ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη χρονική στιγμή. α) Ποια είναι η πιθανότητα να λάβει ο ανιχνευτής σήμα μεγέθους μεγαλύτερου από 00 και μικρότερου από 3; Έστω Χ η τυχαία μεταβλητή που δείχνει το μέγεθος του σήματος. Γνωρίζουμε ότι η τ.μ. X 00 X 00 Z = = 6 6 ακολουθεί τυποποιημένη κανονική κατανομή Ν(0,). η πιθανότητα που ζητείται είναι ίση με 00 00 X 00 3 00 P(00 X 3) = P = P( 0 Z ) =Φ() Φ(0) 6 6 6 όπου Φ είναι η συνάρτηση κατανομής της τυπικής κανονικής που δίνεται από πίνακες. Από τον πίνακα βρίσκουμε Φ()=0.977 και Φ(0) =0.. Συνεπώς P(00 X 3) = 0.977 0. = 0.477. β) Ποια είναι η πιθανότητα δεδομένου ότι το μέγεθος του σήματος ήταν μεγαλύτερο από 6 να είναι μικρότερο από 3; P(6 < X 3) P( < Z ) Φ() Φ() PX ( 3 X> 6) = = =. PX ( > 6) PZ ( > ) Φ() Από τον πίνακα βρίσκουμε ()=0.977 και Φ() =0.843, επομένως 0.977 0.843 PX ( 3 X> 6) = = 0.866 0.843 γ) Τι αντιπροσωπεύουν οι αριθμοί 00 και 6; Ξέρουμε ότι αν η τ.μ. Χ ακολουθεί κανονική κατανομή Ν(μ,σ ), οι παράμετροι δηλώνουν τη μέση τιμή μ και τη διασπορά σ. στην περίπτωση αυτή η μέση τιμή του μεγέθους του σήματος είναι ίση με 00 και η διασπορά με 6.
. Ισχύουν τα δεδομένα του θέματος. α) Επιλέγονται τυχαία σήματα από αυτά που έλαβε ο ανιχνευτής σε μια χρονική περίοδο. Ποια είναι η πιθανότητα να βρεθούν τουλάχιστον με μέγεθος μεγαλύτερο από 00. Ποιος είναι ο αναμενόμενος αριθμός σημάτων με μέγεθος μεγαλύτερο από 00; Αναφέρετε τις υποθέσεις που πρέπει να ισχύουν για την κατανομή που θα χρησιμοποιήσετε. Κάθε σήμα ακολουθεί την ίδια κατανομή Ν(00, 6) επομένως η πιθανότητα να έχει μέγεθος μεγαλύτερο του 00 είναι ίση με ½ (επειδή η μέση τιμή είναι 00 και η κανονική κατανομή είναι συμμετρική ως προς τη μέση τιμή). Έστω σήματα και Μ η τυχαία μεταβλητή που δείχνει τον αριθμό από αυτά που έχουν μέγεθος μεγαλύτερο του. Υποθέτουμε ότι τα σήματα είναι ανεξάρτητα. Αν θεωρήσουμε επιτυχία το ενδεχόμενο ένα σήμα να είναι μεγαλύτερο του 00, τότε η τ.μ. Μ εκφράζει τον αριθμό επιτυχιών σε ανεξάρτητες επαναλήψεις ενός πειράματος όπου η πιθανότητα επιτυχίας για κάθε επανάληψη είναι ίση με ½. η Μ ακολουθεί διωνυμική κατανομή Β(N,p), με N=, p=/.. Η πιθανότητα που μας ενδιαφέρει είναι ίση με PM ( ) = PM ( < ) = PM ( = 0) PM ( = ). Από τη διωνυμική κατανομή βρίσκουμε n 0 n PM ( = 0) = p( p) = ( ) = 0 n PM p p n ( = ) = ( ) = = PM ( ) = 3 = 0.9968. Ο αναμενόμενος αριθμός σημάτων με μέγεθος μεγαλύτερο του είναι ίσος με την αναμενόμενη τιμή της τ.μ. Μ. Για τη διωνυμική κατανομή γνωρίζουμε ότι Ε(Μ)=np, επομένως EM ( ) = = 6 β) Επιλέγονται τυχαία 00 σήματα από αυτά που έλαβε ο ανιχνευτής σε μια χρονική περίοδο. Ποια είναι η πιθανότητα να βρεθούν τουλάχιστον με μέγεθος μεγαλύτερο από 48. Αναφέρετε τις υποθέσεις που πρέπει να ισχύουν για την κατανομή που θα χρησιμοποιήσετε. Υποθέτουμε πάλι ότι τα 00 σήματα είναι ανεξάρτητα και το μέγεθος καθενός ακολουθεί κανονική κατανομή Ν(00,6). Η πιθανότητα ένα σήμα να έχει μέγεθος μεγαλύτερο από 48 είναι ίση με -Φ(3)=-0.9987 = 0.003. Έστω Κ ο αριθμός των σημάτων που είναι μεγαλύτερα από 48, δηλαδή ο αριθμός των επιτυχιών σε 00 ανεξάρτητες επαναλήψεις ενός πειράματος με πιθανότητα επιτυχίας 0.003. Η Κ ακολουθεί διωνυμική κατανομή με n=00, p=0.003. Επειδή ο ακριβής υπολογισμός πιθανοτήτων για τη διωνυμική κατανομή με μεγάλο n και μικρό p είναι δύσκολος, μπορούμε να χρησιμοποιήσουμε την ιδιότητα ότι για μεγάλο n και μικρό p η διωνυμική κατανομή προσεγγίζει
την Poisson με παράμετρο λ=np. η τ.μ.κ ακολουθεί προσεγγιστικά την κατανομή Poisson με λ=0.3. Η πιθανότητα που ζητείται είναι ίση με PK ( ) = PK ( = 0) PK ( = ). Από τον τύπο της κατανομής Poisson έχουμε Συνεπώς και PK ( = k) = e k λ λ k! PK ( = 0) = e λ, PK ( = ) = e λ λ PK e e e e 0.3 ( ) = λ λ λ = ( + λ) λ = (.3) = 0.0078 3. α) Το μήκος μιας ράβδου εργαστηριακού τύπου είναι τυχαία μεταβλητή, έστω Χ, που ακολουθεί την N (6 cm, 0.0004 cm ). Ποια είναι η πιθανότητα σ ένα τυχαίο δείγμα 0 ράβδων να βρεθούν τουλάχιστον ράβδοι με μήκος από,98 cm έως 6,0 cm? Έστω X 6 Z = 0.0 Η πιθανότητα μια ράβδος να έχει μήκος μεταξύ των δοσμένων ορίων είναι ίση με P(.98 X 6.0) = P( Z ) =Φ() Φ( ) =Φ() ( Φ()) = Φ() = (0.843) = 0.686. Έστω Μ ο αριθμός των ράβδων από τις 0 επιλεγμένες, που έχουν μήκος μεταξύ των ορίων αυτών. Η Μ ακολουθεί διωνυμική κατανομή με n=0 και p=0.686. PM ( ) = PM ( < ) = PM ( = 0) PM ( = ). Επίσης n 0 n 0 0 PM ( = 0) = p( p) = ( 0.686) = ( 0.374) 0 n PM= = p p = = και ( )( ) ( ) n 9 9 ( ) ( ) 0 0.686 0.686 6.86 0.374 0 9 PM ( ) = (0.374) 6.86(0.374) = 0.9998 β) Έστω η τυχαία μεταβλητή = 0 Χ + 6 Να βρεθούν η E (Y ) και η V (Υ).Σ Γνωρίζουμε ότι EX ( ) = 6, VX ( ) = 0.0004. Χ. Y, και ~ Ν(6 cm, 0,0004 cm )
EY ( ) = E(0 X+ 6) = 0 E( X) + 6 = 0 6 + 6 = 66 VY V X V X V X ( ) = (0 + 6) = (0 ) = 0 ( ) = 0.04 4. α) Μια ερευνητική ομάδα περιβάλλοντος χρησιμοποιεί υγρόμετρα των εταιρειών Α και Β σε ποσοστό 0% και 80% αντίστοιχα. Είναι γνωστό ότι τα υγρόμετρα εμφανίζουν συγκεκριμένο ελάττωμα στις μετρήσεις σε ποσοστό % και % αντίστοιχα. Στην τύχη επιλέγεται μία μέτρηση και διαπιστώνεται ότι εμφανίζει το συγκεκριμένο ελάττωμα. Ποια είναι η πιθανότητα να προέρχεται από υγρόμετρο της εταιρείας Α; Ορίζουμε τα παρακάτω ενδεχόμενα. Α={υγρόμετρο εταιρείας Α}, Β={υγρόμετρο εταιρείας Β}, Ε={ελαττωματικό} Από τα δεδομένα του προβλήματος προκύπτουν οι πιθανότητες PA ( ) = 0. PB ( ) = 0.8 PE ( A) = 0.0 PE ( B) = 0.0 Ζητείται η πιθανότητα PAE ( ). Από το θεώρημα Bayes προκύπτει ότι PE ( APA ) ( ) PAE ( ) = PE ( ) Από το θεώρημα ολικής πιθανότητας PE ( ) = PE ( APA ) ( ) + PE ( BPB ) ( ) = 0.0 0. + 0.0 0.8 = 0.0 0.0 0. PAE ( ) = = 0.033 0.0 β) Να υπολογισθεί η σταθερά k έτσι ώστε η συνάρτηση 4 f ( x) = kx, < x < να αποτελεί συνάρτηση πυκνότητας πιθανότητας και στη συνέχεια να υπολογισθεί η αθροιστική συνάρτηση κατανομής F( x ), x R. Να υπολογισθεί η πιθανότητα P ( X X ). Για να είναι η f(x) συνάρτηση πυκνότητας πιθανότητας θα πρέπει δηλαδή f ( xdx ) = 4 x k f ( x) dx = k x dx = k = =
k = Η συνάρτηση κατανομής είναι F( x) = 0, για x και F( x) =,για x. Για < x < Συνεπώς Η πιθανότητα PX ( 4 + + x x x x F( x) = f( y) dy = y dy = = 0, αν x x + F( x) =, αν < x<, αν x P X F F X ) = = P X F 3 3 Από τον τύπο για την F(x) παίρνουμε (/3) + (/3) + F =, F = 3 3 3 PX ( X ) = = 0.0083 3