E[ (x- ) ]= trace[(x-x)(x- ) ]

Σχετικά έγγραφα
ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

E [ -x ^2 z] = E[x z]

, και. είναι σταθερές (χρονικά αμετάβλητες), προκύπτει το χρονικά αμετάβλητο φίλτρο Kalman (Time Invariant Kalman Filter):

Φίλτρα Kalman. Αναλυτικές μέθοδοι στη Γεωπληροφορική. ιατύπωση του βασικού προβλήματος. προβλήματος. μοντέλο. Πρωτεύων μοντέλο

HMY 799 1: Αναγνώριση Συστημάτων

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι:

προβλήµατος Το φίλτρο Kalman διαφέρει από τα συνηθισµένα προβλήµατα ΜΕΤ σε δύο χαρακτηριστικά: παραµέτρων αγνώστων

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

Μια εισαγωγή στο φίλτρο Kalman

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

HMY 795: Αναγνώριση Προτύπων

Οι τύποι της εκτίμησης, οι οποίοι παρουσιάζονται στον Πίνακα 1.1, προσδιορίζονται από τη σχέση των χρονικών στιγμών και k :

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

Παραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος

Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Αριθμητική Ανάλυση και Εφαρμογές

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική

Συνολοκλήρωση και VAR υποδείγματα

Y Y ... y nx1. nx1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Αριθμητική Ανάλυση και Εφαρμογές

Βέλτιστος Έλεγχος Συστημάτων

Διαχείριση Υδατικών Πόρων

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

Kalman Filter Γιατί ο όρος φίλτρο;

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Βέλτιστος Έλεγχος Συστημάτων

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU

Παραδείγματα Διανυσματικοί Χώροι (3)

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών

ΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...

Εισόδημα Κατανάλωση

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss Jordan

y(k) + a 1 y(k 1) = b 1 u(k 1), (1) website:

Αριθμητική Ανάλυση και Εφαρμογές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Αναλογικές και Ψηφιακές Επικοινωνίες

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman

ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ Επιλέξτε τη σωστή απάντηση στη παρακάτω πρόταση :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

ΕΛΕΓΧΟΣ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5. ΑΝΑΓΝΩΡΙΣΗ ΔΙΕΡΓΑΣΙΑΣ ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ (Process Identifications)

Προχωρημένα Θέματα Συστημάτων Ελέγχου

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Πεδί α

3η Ενότητα Προβλέψεις

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

5. ΜΕΘΟΔΟΙ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ

Στοιχεία της θεωρίας εκτίμησης παραμέτρων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

1 Arq thc Majhmatik c Epagwg c

Αναγνώριση Προτύπων Ι

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυϊκότητα. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Επιχειρησιακή Έρευνα. τελευταία ενημέρωση: 1/12/2016

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

MAJ. MONTELOPOIHSH II

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

Τοπογραφικά Δίκτυα & Υπολογισμοί

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

Αναγνώριση Προτύπων Ι

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

Βέλτιστος Έλεγχος Συστημάτων

Εφαρμοσμένα Μαθηματικά ΙΙ

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

Transcript:

1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού χρόνου. YΠΟΒΑΘΡΟ Το πρόβλημα που επιδιώκουμε να λύσουμε είναι η συνεχής εκτίμηση ενός συνόλου παραμέτρων των οποίων τιμές αλλάζουν με τον καιρό. Η ενημέρωση επιτυγχάνεται με το συνδυασμό ενός συνόλου παρατηρήσεων ή μετρήσεων z(t) όποιοι περιέχουν τις πληροφορίες για το σήμα ενδιαφέροντος x(t). Ο ρόλος του εκτιμητή είναι να παράσχει μια εκτίμηση (t+ τ) κάποια στιγμή t+ τ. Αν τ >0 έχουμε μια πρόβλεψη φίλτρου, αν τ<0 έχουμε μια λείανση φίλτρου και αν τ=0, η λειτουργία καλείται απλά φιλτράρισμα. Ένας εκτιμητής που κάνει ανάκλαση λέγεται ότι είναι αμερόληπτος εάν η προσδοκία της παραγωγής της είναι η προσδοκία ή ποσότητα που υπολογίζεται, Ε[x]=Ε[x]. Επίσης υπενθυμίζουμε ότι ένας ελάχιστος αμερόληπτος εκτιμητής διαφοράς (MVUE) είναι ένας εκτιμητής που είναι αμερόληπτος και ελαχιστοποιεί το μέσο όρο του τετραγωνικού λάθους : = arg E [ -x) z] = E[x z] Ο όρος E[ x- ^2], η αποκαλούμενη διαφορά του λάθους, είναι στενά συνδεδεμένη στη συνδιασπορά λάθους μήτρας, Ε[(x- )(x- )^T]. Συγκεκριμένα, η διαφορά του λάθους ενός εκτιμητή είναι ίση με το ίχνος από τη μήτρα συνδιακύμανσης λάθους, E[ (x- ) ]= trace[(x-x)(x- ) ] Το φίλτρο Kalman είναι μια γραμμική ελάχιστη διαφορά του φίλτρου λάθους (δηλ. είναι το καλύτερο γραμμικό φίλτρο πέρα από κατηγορία όλων των γραμμικών φίλτρων) πέρα από τα χρονικά μεταβαλλόμενα και χρόνο-αμετάβλητα φίλτρα. Στην περίπτωση του διανύσματος κατάστασης x και οι παρατηρήσεις z είναι από κοινού κατανομή Gauss.

2 Σημείωση Θα πρέπει να χρησιμοποιηθεί η ακόλουθη σημειογραφία διάνυσμα παρατήρησης στο χρόνο k το σύνολο όλων των παρατηρήσεων έως χρόνο k κατάσταση του συστήματος φορέα κατά το χρόνο k εκτίμηση x κατά το χρόνο k με βάση το χρόνο i, k i σφάλμα εκτίμησης, -, (περισπωμένη σημειογραφία) πίνακας συνδιασποράς μήτρα μεταφοράς (έλεγχος) μήτρας μετάβασης μήτρα εξόδου διάνυσμα θορύβου μέτρησης μήτρα συνδιασποράς θορύβου μέτρησης μήτρα κέρδους Kalman καινοτομία στο χρόνο k μήτρα συνδιασποράς καινοτομίας στο χρόνο k

3 Πρότυπο συστημάτων και παρατήρησης Τώρα θα ξεκινήσουμε την ανάλυση του φίλτρου Kalman. Ανατρέξτε στο σχήμα 1. Υποθέτουμε ότι το σύστημα μπορεί να είναι από την εξίσωση μεταβατικής κατάστασης = + + (1) όπου είναι η κατάσταση κατά το χρόνο k, είναι ένας φορέας ελέγχου εισόδου, είναι πρόσθετο σύστημα ή διαδικασία θορύβου, είναι η μετάβαση εισόδου μήτρας και είναι η μήτρα μετάβασης κατάστασης. Περαιτέρω υποθέτουμε ότι οι παρατηρήσεις της κατάστασης γίνονται μέσω ενός συστήματος μέτρησης που μπορεί να αντιπροσωπευθεί από μια γραμμική εξίσωση της μορφής, = + (2) όπου είναι η παρατήρηση ή μέτρηση γίνεται κατά τη στιγμή k, είναι η κατάσταση κατά το χρόνο k, είναι η μήτρα παρατήρησης και προσθετικός θόρυβος μέτρησης.

4 Yποθέσεις Κάνουμε τις ακόλουθες υποθέσεις H διαδικασία και η μέτρηση του θορύβου,τυχαίες διαδικασίες και είναι ασυσχέτιστες, μηδενική μέση διαδικασίες λευκού θορύβου με γνωστούς πίνακες συνδιασποράς. Τότε, E [ ] = { (3) E [ ] = { (4) E [ ] = 0 για k, l (5) Όπου και είναι συμμετρικές θετικές ημιορισμένες μήτρες. Η αρχική κατάσταση του συστήματος, είναι ένα τυχαίο διάνυσμα που είναι συσχετισμένο τόσο το σύστημα όσο και με τις διαδικασίες του θορύβου μέτρησης. Η αρχική κατάσταση του συστήματος έχει μία γνωστή μέση τιμή και πίνακα συνδιασποράς = Ε [ ] και = E [ ( - ) ] (6) Λαμβάνοντας υπόψη τις ανωτέρω υποθέσεις ο στόχος είναι να καθορίσει, λαμβάνοντας υπόψη ένα σύνολο παρατηρήσεων,.., το φίλτρο εκτίμησης που k+1 η παρουσία στο χρόνο παράγει μία βέλτιστη εκτίμηση της κατάστασης, το οποίο συμβολίζουμε με, που ελαχιστοποιεί την προσδοκία της συνάρτησης απώλειας τετράγωνο-λάθους, E [ ] = E [ ( - ) ( )] (7) Παραγωγή

5 Εξετάστε την εκτίμηση του με βάση τις παρατηρήσεις μέχρι το χρόνο k,,,, δηλαδή. Αυτό ονομάζεται πρόβλεψη ενός σταδίου-μπροστά ή απλά μια πρόβλεψη. Τώρα η λύση για η ελαχιστοποίηση της εξίσωσης 7 είναι η προσδοκία της κατάστασης στο χρόνο k+1 ρυθμισμένος με παρατηρήσεις μέχρι το χρόνο k. Έτσι, = E [,., ] = E [ ] (8) Τότε η προβλεπόμενη κατάσταση δίνεται από = E [ ] = E [ + + ] = E[ ] + + E[ ] = + (9) όπου έχουμε χρησιμοποιήσει το γεγονός ότι ο θόρυβος διεργασία έχει μηδενική μέση τιμή και είναι γνωστή με ακρίβεια. Η διαφορά εκτίμησης είναι το μέσο τετραγωνικό σφάλμα στην εκτίμηση. Έτσι, χρησιμοποιώντας τα πραγματικά περιστατικά που είναι ασυσχέτιστες = E [ - )( )^T ] = E[( - )( - )^T ] + E [ ] = + (10) Έχοντας λάβει μια προγνωστική εκτίμηση ας υποθέσουμε ότι έχουμε πλέον λάβει μια άλλη παρατήρηση. Πώς μπορούμε να χρησιμοποιήσουμε αυτές τις πληροφορίες για να ενημερώσουμε την πρόβλεψη, βρίσκω. Υποθέτουμε ότι η εκτίμηση είναι ένα γραμμικό σταθμισμένο άθροισμα της πρόβλεψης και της νέας παρατήρησης και μπορεί να περιγραφεί με την εξίσωση, = + (11) Όπου και μήτρες στάθμισης ή κέρδους (διαφορετικών μεγεθών). Το πρόβλημά μας τώρα είναι να μειώνεται στην εύρεση της και που ελαχιστοποιούν το μέσο τετραγωνικό όρους σφάλμα εκτίμησης όπου βέβαια το σφάλμα εκτίμησης δίνεται από :

6 = - (12) Ο αμερόληπτος όρος Για το φίλτρο μας που είναι αμεροληπτές, απαιτούμε E[ ] = E[ ]. Ας υποθέσουμε ότι είναι μια αμερόληπτη εκτίμηση. Στη συνέχεια συνδυάζοντας τις εξισώσεις (11) και (2) και λαμβάνοντας προσδοκίες των αποδόσεων E [ ] = E [ + + ] = E ] + E[ ] + E [ ] (13) Σημειώστε ότι η τελευταία περίοδος στη δεξιά πλευρά της εξίσωσης είναι μηδέν, και περαιτέρω σημειώστε ότι η πρόβλεψη είναι αμερόληπτη: E [ ] = E[ + ] = E ] + = E [ ] (14) Ως εκ τούτου, δια συνδυασμού των εξισώσεων (13) και (14)) E [ ] = ( + )E[ και η προϋπόθεση της είναι αμερόληπτη και μειώνει την απαίτηση + = I ή = I - (15) Έχουμε τώρα ότι για να είναι αμερόληπτες για τον εκτιμητή μας πρέπει να πληρούν = (I - ) + = + [ - ] (16) Όπου K είναι γνωστό ως το κέρδος Kalman.

7 Σημειώστε ότι εφόσον μπορεί να ερμηνευθεί ως μία προβλεπόμενη παρατήρηση, η εξίσωση 16 μπορεί ερμηνεύεται ως ποσό μιας πρόβλεψης και ενός μέρους της διαφοράς μεταξύ της προβλεπόμενης και της πραγματικής παρατήρησης. Eύρεση της συνδιασποράς λάθους Καθορίσαμε τη συνδιασπορά λάθους πρόβλεψης στην εξίσωση (10). Γυρίζουμε τώρα στο ενημερωμένο λάθος συνδιασποράς = E[ ǀ =E[( - )( ] = (I - ) E [( ] (I - + E [ ] + 2(I - ) E [ ] και με E [ ] = E [ ] = E [ ] = 0 παίρνουμε = ( I - ) ( I - )^T + (17) Κατά συνέπεια η συνδιασπορά της ενημερωμένης εκτίμησης εκφράζεται από την άποψη της συνδιασποράς πρόβλεψης, τον θόρυβο παρατήρησης και την μήτρα κέρδους Kalman. Επιλογή του κέρδους Kalman

8 Στόχος μας τώρα είναι να ελαχιστοποιηθεί η υπό όρους μέσο τετραγωνικό σφάλμα εκτίμησης σε σχέση με το κέρδος Kalman, K. L = E [ ] = trace ( E [ ] = trace ( ) (18) Για οποιαδήποτε μήτρα A και μια συμμετρική μήτρα B (trace( )) = 2AB (για να δει αυτό, θεωρήστε το ίχνος όπως B όπου είναι οι στήλες, και έπειτα διαφοροποιώντας το ). Συνδυάζοντας τις εξισώσεις (17) και (18) και τη διαφοροποίηση σε σχέση με τη μήτρα απολαβής (χρησιμοποιώντας τη σχέση ανωτέρω) και τον καθορισμό ισούται με μηδέν αποδόσεις = -2(( I - ) + 2 = 0 Η εκ νέου ρύθμιση δίνει μια εξίσωση για τη μήτρα κέρδους (19) Μαζί με την Εξίσωση 16 αυτό καθορίζει το βέλτιστο γραμμικό μέσο τετραγωνικό σφάλμα εκτιμητή. Περίληψη των βασικών εξισώσεων

9 Σε αυτό το σημείο αξίζει να συνοψίζει τις βασικές εξισώσεις που βρίσκονται πίσω από τον αλγόριθμο του φίλτρου Kalman. Ο αλγόριθμος αποτελείται από δύο βήματα ένα βήμα πρόβλεψης και ένα βήμα ενημέρωσης. Πρόβλεψη: επίσης γνωστό ως χρόνος ενημέρωσης. Αυτό προβλέπει την κατάσταση και την διακύμανση στο χρόνο k+1 από τις πληροφορίες κατά την κατάσταση k. = + (20) = + (21) Ενημέρωση: επίσης γνωστή ως η ενημερωμένη μέτρησης. Αυτό ενημερώνει την κατάσταση ς και τη διακύμανση χρησιμοποιώντας συνδυασμό της προβλεπόμενης κατάστασης και της παρατήρησης. όπου η μήτρα της απολαβής δίνεται από = (22) Μαζί με τις αρχικές συνθήκες για την εκτίμηση και τη μήτρα συνδιασποράς το σφάλμα της (εξίσωση 6). Αυτό καθορίζει του διακριτού χρόνου διαδοχικού, αναδρομικού αλγόριθμου για τον προσδιορισμό της γραμμικής ελάχιστης διακύμανσης γνωστό ως φίλτρο Kalman. Ερμηνεία του φίλτρου Kalman

10 Ρίχνουμε τώρα μια ματιά στο γενικό αλγόριθμο φίλτρων Kalman με περισσότερες λεπτομέρειες. Το σχήμα 2 συνοψίζει στάδια στον αλγόριθμο με μορφή διαγραμμάτος μπλοκ. Η καινοτομία,, ορίζεται ως η διαφορά μεταξύ της παρατήρησης (μέτρηση) και της πρόβλεψής του γίνονται με τη χρήση των διαθέσιμων πληροφοριών κατά το χρόνο k. Είναι ένα μέτρο της νέας πληροφορίας που παρέχετε με την προσθήκη μιας άλλης μέτρησης στη διαδικασία εκτίμησης. Δεδομένου ότι = Ε[ ] = E [ + ] = (23) η καινοτομία μπορεί να εκφραστεί από = - (24) Η καινοτομία ή το υπόλοιπο είναι ένα σημαντικό μέτρο πόσο καλά ένας εκτιμητής εκτελεί. Για παράδειγμα μπορεί να χρησιμοποιηθεί για την επικύρωση μιας μέτρησης πριν να περιλαμβάνεται ως ένα μέλος της ακολουθία παρατήρησης (περισσότερα για αυτό αργότερα). Η διαδικασία του μετασχηματισμού σε μερικές φορές λέγεται ότι πρέπει να επιτευχθεί μέσω του φίλτρου λεύκανσης Kalman. Αυτό είναι επειδή οι καινοτομίες διαμορφώνουν μια ασύνδετη ορθογώνια διαδικασία άσπρου-θορύβου ακολουθία η οποία είναι στατιστικά ισοδύναμη με τις παρατηρήσεις. Αυτό είναι σημαντικό επειδή όπου όπως σε γενικές γραμμές να σχετίζεται στατιστικά σημαντικά, η καινοτομία είναι ασυσχέτιστες έτσι αποτελεσματικά παρέχει νέες πληροφορίες ή "καινοτομία". Η καινοτομία έχει μηδενική μέση τιμή, δεδομένου ότι, E [ ] = E [ - ] = E [ ] - = 0 (25) και η διακύμανση της καινοτομίας δίνεται από

11 = E [ ] = E [ = R + (26) Χρησιμοποιώντας την εξίσωση 26 και 28 μπορούμε να ξαναγράψουμε τις αναπροσαρμογές Kalman από την άποψη της καινοτομίας και της διαφορά ως εξής. = + (27) = E [ = E [ ( - )( - ) ] - E [ ] = - (28) όπου, από την εξίσωση 19 = (29) και = + R (30) Αυτό είναι μια κατάλληλη μορφή του φίλτρου Kalman που χρησιμοποιείται συχνά στην ανάλυση.

12 Αν και χρησιμοποιείται πρώτιστα ως εκτιμητής κατάστασης ο αλγόριθμος φίλτρων Kalman, μπορεί να χρησιμοποιηθεί στην εκτίμηση παράμετρων εκτός από το διάνυσμα κατάστασης. Αυτοί είναι διευκρινισμένοι στο σχήμα 2. 1. Εάν εφαρμοστεί για την εκτίμηση αυτό ονομάζεται φίλτρο μέτρησης. 2. Εάν εφαρμοστεί για την εκτίμηση αυτό ονομάζεται φίλτρο πρόβλεψης. 3. Εάν εφαρμοστεί για την εκτίμηση αυτό ονομάζεται φίλτρο λεύκανσης 4. Εάν εφαρμοστεί για την εκτίμηση αυτό ονομάζεται φίλτρο Kalman.