Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + +

Σχετικά έγγραφα
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2 + +

Μετασχηματισμός Δεδομένων

Μετασχηματισμός Δεδομένων

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

Πανεπιστήμιο Πελοποννήσου

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Βιομαθηματικά BIO-156

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

Λογισμικά για Στατιστική Ανάλυση. Minitab, R (ελεύθερο λογισμικό), Sas, S-Plus, Stata, StatGraphics, Mathematica (εξειδικευμένο λογισμικό για

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

3. Κατανομές πιθανότητας

Λογισμικά για Στατιστική Ανάλυση. Minitab, R (ελεύθερο λογισμικό), Sas, S-Plus, Stata, StatGraphics, Mathematica (εξειδικευμένο λογισμικό για

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

HMY 799 1: Αναγνώριση Συστημάτων

Στατιστική Ι-Θεωρητικές Κατανομές Ι

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii

χ 2 test ανεξαρτησίας

Τυχαία μεταβλητή (τ.μ.)

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

P(200 X 232) = =

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

Ενδεικτικές ασκήσεις ΔΙΠ 50

Καθορισμός μεταβλητών και εισαγωγή δεδομένων

Κεφάλαιο 5. Βασικές έννοιες ελέγχων υποθέσεων και έλεγχοι κανονικότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

HMY 795: Αναγνώριση Προτύπων

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50

14/11/2016. Στατιστική Ι. 7 η Διάλεξη (Βασικές συνεχείς κατανομές)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

X = = 81 9 = 9

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Κεφάλαιο 1. Εισαγωγή: Βασικά Στοιχεία Θεωρίας Πιθανοτήτων και Εκτιμητικής

Μεθοδολογία των επιστημών του Ανθρώπου: Στατιστική Ι

Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

, x > a F X (x) = x 3 0, αλλιώς.

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

Στατιστική Επιχειρήσεων Ι. Βασικές συνεχείς κατανομές

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

1991 US Social Survey.sav

Συνεχείς Τυχαίες Μεταβλητές

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

που αντιστοιχεί στον τυχαίο αριθμό 0.6 δίνει ισχύ P Y Να βρεθεί η μεταβλητή k 2.

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης Τμήμα Ψυχολογίας

Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.

Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics

HMY 795: Αναγνώριση Προτύπων

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

κωδικοποίηση κτλ) Εισαγωγή δεδομένων με μορφή SPSS Εισαγωγή δεδομένων σε μορφή EXCEL Εισαγωγή δεδομένων σε άλλες μορφές

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Στατιστική. Ενότητα 4 η : Θεωρητικές Κατανομές Πιθανότητας Διακριτής και Συνεχούς Τυχαίας Μεταβλητής. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

Περιεχόμενα της Ενότητας. Δειγματοληψία. Δειγματοληψίας. Δειγματοληψία. Τυχαία Δειγματοληψία. Χ. Εμμανουηλίδης, 1.

Περιγραφική Στατιστική

159141,9 64 x n 1 n

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

6 / 4 / Βιοστατιστικός, MSc, PhD

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

Στατιστική Συμπερασματολογία

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

Γνωριμία με τον προγραμματισμό μέσω της γλώσσας R Στοιχεία Περιγραφικής Στατιστικής

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

1 x-μ - 2 σ. e σ 2π. f(x) =

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής

ΚΑΤΑΝΟΜΗ ΠΥΚΝΟΤΗΤΑΣ ΠΙΘΑΝΟΤΗΤΑΣ

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ( ) ΟΜΑΔΑ Α ( 40% )

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Mann Whitney U τεστ)

Θεωρητικές Κατανομές Πιθανότητας

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

Προσομοίωση Μοντέλων Επιχειρησιακών Διαδικασιών

ΕΝΕΡΓΟΠΟΙΗΣΗ Η ενεργοποίηση του SPSS γίνεται με 2 τρόπους : Με διπλό πάτημα του εικονιδίου SPSS στην επιφάνεια εργασίας, ή

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

Transcript:

ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο

Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή Παράδειγμα 1 Έστω ότι η μέση διάρκεια μιας υπεραστικής κλήσης είναι 2 λεπτά. Να βρεθεί η πιθανότητα των ενδεχομένων Ε 1 : μια κλήση να υπερβεί τα 6 λεπτά Ε 2 : μια κλήση να διαρκέσει από 4 έως 6 λεπτά Ε 3 : να υπερβεί τα 10 λεπτά δοθέντος ότι έχει διαρκέσει ήδη 4 λεπτά Ε 4 : μια κλήση να διαρκέσει ακριβώς 4 λεπτά Εάν η τ.μ. Χ παριστά τη διάρκεια μιας υπεραστικής κλήσης σε λεπτά, τότε Χ~ Εκθετική(θ=1/2) και για την επίλυση του παραδείγματος πρέπει να υπολογιστούν οι πιθανότητες: P(Ε 1 )=P(X > 6)=1-P(X 6) P(Ε 2 )=P(4 X 6)=P(X 6)-P(X<4) P(Ε 3 )=P(X >10 X 4)=P(X>6+4)/P(X 4)=P(X>6) P(Ε 4 )=P(X = 4) (αμνήμων ιδιότητα της εκθετικής) + + P( X > x) = f ( t) dt = θe dt = - e = e P( X x) = 1-e x X x -θt -θt -θx -θx x ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 2

Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή a. σε νέο Data Set βάζουμε στη στήλη x τις τιμές (0) 4, 6 και 10 που μας ενδιαφέρουν εδώ b. για Target Variable επιλέγω cdfexp_0.5 (ή dfexp_0.5 ) c. για Function group επιλέγουμε CDF & Noncentral CDF (ή PDF & Noncentral PDF) d. για Functions and Special Variables επιλέγουμε CDF.EXP(x,1/2) (ή PDF.EXP(x,1/2)) και έτσι υπολογίζουμε την P(X x) ή την f X (x) ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 3

Υπολογισμός Πιθανοτήτων Εκθετική Κατανομή οπότε παίρνουμε τα εξής αποτελέσματα P(X 4)=0.8647 f X (4)=0.0677 P(X 6)=0.9502 P(X 10)=0.9933 και άρα P(Ε 1 )= 0.0498 P(Ε 2 )= 0.0855 P(Ε 3 )= P(Ε 1 )= 0.0498 P(Ε 4 )=0 f X (4) ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 4

Γραφικές παραστάσεις της σ.π. και της α.σ.κ. Εκθετική Κατανομή a. σε νέο Data Set βάζουμε στη στήλη x πολύ πυκνές τιμές 0, 0.2, 0.4, 0.6,,10 οι τιμές που μας ενδιαφέρουν εξαρτώνται από την τιμή της παραμέτρου b. δημιουργούμε στήλες με τις PDF.EXP(x,παράμετρος) CDF.EXP(x,παράμετρος) για διάφορες τιμές της παραμέτρου (εδώ για θ=0.5 και θ=2) c. παίρνουμε τις γραφικές παραστάσεις ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 5

Γραφικές παραστάσεις της σ.π. και της α.σ.κ. Εκθετική Κατανομή c. παίρνουμε τις γραφικές παραστάσεις Click Graphs > Legacy Dialogs > Lines d. επιλέγουμε Simple, click define e. επιλέγουμε Category Axis x f. μετακινούμε το dfexp ή το cdfexp στο Variable g. στο Change Statistic επιλέγουμε Sum of values h. Continue i. Ok ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 6

Γραφικές παραστάσεις της σ.π. και της α.σ.κ. Εκθετική Κατανομή θ=0.5 θ=2 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 7

Υπολογισμός Πιθανοτήτων Κανονική Κατανομή Παράδειγμα 2 Έστω ότι το επίπεδο του Na στο ανθρώπινο αίμα ακολουθεί κανονική κατανομή με μέση τιμή 140mg/ml και τυπική απόκλιση 7mg/ml. Να βρεθεί η πιθανότητα των ενδεχομένων Ε 1 : σε ένα άτομο το επίπεδο του Na είναι μικρότερο του 130 Ε 2 : σε ένα άτομο το επίπεδο του Na είναι μεταξύ 135 και 145 Ε 3 : σε ένα άτομο το επίπεδο του Na είναι μεγαλύτερο του 160 Εάν η τ.μ. Χ παριστά επίπεδο του Na στο ανθρώπινο αίμα, τότε Χ~ Ν(μ=140,σ 2 = 7 2 ) και Z=(X-μ)/σ ~ Ν(μ=0,σ 2 = 1) για την επίλυση του παραδείγματος πρέπει να υπολογιστούν οι πιθανότητες: P(Ε 1 )=P(X < 130)=P((X-μ)/σ <(130-140)/7)=P(Z<-1.43)=1-Φ(1.43) P(Ε 2 )=P(135 X 145)=P(X 145)-P(X<135) =P((X-μ)/σ 0.714)-P((X-μ)/σ -0.714) =P(Z 0.714)-P(Z -0.714) =2Φ(0.714)-1 P(Ε 3 )=P(X >160)=1- P(X 160)=1- P((X-μ)/σ 2.86)= P(Z 2.86)=Φ(2.86) ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 8

Υπολογισμός Πιθανοτήτων Κανονική Κατανομή οπότε παίρνουμε τα εξής αποτελέσματα P(X 130)=0.0766 P(X 135)=0.2375 P(X 145)=0.7625 P(X 160)=0.9979 Φ(1.43)=0.9236 Φ(0.714)=0.7624 Φ(2.86)=0.9979 και άρα P(Ε 1 )=0.0766 P(Ε 2 )=0.5249 P(Ε 3 )=0.0021 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 9

Προσομοίωση τυχαίου δείγματος Κανονική Κατανομή a. σε ένα νέο Data Set βάζουμε έναν αριθμό στην 1 η στήλη στο 100 ο κελί (για να πάρουμε 100 τιμές) b. Transform >Compute Variable c. επιλέγω Target Variable Χ 1, Χ 2, Χ 3, Χ 4, Χ 5 d. Function group επιλέγουμε Random Numbers e. για Functions and Special Variables επιλέγουμε RV.ΝΟRMAL(4,2) έτσι δημιουργούμε 5 ομάδες των 100 τυχαίων παρατηρήσεων από Ν(μ=4,σ 2 =2 2 ) έχουμε στην αρχή θέσει Random number generator Starting point 16410 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 10

Μετασχηματισμοί τυχαίου δείγματος Κανονική Κατανομή 2 Χ1-μ Εάν Χ1 Ν(μ,σ ) τότε η τ.μ. Z 1= Ν(0,1) σ Εάν Χ, Χ Ν(μ,σ ) τότε η τ.μ. D=Χ -Χ Ν(μ-μ=0,σ +σ =2σ ) 2 2 2 2 1 2 1 2 Χ +...+Χ n 2 2 1 n Εάν Χ 1,..., Χn Ν(μ,σ ) τότε η τ.μ. X = Ν(μ, ) σ n ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 11

Μετασχηματισμοί τυχαίου δείγματος Κανονική Κατανομή για να δούμε πόσο διαφέρουν τα τ.δ. από την αντίστοιχη θεωρητική κανονική κατανομή: a. Click Analyze > Descriptive Statistics > Frequencies b. επιλέγουμε Variable Χ 1, Z 1, D, Xmean c. στα Statistics επιλέγουμε Mean, Variance, Range. d. στα Charts επιλέγουμε Histograms ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 12

Πόσο διαφέρουν τα τυχαία δείγματα από την αντίστοιχη θεωρητική Κανονική Κατανομή; ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 13

Πόσο διαφέρουν τα τυχαία δείγματα από την αντίστοιχη θεωρητική Κανονική Κατανομή; ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 14

Πόσο διαφέρουν τα τυχαία δείγματα από την αντίστοιχη θεωρητική Κανονική Κατανομή; 2σ 2 =8=(2.828) 2 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 15

Πόσο διαφέρουν τα τυχαία δείγματα από την αντίστοιχη θεωρητική Κανονική Κατανομή; σ 2 /n=4/5=(0.8944) 2 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 16

Κατανομή δειγματικού μέσου Ομοιόμορφη Κατανομή 2 a+b (b-a) Εάν Χ 1,..., Χn U(a,b) τότε E(Χ i)= και Var(Χ i)= i=1,2,...,n 2 12 Χ 1+...+Χn a+b (b-a) και για την τ.μ. X n = ισχύει ότι E(X n)= και Var(X n)= n 2 12 n Όταν n>>25 από το Κ.Ο.Θ η κατανομή του X προσεγγίζε κατά κατανομή 2 2 a+b σ (b-a) την κανονική κατανομή δηλ: Xn Ν(μ=, = ) n 2 n 12 n n ται από a. σε ένα νέο Data Set δημιουργώ 10 Target Variable U 1, U 2, U 3, U 4, U 5, U 6, U 7, U 8, U 9, U 10 (με 100 τιμές η καθεμία) b. Function group επιλέγουμε Random Numbers c. για Functions and Special Variables επιλέγουμε RV. UNIFORM(0,1) έτσι δημιουργούμε 10 τ.δ. των 100 παρατηρήσεων από U(0,1) 2 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 17

Κατανομή δειγματικού μέσου Ομοιόμορφη Κατανομή Δημιουργούμε επίσης τις Target Variable U 5 mean, U 10 mean ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 18

Κατανομή δειγματικού μέσου Ομοιόμορφη Κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 19

Κατανομή δειγματικού μέσου Ομοιόμορφη Κατανομή επειδή n=5 «απέχει» της αντίστοιχης κανονικής σ 2 /n=1/(5*12)=(0.1291) 2 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 20

Κατανομή δειγματικού μέσου Ομοιόμορφη Κατανομή για n=10 ακόμη «απέχει» της αντίστοιχης κανονικής σ 2 /n=1/(10*12)=(0.0913) 2 ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 3ο 21