Λυµένες Ασκήσεις στο Μάθηµα Στατιστικής στο Τµήµα Πολιτικών Μηχανικών

Σχετικά έγγραφα
Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β

Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Α

Περιγραφική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων. της σ 2 είναι επίσης αµερόληπτη. n 1 +n 2

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Περιγραϕική Στατιστική, Εκτίµηση και Ελεγχος Παραµέτρων

Κεφάλαιο 9. Έλεγχοι υποθέσεων

της σ 2 είναι επίσης αµερόληπτη. n 1 +n 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

Κεφάλαιο 9. Έλεγχοι υποθέσεων

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Κεφάλαιο 4 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 4.1 Συσχέτιση δύο τ.µ.

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

Στατιστική για Χημικούς Μηχανικούς Ασκήσεις. Κουγιουμτζής Δημήτριος Τμήμα Χημικών Μηχανικών

Στατιστική Ι. Ανάλυση Παλινδρόμησης

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Κεφάλαιο 3 ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ. 3.1 Συσχέτιση δύο τ.µ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

5. Έλεγχοι Υποθέσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

3. Κατανομές πιθανότητας

Στατιστική Συμπερασματολογία

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 14 Μαρτίου /34

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

X = = 81 9 = 9

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΕΞEΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΜΑΡΤΙΟΣ 2003 Λ Υ Σ Ε Ι Σ Τ Ω Ν Α Σ Κ Η Σ Ε Ω Ν ΜΕΡΟΣ Α

ΤΕΣΤ ΣΤΑΤΙΣΤΙΚΗΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΩΡΓΙΚΟΥ ΠΕΙΡΑΜΑΤΙΣΜΟΥ. Τεστ 1 ο Κατανοµή Συχνοτήτων (50 βαθµοί)

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ για τη λήψη αποφάσεων

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

ΣΥΣΧΕΤΙΣΗ ΚΑΙ ΠΑΛΙΝ ΡΟΜΗΣΗ

Γ. Πειραματισμός Βιομετρία

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

9. Παλινδρόμηση και Συσχέτιση

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Συμπερασματολογία

εξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

Είδη Μεταβλητών. κλίµακα µέτρησης

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Γ. Πειραματισμός - Βιομετρία

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

Εισόδημα Κατανάλωση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

(365)(364)(363)...(365 n + 1) (365) k

Διάστημα εμπιστοσύνης της μέσης τιμής

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)


Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

στατιστική θεωρεία της δειγµατοληψίας

Εισαγωγή στην Εκτιμητική

ΑΣΚΗΣΕΙΣ ΣΤΑ ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

4.ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή

Transcript:

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 Λυµένες Ασκήσεις στο Μάθηµα Στατιστικής στο Τµήµα Πολιτικών Μηχανικών Μέρος Α Θεωρία Πιθανοτήτων Άσκηση [Θέµα στις εξετάσεις Φεβρουαρίου ] Το νερό για µία κατοικηµένη περιοχή πρώτα αντλείται από µία γεώτρηση, µετά περνά από ένα σύστηµα χλωρίωσης, και τέλος µέσα από ένα φίλτρο νερού. Η πιθανότητα αποτυχίας της άντλησης, χλωρίωσης και φιλτραρίσµατος µέσα σε ένα χρόνο είναι,,, και, αντίστοιχα. Η αποτυχία άντλησης προκαλεί έλλειψη ικανοποιητικής παροχής νερού, ενώ η αποτυχία της χλωρίωσης ή φιλτραρίσµατος ελαττώνει την ποιότητα νερού κάτω από τα επιτρεπτά όρια. Το γεγονότα αποτυχίας άντλησης νερού, χλωρίωσης, και φιλτραρίσµατος θεωρούνται στατιστικά ανεξάρτητα. (α) Ποια η πιθανότητα αυτόν τον χρόνο η κατοικηµένη περιοχή να έχει ικανοποιητική παροχή νερού παραδεκτής ποιότητας; (β) Όταν η κατοικηµένη περιοχή πίνει νερό χαµηλής ποιότητας (κάτω από τα επιτρεπτά όρια), ποια η πιθανότητα να οφείλεται στην αποτυχία της χλωρίωσης; (γ) Εάν το σύστηµα χλωρίωσης αντικατασταθεί µε ένα ποιο αξιόπιστο, πιθανότητα αποτυχίας,, κατά πόσο περιορίζεται το ποσοστό ευθύνης της χλωρίωσης της ερώτησης (β); Θεωρώ τα γεγονότα Α={ικανοποιητική παροχή νερού} Χ={επιτυχή χλωρίωση} Φ={επιτυχή φιλτράρισµα} (α) Το γεγονός Ε του οποίου ζητώ την πιθανότητα γράφεται µε την ακόλουθη άλγεβρα γεγονότων Ε=Α (Χ Φ) Η πιθανότητά του Ε υπολογίζεται από την τοµή των ανεξάρτητων γεγονότων Α, Χ, Φ. P(Ε)=P(Α (Χ Φ))=P(A)P(X)P(Φ) =,9*,8*,,9=. (β) Ζητώ την πιθανότητα P ( X ( X Φ)) Εφαρµόζω τον κανόνα της υπό συνθήκη πιθανότητας, P( X ( X Φ) P( X ), P( X ( X Φ)) = = = P( X Φ) P( X Φ), +,, *,, =,8 (γ) Βασικά υπολογίζω την πιθανότητα όπως και στην ερώτηση (β),, P ( X ( X Φ)) = =, +,,*,,,9

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 Άσκηση [Θέµα στις εξετάσεις Φεβρουαρίου ] (α) Η αντοχή συµπίεσης τσιµέντου έχει µία µέση τιµή 6. Ν/mm και µία τυπική απόκλιση 5. Ν/mm και υποτίθεται ότι ακολουθεί κανονική κατανοµή. (i) Ποια η πιθανότητα ότι σε ένα έλεγχο η αντοχή συµπίεσης τσιµέντου θα βρεθεί στο διάστηµα από 5 µέχρι 75 Ν/mm ; (ii) Ποια η πιθανότητα ότι σε ένα έλεγχο δοκιµών αντοχής συµπίεσης τσιµέντου όλες οι τιµές θα βρεθούν στο διάστηµα από 5 µέχρι 75 Ν/mm ; (β) Η πιθανότητα ότι µία µηχανή κατασκευής πασσάλων θα πάθει βλάβη για κάθε µέτρα πασσάλων που κάνει είναι,. (i) Ποια η πιθανότητα να παρουσιάσει βλάβη για πρώτη φορά µεταξύ της κατασκευής και µέτρων πασσάλων; (ii) Αν η µηχανή κατασκευάζει µέτρα την εβδοµάδα, κατά µέσο όρο κάθε πόσες εβδοµάδες η µηχανή παρουσιάζει βλάβη; (α) Σε κάθε δοκιµή έχω µία σταθερή πιθανότητα p ότι η αντοχή του τσιµέντου θα πέσει µεταξύ 5 και 75 N/mm. 75 6 5 6 p = P(5 < X < 75) = Φ( ) Φ( ) = Φ(3) Φ( ) 5 5 = Φ(3) ( Φ()) =,9987 +,977 =,9759 διότι η τυχαία µεταβλητή Χ παριστάνει αντοχή και ακολουθεί κανονική κατανοµή µε µέση τιµή 6 και τυπική απόκλιση 5. Η πιθανότητα του γεγονότος ότι και στις δέκα δοκιµές η αντοχή θα βρεθεί στο διάστηµα 5 µε 75 µπορεί να βρεθεί από την ιωνυµική κατανοµή αν θεωρήσω n= (δοκιµές) p=,9759 και αν Υ είναι η τυχαία µεταβλητή που παριστάνει τον αριθµό των επιτυχιών στις δέκα δοκιµές, Υ={,,, 3,,}, από τον τύπο της διωνυµικής έχω P ( Y = ) = ( ) = *,9759 * =,9759 p p (β) Εδώ θεωρώ ότι σε κάθε παραγωγή µέτρων πασσάλων έχω µία δοκιµή Bernoulli µε πιθανότητα βλάβης (επιτυχία) p=,. Ζητώ την πιθανότητα να συµβεί η επιτυχία για πρώτη φορά στην ενδέκατη δοκιµή. Συµβολίζω µε Χ την τυχαία µεταβλητή η οποία παριστάνει τον αριθµό δοκιµών µέχρι να φανεί για πρώτη φορά η επιτυχία. Η Χ ακολουθεί Γεωµετρική κατανοµή, P ( X = ) = p( p) =,(,98). Βασικά, ζητώ τον µέσο αριθµό δοκιµών µεταξύ δύο διαδοχικών βλαβών ή περίοδο επαναφοράς της βλάβης όπως αλλιώς λέγεται. ηλαδή, θέλουµε την µέση τιµή της µεταβλητής Χ. Στην γεωµετρική κατανοµή η µέση τιµή της Χ, Ε(Χ) δίνεται από τον τύπο

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 E( X ) = = = 5 δοκιµές p, Αφού την εβδοµάδα έχουµε δέκα δοκιµές, συµπεραίνουµε ότι η περίοδος επαναφοράς της βλάβης είναι 5 εβδοµάδες. Άσκηση 3 [Θέµα στις εξετάσεις Φεβρουαρίου 4] Ένα φράγµα τεχνητής λίµνης βρίσκεται σε µία σεισµογενή περιοχή. Όταν συµβεί σεισµός, η πιθανότητα αστοχίας του φράγµατος εξαρτάται από την ένταση του σεισµού και από το ύψος της επιφάνειας του νερού στη λίµνη την ώρα του σεισµού. Από παρατηρήσεις στο παρελθόν, µπορούµε να υποθέτουµε ότι το ύψος της επιφάνειας του νερού στην λίµνη µπορεί να είναι ψηλά ή χαµηλά µε αντίστοιχες πιθανότητες,3 και,7. Ο σεισµός µπορεί να είναι ισχυρός, µέτριος ή ασθενής µε αντίστοιχες πιθανότητες,,,4 και,4. Όταν συµβαίνει ισχυρός σεισµός, το φράγµα αστοχεί, άσχετα από το ύψος της επιφάνειας νερού στην λίµνη. Σε περίπτωση σεισµού µετρίας έντασης το φράγµα αστοχεί, αν το ύψος της επιφάνειας νερού βρίσκεται ψηλά, µε πιθανότητα 7%. Στον ασθενή σεισµό το φράγµα δεν διατρέχει κανένα κίνδυνο. (α) Ποια η πιθανότητα ότι το φράγµα θα υποχωρήσει στον επόµενο σεισµό; (β) Γίνεται σεισµός και το φράγµα υποχωρεί. Ποια η πιθανότητα ότι η επιφάνεια του νερού της λίµνης ήταν ψηλά την ώρα του σεισµού; Όταν συµβαίνει σεισµός θεωρώ τα γεγονότα: Α={η επιφάνεια του νερού είναι ψηλά} Α={ η επιφάνεια του νερού είναι χαµηλά} ΙΣ={ο σεισµός είναι ισχυρός} Μ={ο σεισµός είναι µέτριος} Α={ο σεισµός είναι ασθενής} Επίσης, όταν συµβαίνει σεισµός θεωρώ το γεγονός Ε={το φράγµα αστοχεί}. (α) Ζητώ την πιθανότητα του γεγονότος Ε, P(Ε). Αφού τα γεγονότα Α, Α αποτελούν διαµέριση του δειγµατοχώρου µπορώ να υπολογίσω την P(Ε) µε τον νόµο της ολικής πιθανότητας, P(E)=P(E Α)P(Α)+ P(E Α)P(Α) Γνωρίζω τις πιθανότητες P(Α)=,3 P(Α)=,7 Υπολογίζω τις πιθανότητες P(E Α) και P(E Α) ως ακολούθως. Επειδή τα γεγονότα ΙΣ, Μ, Α αποτελούν διαµέριση του δειγµατικού χώρου για να υπολογίσω την πιθανότητα του γεγονότος (E Α) εφαρµόζοντας πάλι τον νόµο της ολικής πιθανότητας P(E Α)= P((E Α) ΙΣ)P(ΙΣ)+ P((E Α) Μ)P(Μ)+ P((E Α) Α)P(Α) =P((E (Α ΙΣ)) P(ΙΣ)+ P((E (Α Μ))P(Μ)+ P((E (Α Α))P(Α) =(,)+,7(,4)+(,4)=,48 Η πιθανότητα του γεγονότος (E Α) βρίσκεται εύκολα αν σκεφτούµε ότι σε περίπτωση σεισµού µε χαµηλά την επιφάνεια του νερού το φράγµα αστοχεί µόνον αν ο σεισµός είναι ισχυρός, δηλαδή P(E Α)=, Αντικαθιστώ τις πιθανότητες στον νόµο της ολικής πιθανότητας 3

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 P(E)= P(E Α) P(Α)+ P(E Α) P(Α) P(E)=,48*,3+,*,7=,44+,4=,84 (β) Ζητώ την πιθανότητα P(A E). Εφαρµόζω το Θεώρηµα Baye, P(A E)= P(E Α) P(Α)/ P(E) =,48*,3/,84=,44/,84 Άσκηση 4 [Θέµα στις εξετάσεις Φεβρουαρίου 4] Σε µία περιοχή ο αριθµός ισχυρών νεροποντών ακολουθεί Poion κατανοµή µε µέσο αριθµό νεροποντή στα 4 χρόνια. (α) Ποια είναι η πιθανότητα ότι στα επόµενα 8 χρόνια δεν θα έχουµε ισχυρή νεροποντή; θα έχουµε πάνω από ισχυρές νεροποντές; Στην περιοχή αυτή βρίσκεται ένας ποταµός ο οποίος όταν συµβαίνει ισχυρή νεροποντή ξεχειλίζει µε πιθανότητα,6. (β) Να υπολογιστεί η πιθανότητα πληµµύρας του ποταµού σε 4 ισχυρές νεροποντές. (γ) Να υπολογιστεί η πιθανότητα πληµµύρας του ποταµού στα επόµενα 4 χρόνια. Ο µέσος αριθµός νεροποντών ανά χρόνο είναι λ=/4=,5 (α) Θεωρώ σαν Χ 8 την τυχαία µεταβλητή η οποία παριστάνει τον αριθµό νεροποντών σε οκτώ χρόνια και η οποία ακολουθεί Poion κατανοµή λ ( ),5(8) (,5(8)) P(X 8 =)= e t λt = e = e =...!! P(X 8 >)=- P(X 8 )=- (P(X 8 =)+ P(X 8 =)+ P(X 8 =)) λt ( λt) λt ( λt) λt ( λt) = ( e + e + e!!! = ( e ()! + e ()! + e () ) =...! (β) Θα υπολογίσω την πιθανότητα του συµπληρωµατικού γεγονότος και θα την αφαιρέσω από την µονάδα. ηλαδή θα υπολογίσω την πιθανότητα να µην υπάρξει πληµµύρα σε 4 νεροποντές και θα το αφαιρέσω από την µονάδα. P({πληµµύρας σε 4 νεροποντές})=-p({όχι πληµµύρα σε 4 νεροποντές}) =-,94*,94*,94*,94=. ιότι σε κάθε νεροποντή η πιθανότητα πληµµύρας είναι ανεξάρτητη από τι συνέβη στις προηγούµενες νεροποντές (γεγονότα ανεξάρτητα). (γ) Συµβολίζω µε Ε το γεγονός Ε={όχι πληµµύρα στα επόµενα 4 χρόνια} Την πιθανότητα του Ε να την υπολογίσω αν ξέρω ότι στα επόµενα 4 χρόνια θα συµβούν Α={ νεροποντές} Α={ νεροποντή} Α={ νεροποντές} Α3={3 νεροποντές} Α4={4 νεροποντές} Α5={5 νεροποντές} 4

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 Α6={6 νεροποντές}. Τις πιθανότητες των γεγονότων Α, Α, Α, Α3, Α4, Α5, Α6, τα οποία αποτελούν διαµέριση του δειγµατικού χώρου µπορώ να υπολογίσω όπως ακολουθεί ( ) P( Α)=P(X 4 =)= e = e =...! ( ) P( Α)=P(X 4 =)= e = e =...! ( ) P( Α)=P(X 4 =)= e =,5e =...! 3 ( ) P( Α3)=P(X 4 =3)= e = (/ 6) e =... 3! ( )4 P( Α4)=P(X 4 =4)= e = (/ 4) e =... 4! συνεχίζουµε µέχρι που η πιθανότητα P( Ακ) γίνεται αµελητέα. Η πιθανότητα του Ε προκύπτει από τον νόµο της ολικής πιθανότητας P(E}=P(E A)P(A)+P(E A)P(A)+P(E A)P(A)+... όπου P(A), P(A), P(A), υπολογίστηκαν παραπάνω, τα δε P(E A), P(E A), P(E A)...υπολογίζονται όπως στην απάντηση (β), P(E A)= P(E A)=,94 P(E A)=,94*,94 P(E A3)=,94*,94*,94... Τέλος, η ζητούµενη πιθανότητα βρίσκεται αν από την µονάδα αφαιρέσω την πιθανότητα του γεγονότος Ε, -P(E) 5

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 Μέρος B Στατιστική Άσκηση [Θέµα στις εξετάσεις Φεβρουαρίου ] (α) Αν δύο τυχαίες µεταβλητές X και X έχουν κοινή διασπορά είναι οι αµερόληπτες δειγµατικές διασπορές των X και δείγµατα µεγέθους n και n, δείξτε ότι η εκτιµήτρια σ, και, X, αντίστοιχα, από ( n ) + ( n ) p = n+ n σ είναι επίσης αµερόληπτη. (β) ύο εργοστάσια Α και Β παραγωγής χάλυβα θέλουν να εκτιµήσουν την περιεκτικότητα του χάλυβα σε ραδιενέργεια και γι αυτό έκαναν τις παρακάτω µετρήσεις ραδιενέργειας (η ραδιενέργεια µετριέται σε Bq/g) σε τυχαία δοκίµια χάλυβα: οκίµια 3 4 5 6 7 8 9 3 4 5 Α.37..54.59.6.86.86.49.6.55 (Bq/g) B.4.5..95.6.33.6.3.7.5.39..5.79.9 (Bq/g) Θεωρούµε ότι η περιεκτικότητα του χάλυβα σε ραδιενέργεια ακολουθεί κανονική κατανοµή και η διασπορά της ραδιενέργειας στο χάλυβα είναι ίδια για τα δύο εργοστάσια ( σ = σ = ) σ (i) Εκτιµήστε τη µέση ραδιενέργεια στο χάλυβα για το εργοστάσιο Α και Β (σηµειακή εκτίµηση και 95% διάστηµα εµπιστοσύνης). (ii) Το µέσο ανώτατο επιτρεπτό όριο µέσης ραδιενέργειας στο χάλυβα είναι.5bq/g. Με βάση τα παραπάνω δείγµατα και µε εµπιστοσύνη σε επίπεδο 95% θα γινόταν αποδεκτός στην αγορά ο χάλυβας από το εργοστάσιο Α? Από το εργοστάσιο Β? (iii) Ελέγξτε σε επίπεδο εµπιστοσύνης 95% αν η µέση ραδιενέργεια στο χάλυβα των δύο εργοστασίων είναι ίδια. [Για την απάντηση σας στα ερωτήµατα (ii) και (iii) µπορείτε να χρησιµοποιήσετε διάστηµα εµπιστοσύνης ή στατιστικό έλεγχο] (α) Για να είναι η εκτιµήτρια Έχουµε p της κοινής διασποράς σ θα πρέπει της E( ) = σ. p E( ) ( n ) E + ( n ) ( n )E( ) + ( n )E( ) ( n ) σ + ( n ) σ ( n ) σ + ( n ) σ = = σ. n + n p = = = n+ n n+ n n+ n (β) Η ραδιενέργεια του χάλυβα στα δύο εργοστάσια είναι οι δύο τ.µ. X και X που ακολουθούν κανονική κατανοµή και έχουν κοινή αλλά άγνωστη διασπορά ( σ = σ = ). Έχουµε n =, n = 5. σ 6

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 (i) Υπολογίζουµε τις δειγµατικές µέσες τιµές, διασπορές και τυπικές αποκλίσεις για τα n n δύο δείγµατα. (τυπολόγιο: x = xi, = n i = xi nx ) n i= x =.5, x =.37, =.7377, =.7 =.6979, =.64. Οι δύο δειγµατικές µέσες τιµές x =.5 και x =.37αποτελούν τις σηµειακές εκτιµήσεις της µέσης ραδιενέργειας χάλυβα στα δύο εργοστάσια. Το 95% διάστηµα εµπιστοσύνης (δ.ε.) της µέσης ραδιενέργειας χάλυβα στα δύο εργοστάσια δίνεται από τον τύπο για µικρό δείγµα, και τ.µ. µε άγνωστη διασπορά που ακολουθεί κανονική κατανοµή, κάνοντας χρήση της κρίσιµης τιµής t α /, n της κατανοµής tudent, δηλαδή είναι x ± t a/, n (τυπολόγιο). n Για το πρώτο εργοστάσιο, επίπεδο σηµαντικότητας α =.5, έχουµε από τον στατιστικό πίνακα για την κατανοµή tudent t.975,9 =.6 και το 95% δ.ε. είναι.7.5 ±.6.5 ±.94 [.38,.696]. Αντίστοιχα για το δεύτερο εργοστάσιο έχουµε την κρίσιµη τιµή t.975,4 =.4 και το 95% δ.ε. είναι.64.37±.4.37±.46 [.5,.57]. 5 Η µέση ραδιενέργεια του χάλυβα είναι πολύ πιθανό (µε εµπιστοσύνη σε επίπεδο 95%) να βρίσκεται µεταξύ.38 Bq/g και.696 Bq/g για το εργοστάσιο Α και µεταξύ.5 Bq/g και.57 Bq/g για το εργοστάσιο Β. (ii) Χρησιµοποιώντας διάστηµα εµπιστοσύνης.: Με βάση τα παραπάνω αποτελέσµατα, το µέσο ανώτατο επιτρεπτό όριο µέσης ραδιενέργειας στο χάλυβα είναι.5 Bq/g περιέχεται στο 95% δ.ε. της µέσης ραδιενέργειας και για τα δύο εργοστάσια, που σηµαίνει ότι η µέση ραδιενέργεια του χάλυβα µπορεί να ξεπεράσει το µέσο επιτρεπτό όριο. Άρα ο χάλυβας και από τα δύο εργοστάσια δε θα γίνει αποδεκτός. Χρησιµοποιώντας έλεγχο υπόθεσης.: Για να απαντήσουµε στο ερώτηµα, µπορούµε εναλλακτικά να κάνουµε έλεγχο υπόθεσης για το αν η µέση ραδιενέργεια µπορεί να πάρει την τιµή µ =.5. Η : µ = µ Η : µ µ [δίπλευρος έλεγχος] Για µικρό δείγµα και τ.µ. µε άγνωστη διασπορά που ακολουθεί κανονική κατανοµή, η x µ στατιστική για τον έλεγχο αυτό είναι t = ~t n (δεν υπάρχει στο τυπολόγιο, n προκύπτει άµεσα από το αντίστοιχο δ.ε. στο τυπολόγιο). Η απορριπτική περιοχή R για επίπεδο σηµαντικότητας α =.5 σχηµατίζεται από την κρίσιµη τιµή t α /, n R= t t > t α /, n. της κατανοµής tudent : { } Για το εργοστάσιο Α είναι R { t t.6} = >. Η δειγµατική στατιστική είναι 7

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6.5.5 t = =.3. Ισχύει t R και δεν απορρίπτεται η Η..7 / R = t t >.4. Η δειγµατική στατιστική είναι Για το εργοστάσιο Α είναι { }.37.5 t = =.4. Ισχύει και πάλι t R και δεν απορρίπτεται η Η. Άρα και.64 / 5 για τα δύο εργοστάσια η µέση ραδιενέργεια του χάλυβα µπορεί να είναι.5 Bq/g, δηλαδή να ξεπεράσει το µέσο επιτρεπτό όριο και ο χάλυβας και από τα δύο εργοστάσια δε θα γίνει αποδεκτός. Θα µπορούσαµε να κάνουµε µονόπλευρο έλεγχο, δηλαδή να εξετάσουµε για την εναλλακτική υπόθεση Η : µ < µ, όποτε και θα άλλαζε η απορριπτική περιοχή, δηλαδή θα ήταν R { t t t α, n } = < (θα εξετάζαµε µόνο αν η δειγµατική στατιστική t µπορεί να βρίσκεται στην αριστερή ουρά της κατανοµής tudent). Τα συµπεράσµατα θα ήταν τα ίδια αφού οι δειγµατικές στατιστικές και για τα δύο δείγµατα δεν είναι κοντά στην αριστερή ουρά της κατανοµής tudent. (iii) Υπολογίζουµε πρώτα τη διαφορά των δειγµατικών µέσων τιµών x x =.3 και την εκτίµηση της κοινής διασποράς ( n ) + ( n ) 9.7377 + 4.6979 = = =.735. 3 p n+ n (δεν υπάρχει στο τυπολόγιο, προκύπτει ως σταθµισµένος µέσος των δύο δειγµατικών διασπορών σταθµίζοντας µε τους βαθµούς ελευθερίας κάθε δείγµατος (µέγεθος δείγµατος - ) Χρησιµοποιώντας διάστηµα εµπιστοσύνης.: Χρησιµοποιούµε το 95% διάστηµα εµπιστοσύνης (δ.ε.) για τη διαφορά της µέσης ραδιενέργειας χάλυβα στα δύο εργοστάσια µ µ. Εδώ έχουµε ότι τα δύο δείγµατα είναι µικρά και οι τ.µ. ακολουθούν κανονική κατανοµή αλλά µε άγνωστη και κοινή διασπορά. Γι αυτό κάνουµε χρήση του τύπου που βασίζεται στην κατανοµή tudent και η κρίσιµη τιµή είναι t.975,3 =.7. Το 95% δ.ε. είναι x x ± t a/, n + n p + (τυπολόγιο) n n ( ) και έχουµε.3±.6.67 +.3±.6 [-.94,.357]. 5 Παρατηρούµε ότι το δ.ε. περιέχει το, έστω και οριακά, δηλαδή η διαφορά µ µ µπορεί να είναι και, άρα οι δύο µέσες ραδιενέργειες σε χάλυβα του εργοστασίου Α και Β δε φαίνεται να διαφέρουν (σε επίπεδο εµπιστοσύνης 95%). Χρησιµοποιώντας έλεγχο υπόθεσης.: Ελέγχουµε την υπόθεσης η µέση ραδιενέργεια να είναι ίδια στους χάλυβες των δύο εργοστασίων. Η : µ = µ ή µ µ = Η : µ µ [δίπλευρος έλεγχος] Η στατιστική για τον έλεγχο αυτόν ακολουθεί κατανοµή tudent και είναι 8

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 ( x x ) ( µ µ ) ( x x ) t = p + + n n n n p ~ t n+ n (δεν υπάρχει στο τυπολόγιο, προκύπτει άµεσα από το αντίστοιχο δ.ε. στο τυπολόγιο) Η απορριπτική περιοχή R για επίπεδο σηµαντικότητας α =.5 σχηµατίζεται από την κρίσιµη τιµή t.975,3 =.7 της κατανοµής tudent : R = { t t >.7}. Η δειγµατική στατιστική είναι.3 t = =.. Ισχύει t R και δεν απορρίπτεται η Η, οριακά.67 / + /5 όµως καθώς η τιµή της δειγµατικής στατιστικής t είναι πολύ κοντά στην κρίσιµη τιµή για τη δεξιά ουρά. Έτσι παρ όλο που φαίνεται (µε δ.ε. και έλεγχο υπόθεσης) η µέση ραδιενέργεια στο χάλυβα του εργοστασίου Α να είναι µεγαλύτερη από αυτή του εργοστασίου Β, η διαφορά αυτή δε βρέθηκε σηµαντική σε επίπεδο εµπιστοσύνης 95%.. Άσκηση [Θέµα στις εξετάσεις Φεβρουαρίου ] Στον παρακάτω πίνακα δίνεται για σταθµούς ο αριθµός των ηµερών σ ένα χρόνο που η θερµοκρασία έπεσε κάτω από ο C και το υψόµετρο τους. Υψόµετρο (µ) 5 3 38 4 56 67 95 Αριθµός ηµερών 3 9 36 38 43 53 5 63 73 (α) Υποθέτουµε ότι ο αριθµός των ηµερών Υ εξαρτάται γραµµικά από το υψόµετρο Χ ( Ε(Υ X=x) = α+βx ). Σχηµατίστε το κατάλληλο διάγραµµα διασποράς και σχολιάστε αν αυτή η υπόθεση φαίνεται σωστή µε βάση το δείγµα των παρατηρήσεων του πίνακα. (β) Υπολογίστε τις σηµειακές εκτιµήσεις a και b των παραµέτρων α και β της ευθείας παλινδρόµησης (µε τη µέθοδο των ελαχίστων τετραγώνων). (γ) Με βάση το δείγµα, µπορείτε να εκτιµήσετε το µέσο αριθµό ηµερών το χρόνο που η θερµοκρασία πέφτει κάτω από ο C σε υψόµετρο 5µ; Σε υψόµετρο µ; (α) Η ανεξάρτητη µεταβλητή X είναι το υψόµετρο του σταθµού και η εξαρτηµένη µεταβλητή Y είναι ο αριθµός των ηµερών σ ένα χρόνο που η θερµοκρασία έπεσε κάτω από ο C. Σχηµατίζουµε το διάγραµµα διασποράς. 8 y [in day] 6 4 8 4 6 8 x [in m] 9

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 Από το διάγραµµα διασποράς φαίνεται να υπάρχει γραµµική θετική εξάρτηση γιατί όταν µεγαλώνει το υψόµετρο πληθαίνουν αναλογικά οι µέρες που η θερµοκρασία πέφτει κάτω από ο C. Φαίνεται επίσης η εξάρτηση αυτή να είναι ισχυρή γιατί µπορούµε να καθορίσουµε µε αρκετή ακρίβεια των αριθµό των ηµερών ανά έτος που η θερµοκρασία πέφτει κάτω από ο C όταν γνωρίζουµε το υψόµετρο (τα σηµεία βρίσκονται πολύ κοντά σε µια νοητή ευθεία). (β) Έχουµε δείγµα µεγέθους n =. Υπολογίζουµε τα παρακάτω: x = 368 y = 5.9 i= x i = 95 i= x y = 7677 και βρίσκουµε τη δειγµατική διασπορά της X καθώς και τη δειγµατική συνδιασπορά των X και Y : n X = xi nx ( 95 368 ) 8855. n = = (τυπολόγιο) i= 9 n XY = xi yi nx y ( 7677 368 5.9 ) 64 n = =. (τυπολόγιο) i= 9 Στη συνέχεια εκτιµούµε τις παραµέτρους της ευθείας ελαχίστων τετραγώνων, δηλαδή του µοντέλου γραµµικής παλινδρόµησης: XY 64 b = = =.74 (τυπολόγιο) 8855. X a= y b x = 5.9.74 368 = 47.6 (τυπολόγιο) και η ευθεία ελαχίστων τετραγώνων είναι y = 47.6 +.74 x. (γ) Κάνουµε προβλέψεις χρησιµοποιώντας την ευθεία ελαχίστων τετραγώνων για υψόµετρα µέσα στο εύρος του δείγµατος από µ µέχρι 95µ. Για υψόµετρο x = 5, έχουµε y = 47.6 +.74 5 = 6.46 και άρα περιµένουµε 6 µέρες το χρόνο να πέφτει η θερµοκρασία κάτω από ο C. Για υψόµετρο x = δε µπορούµε να κάνουµε πρόβλεψη γιατί δεν είναι µέσα στο εύρος γνωστών υψοµέτρων για τα οποία ισχύει το γραµµικό µοντέλο. Άσκηση 3 [Θέµα στις εξετάσεις Φεβρουαρίου 4] ίνονται οι παρακάτω µετρήσεις 5 8 3 4 7 3 9 7 (α) Σχεδιάστε το θηκόγραµµα αφού εξηγήσετε πως προέκυψαν οι 5 αριθµοί που χρησιµοποιήσατε για να το σχεδιάσετε. (β) Σχολιάστε αν η κατανοµή της µεταβλητής στην οποία αναφέρονται οι µετρήσεις φαίνεται να είναι κανονική. (α) Παραθέτουµε τις παρατηρήσεις σε αύξουσα σειρά 3 4 5 7 7 8 9 3 βρίσκουµε: x min = 3 Q = 5 x = 7.5 Q 3 = x max = 3 i i

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 και σχηµατίζουµε το θηκόγραµµα, όπως στο παρακάτω σχήµα (σε κατακόρυφη θέση). Column Number 5 5 5 3 Value (β) Το δείγµα περιέχει µια απόµακρη τιµή, την τιµή 3. Η ύπαρξη µιας τόσης ακραίας τιµής σε ένα µικρό δείγµα παρατηρήσεων δηµιουργεί κάποια ανησυχία για το αν η κατανοµή της τυχαίας µεταβλητής είναι κανονική. Άσκηση 4 [Θέµα στις εξετάσεις Φεβρουαρίου 4] Ένας δείκτης της κυκλοφορίας οχηµάτων είναι ο αριθµός χιλιοµέτρων που κάνει ένα όχηµα το χρόνο. Για µια περιοχή Α συλλέξαµε ένα τυχαίο δείγµα αυτοκινήτων και καταγράψαµε για κάθε αυτοκίνητο τον αριθµό χιλιοµέτρων που διένυσε τον τελευταίο χρόνο. ίνονται τα παρακάτω αποτελέσµατα για το δείγµα: µέση τιµή x = 45 km, τυπική απόκλιση = 4 km (α) Υπολογίστε το 95% διάστηµα εµπιστοσύνης για το µέσο αριθµό χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α. Κάνετε το ίδιο για 99% επίπεδο εµπιστοσύνης και συγκρίνετε τα δύο διαστήµατα εµπιστοσύνης. (β) Σε ίδια µελέτη που έγινε πριν χρόνια είχε βρεθεί πως η τυπική απόκλιση ήταν 3 km. Εξετάστε µε βάση το νέο δείγµα και σε επίπεδο εµπιστοσύνης 9% αν µπορούµε να δεχτούµε ότι η τυπική απόκλιση δεν άλλαξε σηµαντικά [µπορείτε να χρησιµοποιήσετε διάστηµα εµπιστοσύνης ή έλεγχο υπόθεσης]. (α) Έχουµε n =, x = 45 km και = 4 km. Άρα το (-α)% διάστηµα εµπιστοσύνης (δ.ε.) για το µέσο αριθµό χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α θα δίνεται από τον τύπο για µεγάλο δείγµα και άγνωστη διασπορά, κάνοντας χρήση της κρίσιµης τιµής z α / της τυπικής κανονικής κατανοµής, δηλαδή είναι x ± za / (τυπολόγιο). n Για α =.5 έχουµε από τον στατιστικό πίνακα για την τυπική κανονική κατανοµή z.975 =.96 και το 95% δ.ε. είναι 4 45 ±.96 45 ± 554.36 [3945.69, 554.36]. Για α =. έχουµε από τον στατιστικό πίνακα για την τυπική κανονική κατανοµή z.995 =.58 και το 99% δ.ε. είναι 4 45 ±.58 45 ± 78.55 [377.45, 58.55].

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 Παρατηρούµε ότι το 99% δ.ε. για το µέσο αριθµό χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α είναι µεγαλύτερο από αυτό για 95% επίπεδο εµπιστοσύνης, όπως αναµένεται αφού αυξάνουµε την εµπιστοσύνη (πιθανότητα) το διάστηµα αυτό να περιέχει το πραγµατικό µέσο αριθµό χιλιοµέτρων. (β) Χρησιµοποιώντας διάστηµα εµπιστοσύνης: Βρίσκουµε πρώτα το 9% δ.ε. για τη διασπορά του αριθµού χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α. Αυτό δίνεται κάνοντας χρήση της X κατανοµής και είναι ( n ) ( n ), (τυπολόγιο). χn, a / χ n, a / Για α =. έχουµε από τον στατιστικό πίνακα για την X κατανοµή ότι η αριστερή κρίσιµη τιµή είναι χ.5,99 = 67.36 και η δεξιά χ.95,99 = 3.9 (οι τιµές αυτές δεν συµπεριλαµβάνονται στον πίνακα που έχει ως βαθµούς ελευθερίας). Το 9% δ.ε. για τη διασπορά είναι 99 4 99 4, [36749.6, 94743.5]. 3.9 67.36 Το αντίστοιχο δ.ε. για την τυπική απόκλιση προκύπτει παίρνοντας τη τετραγωνική ρίζα των ορίων του παραπάνω διαστήµατος και άρα το 9% δ.ε. για την τυπική απόκλιση του αριθµού χιλιοµέτρων που διανύει το χρόνο ένα αυτοκίνητο της περιοχής Α είναι [3697.4, 436.7]. Το διάστηµα αυτό δεν περιέχει την εµπειρική τιµή 3 km και άρα η τυπική απόκλιση άλλαξε σηµαντικά από αυτήν που είχαµε εκτιµήσει πριν χρόνια. Χρησιµοποιώντας έλεγχο υπόθεσης.: Κάνουµε έλεγχο υπόθεσης για το αν η 6 διασπορά µπορεί να πάρει την τιµή σ = 3 = 9. Η : σ = σ Η : σ σ [δίπλευρος έλεγχος] Η απορριπτική περιοχή R για επίπεδο σηµαντικότητας α =. σχηµατίζεται από τις δύο κρίσιµες τιµές της X κατανοµής : R = { χ χ < 67.36 χ > 3.9}. Η δειγµατική στατιστική είναι ( n ) 99 4 χ = = = 354. σ 3 (δεν υπάρχει στο τυπολόγιο, προκύπτει άµεσα από το αντίστοιχο δ.ε. στο τυπολόγιο) Ισχύει χ R και άρα απορρίπτεται η Η και συµπεραίνουµε ότι µε 9% εµπιστοσύνη (πιθανότητα) δε δεχόµαστε ότι η εµπειρική τιµή 3 km που είχαµε εκτιµήσει πριν χρόνια για την τυπική απόκλιση του αριθµού χιλιοµέτρων µπορεί να ισχύει και τώρα. Άσκηση 5 [Θέµα στις εξετάσεις Φεβρουαρίου 4] Σε µια έρευνα στις Η.Π.Α. για την επίδραση του πληθυσµού της πόλης στη συγκέντρωση του όζοντος συγκεντρώθηκαν τα παρακάτω στοιχεία. Ο πληθυσµός των πόλεων δίνεται σε εκατοµµύρια και η συγκέντρωση του όζοντος που µετρήθηκε σε κάθε πόλη δίνεται σε ppb [part per billion] ανά ώρα.

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 Πληθυσµός πόλης...5.6.6...3.3 4.9 Συγκέντρωση όζοντος 8 4 8 6 8 6 3 8 9 35 (α) Σχηµατίστε το κατάλληλο διάγραµµα διασποράς. Εκτιµείστε το συντελεστή συσχέτισης µεταξύ της συγκέντρωσης του όζοντος και του πληθυσµού της πόλης. Με βάση αυτά τα αποτελέσµατα σχολιάστε αν φαίνεται να υπάρχει εξάρτηση της συγκέντρωσης του όζοντος από τον πληθυσµό της πόλης. (β) Υπολογίστε τις σηµειακές εκτιµήσεις a και b των παραµέτρων α και β της ευθείας παλινδρόµησης (µε τη µέθοδο των ελαχίστων τετραγώνων) για το πρόβληµα της γραµµικής εξάρτησης της συγκέντρωσης του όζοντος από τον πληθυσµό της πόλης. Σχηµατίστε την ευθεία ελαχίστων τετραγώνων στο διάγραµµα διασποράς που σχηµατίσατε στο (α). (α) Σχηµατίζουµε το διάγραµµα διασποράς (X: πληθυσµός πόλης, Y: συγκέντρωση όζοντος) 36 34 y [in ppb] 3 3 8 6 4 3 4 5 x [in million] Από το διάγραµµα διασποράς φαίνεται να υπάρχει γραµµική θετική συσχέτιση (η αύξηση του πληθυσµού της πόλης δηµιουργεί αύξηση της συγκέντρωσης όζοντος), χωρίς όµως να φαίνεται πολύ ισχυρή (δεν εξηγείται σε µεγάλο βαθµό η µεταβολή της µιας τ.µ. όταν γνωρίζουµε τη µεταβολή της άλλης, τα σηµεία απλώνονται αρκετά γύρω από µια νοητή ευθεία). Έχουµε δείγµα µεγέθους n =. Υπολογίζουµε τα παρακάτω: x =.37 y = 8. i= x i = 38.3 i= y i = 6443 i= x y = 788. και βρίσκουµε τις δειγµατικές διασπορές και τυπικές αποκλίσεις των X και Y καθώς και τη δειγµατική συνδιασπορά τους: (οι τύποι δίνονται στο τυπολόγιο) X = ( 38.3.37 ) =.4 X =.4 =.46 9 Y = ( 6443 8. ) = 8.6 Y = 8.6 =.94 9 XY = ( 788..37 8. ) = 3.54. 9 i i 3

Στατιστική Λυµένες Ασκήσεις, Πολιτικοί Μηχανικοί Ιανουάριος 6 Η εκτίµηση του συντελεστή συσχέτισης µεταξύ πληθυσµού πόλης και συγκέντρωση όζοντος είναι 3.54 r = =.8..46.94 Η εκτίµηση του συντελεστή συσχέτισης επιβεβαιώνει ότι η συσχέτιση δεν είναι ισχυρή (r <.9). (β) Η ανεξάρτητη µεταβλητή X είναι ο πληθυσµός πόλης και η εξαρτηµένη µεταβλητή Y είναι η συγκέντρωση όζοντος. Εκτιµούµε τις παραµέτρους του µοντέλου γραµµικής παλινδρόµησης: XY 3.54 b = = =.654 (τυπολόγιο).4 X a= y b x = 8..654.37 = 5.94 (τυπολόγιο) και η ευθεία ελαχίστων τετραγώνων είναι y = 5.94 +.654 x. Για να σχηµατίσουµε την ευθεία υπολογίζουµε δύο σηµεία που ανήκουν σε αυτήν (καλύτερα για τη µικρότερη και µεγαλύτερη τιµή της X στο δείγµα), π.χ. x =. y = 5.94 +.654. = 6. x = 4.9 y = 5.94 +.654 4.9 = 34.4 και χαράζουµε το ευθύγραµµο τµήµα που περνά από αυτά τα δύο σηµεία και προεκτείνεται µόνο για το εύρος των γνωστών τιµών του πληθυσµού πόλης X. 4 35 y [in ppb] 3 5 3 4 5 6 x [in million] 4