραγωγίσιμη στο x Υπόδειξη: Μπορείτε να εφαρμόσετε κανόνα L Hospital ή μπορεί σας χρειαστεί η sin sin = 2sin cos

Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.

Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010

Λύσεις στο Επαναληπτικό Διαγώνισμα 2

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

dx cos x = ln 1 + sin x 1 sin x.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΘΕΩΡΙΑ ΚΕΛΥΦΩΝ. Καθ. Βλάσης Κουµούσης

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

Άσκηση 1. i) ============================================================== Πρέπει αρχικά να είναι συνεχής στο x = 1: lim. lim. 2 x + x 2.

Πανελλαδικές εξετάσεις Μαθηµατικά Προσανατολισµού Γ Λυκείου. Ενδεικτικές Απαντήσεις ϑεµάτων. Θέµα Β. (α) ϑεωρία. (ϐ) i, ii) ϑεωρία.

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

Περιεχόµενα. 1 Ολοκληρώµατα ιπλό Ολοκλήρωµα... 1

Μαθηματική Ανάλυση Ι

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Ολοκλήρωση. Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι

2 η Εργασία Ημερομηνία Αποστολής : 21 Ιανουαρίου Άσκηση 1. Να υπολογίσετε τα παρακάτω όρια χρησιμοποιώντας τον Κανόνα του L Hopital:

Παράρτημα Αʹ. Ασκησεις. Αʹ.1 Ασκήσεις Κεϕαλαίου 1: Εισαγωγή στη κβαντική ϕύση του ϕωτός.

Κεφάλαιο 3 Πολλαπλά Ολοκληρώματα

ΟΛΟΚΛΗΡΩΣΗ - ΑΣΚΗΣΕΙΣ. ) dx. 1. Να υπολογίσετε τα παρακάτω αόριστα ολοκληρώματα. 2. Να υπολογίσετε τα παρακάτω αόριστα ολοκληρώματα.

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

20 επαναληπτικά θέματα

Φυσική για Μηχανικούς

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ (ΠΕΡΙΣΤΡΟΦΙΚΗ ΑΔΡΑΝΕΙΑ )

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική Ι 20 Οκτωβρίου 2011

y = u i t 1 2 gt2 y = m y = 0.2 m

+ cos(45 ) i + sin(45 ) j + cos(45 ) i sin(45 ) j +

ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Ι

z k z + n N f(z n ) + K z n = z n 1 2N

P H Y S I C S S O L V E R ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Ι ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ Ι. Σχολή Αγρονόμων & Τοπογράφων Μηχανικών ΕΞΕΤΑΣΤΙΚΕΣ ΠΕΡΙΟΔΟΙ

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( ( videos/bulletproof-balloons) n=0

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1.

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

ΘΕΜΑΤΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ «ΜΑΘΗΜΑΤΙΚΑ ΙΙ» ΑΚΟΛΟΥΘΙΕΣ ΚΑΙ ΟΡΙΑ ΑΚΟΛΟΥΘΙΩΝ. lim. (β) n +

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

Μαθηµατικα Γενικης Παιδειας Γ Λυκειου

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους.

Ασκήσεις Διανυσματικής Ανάλυσης

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας

Αόριστο ολοκλήρωμα. επαληθεύει την παραπάνω ισότητα.

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

Έντυπο Yποβολής Αξιολόγησης ΓΕ

14 Εφαρµογές των ολοκληρωµάτων

s(t) = + 1 γ 2 (2 µονάδες)

Transcript:

Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 215 Άσκηση 1: (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (ax+b)(x 2 +1) αν το a είναι ϑετικός αριθµός. (ϐ) Το µεσηµέρι, ένα σαλιγκάρι που ϐρίσκεται στο κέντρο ενός ανοικτού ωρολογίου αρχίζει να κινείται µε σταθερή ταχύτητα πάνω στο ωροδείκτη και ϕτάνει στο άκρο του στις 13:. Ο ωροδείκτης έχει µήκος ένα µέτρο και κινείται µε σταθερή γωνιακή ταχύτητα. (1) Γράψτε τις παραµετρικές συναρτήσεις που περιγράφουν τη ϑέση του σαλιγκαριού τη χρονική στιγµή t διαλέγοντας ένα ϐολικό για το συγκεκριµένο πρόβληµα σύστηµα καρτεσιανών συντεταγµένων. (2) Υπολογίστε το µήκος της [ καµπύλης που ϑα διανύσει το σαλιγκάρι σε αυτή την ώρα. (Υπόδειξη: 1+x 2 = 1 2 x 1+x2 +sinh 1 (x) ] ) Άσκηση 1 Λύση: (α) (ax+1)(x 2 +1) = 1 ( a 2 +1 Οπότε a 2 ) ax 1 ax+1 x 2 +1 = 1 a 2 +1 [aln ax+1 a 2 ln(x2 +1)+arctan(x)]+c c (ax+1)(x 2 +1) = lim c (ax+1)(x 2 +1) = 1 ( alna+ 1 ) a 2 +1 2 (ϐ) Το άκρο του ωροδείκτηqϑα έχει συντεταγµένεςq = (cosθ,sinθ) (σε µονάδες µέτρου). Το θ ϑα εκφραστεί σε µονάδες χρόνου µε απλή αναλογία { π/2,t = θ = π/3,t = 1 1

και επειδή η γωνία ϑα αυξάνει γραµµικά µε το χρόνο, άρα θ = (π/3) (π/6)t Η ϑέση του σαλιγκαριού ϑα είναι P = (tcosθ,tsinθ) άρα [ π x = tcos 2 π ] 6 t ( π ) y = tcos 6 t ( π ) = tsin 6 t Υπολογίζουµε τις παραγώγους ẋ(t) = sin(u(t))+t u(t)cos(u(t)) ẏ(t) = cos(u(t)) t usin(u(t)) όπου u(t) = πt/6 και ẋ 2 +ẏ 2 = 1+(πt/6) 2 άρα το µήκος της τροχιάς ϑα είναι L = 1 1+(πt/6)2 dt = 36+π 2 12 + 3sinh 1 π/6) π Άσκηση 2: Η πυκνότητα ενέργειας της ηλεκτροµαγνητικής ακτινοβολίας που εκπέµπει το µέλαν σώµα ϑερµοκρασίας Τ στο µήκος κύµατος λ υπολογίζεται από το νοµο του Planck U(λ) = 8πhc λ 5 (e hc/(λkt) 1) 2

όπου h είναι η σταθερά Planck, c η ταχύτητα του ϕωτός και k η σταθερά του Boltzman. (α) Αξιοποιώντας το ανάπτυγµα MacLauren δείξτε οτι για µεγάλες τιµές του µήκους κύµατος, έτσι ώστε hc/(λkt) 1 ϑα ισχύει προσεγγιστικά η σχέση U(λ) 8πkT λ 4 που είναι γνωστή στη ϕυσική ως νόµος Rayleigh Jeans. (ϐ) Η συνάρτηση U(λ) (ο νόµος του Planck ) παρουσιάζει µέγιστο στο µήκος κύµατος λ max. είξτε ότι το λ max 1/T (νόµος του Wien ). Άσκηση 2 Λύση: (α) Αναπτύσσοντας το e x 1 + x και εισάγοντας το στο νόµο του P lanck υπολογίζουµε εύκολα το Ϲητούµενο. (ϐ) Επειδή ο αριθµητής είναι σταθερός, αρκεί να ϐρούµε το σηµείο που ελαχιστοποιείται η συνάρτηση g(λ) = λ 5 (exp(hc/(λkt) 1). Από τη σχέση dg dλ = 5λ4 e hc/(λkt) ehc/(λkt) hcλ 3 = λ max 1 kt T Άσκηση 3: Επιλέξτε 2 από τα 3 υποθέµατα και λύστε τα. (α) Αποδείξτε ότι: sinh 1 x = ln(x+ x 2 +1) (ϐ) Αποδείξτε ότι: d/(tanh 1 x) = 1/(1 x 2 ) (γ) Βρείτε το όριο: lim x (sinx) sinx Λύση Άσκησης 3: (α) y = sinhx = ex e x 2 = 2y = e x 1 e x Θέτωνταςz = e x παίρνουµε2y = z 1/z, η λύση της οποίας είναιz = y± y 2 +1. Αφού δε έχουµε z = e x >, συνεπάγεται ότι z = e x = y + y 2 +1 = x = ln(y + y 2 +1) = sinh 1 y Άρα τελικά αντικαθιστώντας το y µε x έχουµε: sinh 1 x = ln(x+ x 2 +1) (ϐ) y = tanh 1 x = x = tanhy = = 1 = d (tanhy) = sech2 y dy dy = 1 sech 2 y = 1 1 tanh 2 y = 1 1 x 2 3

(γ)lim x f(x) όπουf(x) = (sinx) sinx. Εχουµε λοιπόνlim x f(x) = = lim x f(x) = e lim x lnf(x) Εποµένως ϑέλω να ϐρω το όριο: ln(sin x) lim[sinxln(sinx)] = lim x x 1/sinx = lim cosx/sinx x cosx/sin 2 x = limsinx = x = lim x f(x) = explim x lnf(x) = 1 Άσκηση 4: ύο αυτοκίνητα κινούνται σε ευθείες λεωφόρους που τέµνονται κάθετα. Το αυτοκίνητο Α πλησιάζει τη διασταύρωση µε ταχύτητα v A = 1km/h και το δεύτερο αυτοκίνητο µε ταχύτητα v B = 13km/h. Ποιος ο ϱυθµός µεταβολής της απόστασης µεταξύ των 2 αυτοκινήτων την στιγµή που το Α και Β αυτοκίνητο απέχουν 5 και 12 km αντίστοιχα από την διασταύρωση. Λύση Άσκησης 4: Εχουµε r(t) 2 = x(t) 2 +y(t) 2 και παραγωγίζοντας ως προς τον χρόνο 2r dr [ dt = 2x ] dt +2ydy = [2xv A +2yv B ] dt Κατά την Ϲητούµενη στιγµή έχουµε r 2 = 5 2 +12 2 και εποµένως: dr dt = xv A +yv B x2 +y = 5 1+12 13 = 158.46km 2 25+144 Το αποτέλεσµα είναι σωστό όποιο και πρόσηµο να έχετε ϐάλει. Άσκηση 5: α) Να προσδιορισθεί το αόριστο ολοκλήρωµα: sin 2 xcos 2 x. ϐ) Να υπολογισθεί το εµβαδόν της τοµής του καρδιοειδούς r = 3+2cosθ και του κύκλου r = 3. Λύση Άσκησης 5: α) Η συνάρτηση είναι άρτια ως προς sinx και cosx. Άρα, ϑεωρούµε το µετασχηµατισµό u = tan x. Τότε sinx = u, cosx = 1 du, = 1+u 2 1+u 2 1+u. 2 Εποµένως, το Ϲητούµενο ολοκλήρωµα γράφεται (1+u 2 )du du = u 2 u + 2 du = 1 u +u+c 4

sin 2 xcos 2 x = 1 tanx +tanx+c. Σηµείωση: Υπάρχουν και άλλοι τρόποι λύσης. ϐ) r 1 = 3+2cosθ, r 2 = 3. Πεδίο ορισµού: θ [,2π). Σηµεία τοµής: r 1 = r 2 θ = ±π/2. Σχέσεις µετασχηµατισµού: x = rcosθ και ψ = rsinθ. Ζητούµενο εµβαδόν: E = 2(E 1 +E 2 ). E 2 = 1 2 π π/2 r2 1 dθ = 1 2 E 1 = πr2 2 4 = 9π 4. π π/2 (3+2cosθ)2 dθ (cos 2 θ = [1+cos(2θ)]/2) E 2 = 11π 4 6. Συνεπώς: E = 1π 12. Άσκηση 6: Θεωρούµε τη πεπερασµένη επιφάνεια που δηµιουργείται από τη τοµή των καµπύλων z = f 1 (x) = x και z = f 2 (x) = x 3 µε x. Να υπολογισθεί ο όγκος του στερεού που δηµιουργείται από τη περιστροφή της παραπάνω επιφάνειας (α) ως προς τον άξονα x και (ϐ) ως προς τον άξονα z. Λύση Άσκησης 6: Οι συναρτήσειςz = x καιz = x 3 τέµνονται στα σηµεία(,) και(1,1). 5

α) Το στερεό που δηµιουργείται από την περιστροφή του γραµµοσκιασµένου χωρίου, ως προς τον άξονα Ox, έχει όγκο V 1 = π 1 (x 2 x 6 ) V 1 = 4π 21. ϐ) Οταν η περιστροφή γίνει ως προς τον άξονα Oz, έχουµε V 2 = π 1 (z 2/3 z 2 )dz V 2 = 4π 15. Σηµείωση: Στις προηγούµενες λύσεις χρησιµοποιήθηκαν κυλινδρικοί δίσκοι (διατµήσεις). Στη δεύτερη περίπτωση ϐολεύει και η µέθοδος των κυλινδρικών ϕλοιών. Τότε, ϑέτοντας z 1 = x και z 2 = x 3. dv 2 = 2πxz 1 2πxz 2 V 2 = 4π 15, 6