Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 3. Δισδιάστατα σήματα και συστήματα #2

Σχετικά έγγραφα
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 2

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Ο μετασχηματισμός Fourier

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 1. Εισαγωγή

Παρουσίαση Νο. 5 Βελτίωση εικόνας

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακές Τηλεπικοινωνίες

Συμπίεση Δεδομένων

Σημαντικές χρονολογίες στην εξέλιξη της Υπολογιστικής Τομογραφίας

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ανακατασκευή εικόνας από προβολές

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

Τμήμα Μηχανικών Οικονομίας και Διοίκησης Εφαρμοσμένη Θεωρία Πινάκων. Quiz 3. Σύντομες Λύσεις

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

Εισαγωγή στις Τηλεπικοινωνίες

DIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Τοµογραφία Μετασχηµατισµός Radon

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

Τοµογραφική Ανακατασκευή εικόνας. Κ. ελήµπασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Θεώρημα δειγματοληψίας

Ημιτονοειδή σήματα Σ.Χ.

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

H ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ. στις τηλεπικοινωνίες

Δομή της παρουσίασης

Μετατροπή Αναλογικού Σήµατος σε. Ψηφιακό (A/D Conversion) Μετατροπή Ψηφιακού Σήµατος σε Αναλογικό (D/A Conversion)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

website:

n, C n, διανύσματα στο χώρο Εισαγωγή

Συστήματα συντεταγμένων

ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ FOURIER. e ω. Το βασικό πρόβλημα στις σειρές Fourier είναι ο υπολογισμός των συντελεστών c

Εφαρμογή στις ψηφιακές επικοινωνίες

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Ενότητα 4: Δειγματοληψία - Αναδίπλωση

Ψηφιακή Επεξεργασία Σημάτων

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

20-Φεβ-2009 ΗΜΥ Διακριτός Μετασχηματισμός Fourier

1.1.1 Εσωτερικό και Εξωτερικό Γινόμενο Διανυσμάτων

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

Συμπίεση Δεδομένων

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018

Ψηφιακή Επεξεργασία Εικόνας

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Συμπίεση Πολυμεσικών Δεδομένων

Εισαγωγή στην Επεξεργασία Σήματος. Νόκας Γιώργος

Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

Μετασχημ/μός Fourier Διακριτών Σημάτων - Διακριτός Μετασχημ/μός Fourier. Στην απόκριση συχνότητας ενός ΓΧΑ συστήματος ο μετασχηματισμός :

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

Εφαρμοσμένα Μαθηματικά ΙΙ

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Δυναμική Μηχανών I. Απόκριση Γραμμικών Συστημάτων στο. Πεδίο της Συχνότητας

Σήματα και Συστήματα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

Αρχές Τηλεπικοινωνιών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8)

Παρουσίαση Νο. 6 Αποκατάσταση εικόνας

(Computed Tomography, CT)

Θεωρητική μηχανική ΙΙ

Επικοινωνίες στη Ναυτιλία

Ψηφιακή Επεξεργασία Σημάτων

ΑΝΑΠΤΥΓΜΑ ΣΕ ΣΕΙΡΑ FOURIER - ΣΕΙΡΑ FOURIER

HMY 220: Σήματα και Συστήματα Ι

Αναλογικές και Ψηφιακές Επικοινωνίες

Μεταβατική Ανάλυση - Φάσορες. Κατάστρωση διαφορικών εξισώσεων. Μεταβατική απόκριση. Γενικό μοντέλο. ,, ( ) είναι γνωστές ποσότητες (σταθερές)

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΤΑΧΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

Transcript:

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 3 Δισδιάστατα σήματα και συστήματα #2

Πληροφορία πλάτους-φάσης (1/4) Ο μετασχηματισμός Fourier διακριτού χρόνου είναι μιγαδική ποσότητα και έτσι μπορεί να γραφεί σε πολική μορφή Με τον ίδιο τρόπο μπορεί να γραφτεί και ο 2D-DFT ΤΜΗΥΠ / ΕΕΣΤ 2

Πληροφορία πλάτους-φάσης (2/4) Έστω η εικόνα x με F{x}=M x e jφx. Δημιουργούμε τις εικόνες x p,x m ώστε x p =F -1 {ce jφx }, x m =F -1 {Μ x e jf }, όπου c, f σταθερές Εικόνα x Eικόνα x p με c=1 Eικόνα x m με f=0,4π ΤΜΗΥΠ / ΕΕΣΤ 3

Πληροφορία πλάτους-φάσης (3/4) Έστω οι εικόνες x,y με F{x}=M x e jφx, F{y}=M y e jφy. Δημιουργούμε τις εικόνες z, w ώστε z=f -1 {M y e jφx }, w=f -1 {Μ x e jφy } Εικόνα x Εικόνα y Εικόνα z Εικόνα w ΤΜΗΥΠ / ΕΕΣΤ 4

Πληροφορία πλάτους-φάσης (4/4) Συμπέρασμα: Η πληροφορία φέρεται κυρίως από την φάση Φ x () Στο ίδιο συμπέρασμα καταλήγουμε εάν κάνουμε πειράματα με διαταραχή σε φάση και πλάτος. ΤΜΗΥΠ / ΕΕΣΤ 5

Το πρόβλημα της ανάκτησης πλάτους (1/4) O στόχος είναι η ανακατασκευή ενός σήματος x(n 1,n 2 ) μόνο από την φάση Φ x του μετασχηματισμού Fourier Το σήμα x'(n 1,n 2 ) που προκύπτει ισούται με αx(n 1,n 2 ) Περιορισμοί: Το x(n 1,n 2 ) πραγματικό και πεπερασμένο Ο μετασχηματισμός Fourier δεν παραγοντοποιείται σε γινόμενο πολυωνύμων των e jω1 και e jω2 Συνήθως, στις εικόνες ισχύουν οι παραπάνω περιορισμοί ΤΜΗΥΠ / ΕΕΣΤ 6

Το πρόβλημα της ανάκτησης πλάτους (2/4) Δύο λύσεις για το πρόβλημα:» Μέσω γραμμικού συστήματος» Μέσω επαναληπτικής μεθόδου Γραμμικό σύστημα Αν Ν 2 άγνωστοι τότε δειγματοληπτούμε σε Ν 2 σημεία (ω 1,ω 2 ), π.χ. με τον τρόπο που γίνεται στον 2D-DFT Το σύστημα που προκύπτει είναι της μορφής Ax=0 οπότε η λύση είναι της μορφής αx(n 1,n 2 ) ΤΜΗΥΠ / ΕΕΣΤ 7

Το πρόβλημα της ανάκτησης πλάτους (3/4) Η μέθοδος γραμμικού συστήματος είναι κατάλληλη για μικρές μόνον εικόνες, αφού για παράδειγμα αν έχουμε εικόνα 10Mpixel τότε απαιτούνται 10M εξισώσεις!!! Επαναληπτική μέθοδος: Θέτει περιορισμούς» Στον χωρικό πεδίο: πραγματικές τιμές και τα εκτός εικόνας εικονοστοιχεία μηδέν» Στο συχνοτικό πεδίο: ο μετασχηματισμός Fourier δεν πρέπει να παραγοντοποιείται Κριτήριο σταματήματος: Η φάση του αποτελέσματος πρέπει να είναι ίση (ή ~ = ) με αυτή της αρχικής εικόνας ΤΜΗΥΠ / ΕΕΣΤ 8

Το πρόβλημα της ανάκτησης πλάτους (4/4) Επαναληπτική διαδικασία ΤΜΗΥΠ / ΕΕΣΤ 9

Projection-Slice Theorem (1/5) Χρησιμοποιείται στην υπολογιστική τομογραφία Απεικόνιση του εσωτερικού στερεών σωμάτων (της τομής f(x,y) ) με μη επεμβατικό τρόπο Μπορεί επίσης να βοηθήσει στη διαισθητική ερμηνεία των εικόνων στο πεδίο συχνοτήτων ΤΜΗΥΠ / ΕΕΣΤ 10

Projection-Slice Theorem (2/5) Θυμίζουμε ότι για τη συνεχή φυσική σκηνή f(x,y) το ζεύγος Fourier είναι Πρέπει η συνάρτηση f(x,y) να είναι απόλυτα ολοκληρώσιμη ΤΜΗΥΠ / ΕΕΣΤ 11

Projection-Slice Theorem (3/5) Κατασκευή της 1-D συνάρτησης p θ (t) Κάθε τιμή της p θ (t) δίνεται από το άθροισμα των τιμών της τομής κατά μήκος των γραμμών που φαίνονται στο σχήμα ΤΜΗΥΠ / ΕΕΣΤ 12

Projection-Slice Theorem (4/5) Μετασχηματισμός Radon (προβολή της f(x,y) υπό γωνία θ ) Αλλαγή συντεταγμένων από το σύστημα t,u στο x,y Σε μία πραγματική εφαρμογή, η συνάρτηση f(x,y) εξαρτάται από το υλικό της τομής αφού κάθε υλικό παρουσιάζει διαφορετικές ιδιότητες (π.χ., απορρόφηση σε κάποια ακτινοβολία) ΤΜΗΥΠ / ΕΕΣΤ 13

Projection-Slice Theorem (5/5) Το Θεώρημα: ΤΜΗΥΠ / ΕΕΣΤ 14

Ανακατασκευή από προβολές 1/2 (το παράδειγμα της αξονικής τομογραφίας) N s : αριθμός εκπεμπομένων φωτονίων ανά χρονική μονάδα N r : αριθμός λαμβανομένων φωτονίων ανά χρονική μονάδα Σύμφωνα με το νόμο Lambert - Beer : N r N e s a( d) Όπου η α(d) είναι η σταθερά εκθετικής απόσβεσης κατά μήκος της διαδρομής d και δίνεται ως Αν πάρουμε φυσικό λογάριθμο και στις δύο πλευρές του Νόμου Lambert-Beer βρίσκουμε την απορροφητικότητα δια μέσου της συγκεκριμένης διαδρομής ( d) f( x, y) ds d N s ( d) f( x, y) ds ln N d r ΤΜΗΥΠ / ΕΕΣΤ 15

Ανακατασκευή από προβολές 2/2 Για την πλήρη ανακατασκευή του στερεού σώματος Εκτιμάται η F(Ω 1,Ω 2 ) και κατ επέκταση η f(x,y) από τον υπολογισμό της p θ (t) για διάφορες γωνίες στο διάστημα [0 π] Εφαρμόζεται η παραπάνω διαδικασία για διάφορα παράλληλα επίπεδα (τομές) και στη συνέχεια γίνεται η κατάλληλη αντιστοίχισή τους ΤΜΗΥΠ / ΕΕΣΤ 16

Σχέση Χώρου Συχνότητας F(Ω 1, Ω 2 ) = FT[f(t 1,t 2 )] f(t 1,t 2 ): απόλυτα ολοκληρώσιμη Εάν f(t 1,t 2 ): ζωνοπεριορισμένη f(n 1,n 2 ) F(ω 1, ω 2 ) = DSFT[f(n 1,n 2 )], (DS: discrete space) Εάν f(n 1,n 2 ) περιορισμένης χωρικής επέκτασης F(k 1, k 2 ) (δειγματοληψία του DSFT) F(k 1, k 2 ) = DFT[f(n 1,n 2 )] ΤΜΗΥΠ / ΕΕΣΤ 17

Περιγραφή συχνοτικού περιεχομένου (1/5) To ζεύγος DFT για 2D σήματα είναι (με συμβολισμό πιο συνήθη σε ΨΕΑΕ): Εμφάνιση συχνοτήτων σε μονοδιάστατα σήματα ΤΜΗΥΠ / ΕΕΣΤ 18

Περιγραφή συχνοτικού περιεχομένου (2/5) Όμοια για τα δισδιάστατα σήματα Η ολίσθηση είναι της μορφής F(u,v) F(u-N/2,v-N/2) Χαμηλές συχνότητες Ομαλές περιοχές στην εικόνα Υψηλές συχνότητες Περιγράμματα και άκρα εικόνας λόγω παραθύρωσης ΤΜΗΥΠ / ΕΕΣΤ 19

Περιγραφή συχνοτικού περιεχομένου (3/5) Μετασχηματισμός Fourier (στο σύστημα αξόνων u-v), p 0 (t) (κατά μήκος του άξονα v), p π/2 (t) (κατά μήκος του άξονα u) v u Η υψηλή ενέργεια που εμφανίζεται στις υψηλές συχνότητες κατά μήκος των αξόνων δικαιολογείται από τις έντονες διακυμάνσεις και τις ασυνέχειες των καμπυλών p θ (t) κατά μήκος των αξόνων ΤΜΗΥΠ / ΕΕΣΤ 20

Περιγραφή συχνοτικού περιεχομένου (4/5) Μετασχηματισμός Fourier, p 3π/4 (t) (κατά μήκος της v=-u), p π/4 (t) (κατά μήκος της v=u) Ενώ στο άξονα v=-u υπάρχει ενέργεια στις υψηλές συχνότητες (η αντίστοιχη καμπύλη μεταβάλλεται γρήγορα) δεν συμβαίνει το ίδιο με τον άξονα v=u (η αντίστοιχη καμπύλη είναι σαφώς ομαλότερη) ΤΜΗΥΠ / ΕΕΣΤ 21

Περιγραφή συχνοτικού περιεχομένου (5/5) Άλλα παραδείγματα: ΤΜΗΥΠ / ΕΕΣΤ 22

Δειγματοληψία (1/5) Η εικόνα ψηφιοποιείται για να γίνει η επεξεργασία της από υπολογιστή Η δειγματοληψία αναφέρεται στην διακριτοποίηση των αξόνων x,y της εικόνας (δηλ. του πεδίου ορισμού) Από το σήμα x α (t 1,t 2 ) λαμβάνεται το σήμα x(n 1,n 2 ) Ομοιόμορφη δειγματοληψία (εύκολη υλοποίηση) Ανομοιόμορφη δειγματοληψία (π.χ., περισσότερα δείγματα στα περιγράμματα) Δυο ενδιαφέροντα προβλήματα Σχέση φασμάτων συνεχούς και διακριτού σήματος Ανακατασκευή συνεχούς από διακριτό σήμα ΤΜΗΥΠ / ΕΕΣΤ 23

Δειγματοληψία (2/5) Πλέγμα δειγματοληψίας t = Vn, t = [t 1,t 2 ] T, n = [n 1, n 2 ] T, V = [v ij ] 2x2 x(n) = x α (Vn) Ορθογώνιο πλέγμα Εξαγωνικό πλέγμα (βέλτιστο για κυκλικά φάσματα) ΤΜΗΥΠ / ΕΕΣΤ 24

Δειγματοληψία (3/5) Σχέση φασμάτων (FT DSFT) x(n)=x α (Vn) Σχέση φασμάτων με χρήση ορθογώνιου πλέγματος x(n 1,n 2 )=x α (n 1 T 1,n 2 T 2 ), T=T 1 xt 2 (χωρική περίοδος) ΤΜΗΥΠ / ΕΕΣΤ 25

Δειγματοληψία (4/5) Παράδειγμα συνεχούς και διακριτού φάσματος ΤΜΗΥΠ / ΕΕΣΤ 26

Δειγματοληψία (5/5) Ανακατασκευή αναλογικού σήματος Εφαρμογή ορίου Nyquist σε κάθε συνιστώσα κατά την δειγματοληψία για να αποφευχθεί η αναδίπλωση συχνότητας ΤΜΗΥΠ / ΕΕΣΤ 27

Κβαντισμός (1/3) Ο κβαντισμός αναφέρεται στη διακριτοποίηση της τιμής f του κάθε εικονοστοιχείου (δηλαδή του πεδίου τιμών) Διαδικασία κβαντισμού To πεδίο τιμών της f χωρίζεται σε L υποδιαστήματα Οι ακραίες τιμές κάθε υποδιαστήματος είναι τα όρια απόφασης d i-1, d i και μια τιμή μεταξύ αυτών ονομάζεται επίπεδο κβάντισης r i Αν d i-1 < f d i τότε το f q =Q(f)=r i ΤΜΗΥΠ / ΕΕΣΤ 28

Κβαντισμός (2/3) Θόρυβος κβαντισμού: f=f q +e q To e q εξαρτάται από το σήμα και το L Ομοιόμορφος κβαντισμός d i -d i-1 =Δ, r i =(d i +d i-1 )/2, 1 i L, Δ=(d L -d 0 )/2(# ψηφίων) ΤΜΗΥΠ / ΕΕΣΤ 29

Παράδειγμα κβαντισμού (3/3) Επανα-κβαντισμός εύρους τιμών [0:255] στα πέντε επίπεδα [0:51:255] και αντιστοίχιση στην κεντρική τιμή Στη νέα εικόνα εμφανίζονται μόνο πέντε επίπεδα του γκρι ΤΜΗΥΠ / ΕΕΣΤ 30

Διανυσματικός κβαντισμός (1/4) Οι ποσότητες που κβαντίζονται είναι Ν-διάστατα διανύσματα που παράγονται είτε από μια διανυσματική πηγή είτε μετά από ομαδοποίηση βαθμωτών ποσοτήτων Δημιουργείται ένας Ν-διάστατος χώρος Διαδικασία κβαντισμού (δοθέντος του διαν. κβαντιστή) Ο χώρος είναι διαχωρισμένος σε L υποπεριοχές R i Τα όρια αυτών των υποπεριοχών είναι τα όρια απόφασης και επιλέγεται κάποιο διάνυσμα εντός των ορίων που ονομάζεται επίπεδο κβάντισης r i (ή κεντροειδές της υποπεριοχής) Αν το διάνυσμα g ανήκει στην περιοχή R i τότε: g q =Q(g) =r i και g = g q + e q ΤΜΗΥΠ / ΕΕΣΤ 31

Παράδειγμα διανυσματικού κβαντισμού Έστω g=[g 1 g 2 ] T, 0 g 1,g 2 1 και L=4 Οι περιοχές μπορούν να έχουν οποιοδήποτε σχήμα και τα διανύσματα r i μπορεί να μην είναι στο κέντρο κάθε περιοχής (2/4) ΤΜΗΥΠ / ΕΕΣΤ 32

Διανυσματικός κβαντισμός (3/4) Επιλογή R i, r i Βέλτιστη επιλογή με βάση κάποιο κριτήριο (π.χ. Ευκλείδιο απόσταση)»d=e[d(g,g q )], d(g,g q )=(g q -g) T (g q -g) Για τον βέλτιστο διανυσματικό κβαντιστή πρέπει να ισχύουν οι εξής ιδιότητες»(1)g q =Q(g)=r i, αν και μόνο αν d(g,r i ) d(g,r j ), j i, 1 j L» (2) To r i πρέπει να είναι κεντροειδές, δηλαδή ΤΜΗΥΠ / ΕΕΣΤ 33

Διανυσματικός κβαντισμός (4/4) Ο καθορισμός των r i μπορεί να γίνει με τον αλγόριθμο Κ-means 1. Επιλέγονται τυχαία M (Μ>>L) διανύσματα g i (διανύσματα εκπαίδευσης) 2. Από αυτά επιλέγονται L και θεωρούνται τα κεντροειδή διανύσματα. 3. Χρησιμοποιώντας το MSE D (MSE Distance) κατηγοριοποιούνται τα διανύσματα στις L υποπεριοχές (ιδιότητα 1 του βέλτιστου κβαντιστή) 4. Για κάθε υποπεριοχή υπολογίζονται τα νέα κεντροειδή - Όταν χρησιμοποιείται το MSE Distance τότε τα κεντροειδή υπολογίζονται από τον μέσο όρο των διανυσμάτων κάθε περιοχής 5. Επιστροφή στο Βήμα 3 χρησιμοποιώντας να νέα κεντροειδή αυτή η διαδικασία συνεχίζεται έως ότου τα κεντροειδή παραμείνουν τα ίδια (ή σχεδόν ίδια) ΤΜΗΥΠ / ΕΕΣΤ 34