Identification of MIMO State Space Model based on MISO High-order ARX Model: Design and Application

Σχετικά έγγραφα
Modeling and Simulation of Drying Cylinders in Paper Processes

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

2002 Journal of Software

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Analiza reakcji wybranych modeli

Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal

Multi-GPU numerical simulation of electromagnetic waves

The Improvement of Cake Filtration Rate using CO 2

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Advanced Control Techniques for Batch Processes Based on Iterative Learning Control Methods

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

INDIRECT ADAPTIVE CONTROL

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Το άτομο του Υδρογόνου

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

A New Approach to Bounded Real Lemma Representation for Linear Neutral Systems


M p f(p, q) = (p + q) O(1)

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

FORMULAS FOR STATISTICS 1

A Comparison Study between Batch and Continuous Process Simulation for the Separation of Carbon-13 Isotope by Cryogenic Distillation

High order interpolation function for surface contact problem

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

rs r r â t át r st tíst Ó P ã t r r r â

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Buried Markov Model Pairwise

Study of Excess Gibbs Energy for a Lattice Solution by Random Number Simulation

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Modeling of the Charge-discharge Behavior of a 12-V Automotive Lead-acid Battery

Ανταλλακτικά για Laptop Lenovo

ER-Tree (Extended R*-Tree)

A research on the influence of dummy activity on float in an AOA network and its amendments

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

6.003: Signals and Systems. Modulation

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

(Paw Dalgaard) NaCl. NaCl. (Dalgaard et al., 2002) (μ max ) (Lodge and Hinshelwood 1943)

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Research on Economics and Management

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation


ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Numerical Analysis FMN011

Applying Markov Decision Processes to Role-playing Game

X g 1990 g PSRB

6.003: Signals and Systems

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

Influence of Flow Rate on Nitrate Removal in Flow Process

Empirical best prediction under area-level Poisson mixed models

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

Simplex Crossover for Real-coded Genetic Algolithms


Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

Utkin Walcott & Zak ¼

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Πραγματοποιήσιμοι Δυναμικοί Ελεγκτές σε Ουδέτερα Συστήματα με Χρονικές Καθυστερήσεις για Βιομηχανικές Εφαρμογές ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

P r s r r t. tr t. r P

( N m 2 /C 2 )( C)( C) J

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Stabilization of stock price prediction by cross entropy optimization

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

To whom correspondence should be addressed: Dr. Beat Schwaller, Unit of Anatomy,

m i N 1 F i = j i F ij + F x

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Matrices and Determinants

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

!"#$%&'()"&*+",*,%-%,.%,()"&*./*01#(&*(&2*#(304&%*54'6%&%,'* 7460*'/&60%)3*(&2*&(61,(54')3*'$%%30*

5.4 The Poisson Distribution.

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

A Study on Physical Properties and Catalytic Combustion of Methane of Sr Hexaaluminate Prepared using 1-butanol and Ethylene Glycol

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté


(... )..!, ".. (! ) # - $ % % $ & % 2007

Prey-Taxis Holling-Tanner

Transcript:

Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 67-72 MISO y ARX m MIMO m m : j nk kjiçlslçm Çm * 121-742 ne e 1 *LS r l 431-080 kke k (2006 11o 20p r, 2006 12o 21p }ˆ) Idenificaion of MIMO Sae Space Model based on MISO High-order ARX Model: Design and Applicaion Wangyun Won, Jieun Yoon, Kwang Soon Lee and Bongkook Lee* Deparmen of Chemical and Biomolecular Engineering, Sogang Universiy, 1, Shinsoo-dong, Mapo-gu, Seoul 121-742, Korea *LS Indusrial Sysem Co., Ld., Hogye-dong, Dongan-gu, Anyang, Gyeonggi 431-080, Korea (Received 20 November 2006; acceped 21 December 2006) k qd, q realizaion, q runcaionp p f, MIMO ˆ p pe p o rp p l. l MIMO edšp ARX MISO e dšp. p, ARX p Ž qd l p r., realizaionp p MISO ARX r l MISO ˆ p lv, MIMO ˆ. srp, q realizaion q runcaionp p q MIMO ˆ p llv. rk p k CO 2 n r e q p m rl o m rlp l rn l. h Absrac An efficien mehod for idenificaion of MIMO sae space model has been developed by combining parial leas squares (PLS) regression, balanced realizaion, and balanced runcaion. In he developed mehod, a MIMO sysem is decomposed ino muliple MISO sysems each of which is represened by a high-order ARX model and he parameers of he ARX models are esimaed by PLS. Then, MISO sae space models for respecive MISO ARX ransfer funcion are found hrough realizaion and combined o a MIMO sae space model. Finally, a minimal balanced MIMO sae space model is obained hrough balanced realizaion and runcaion. The proposed mehod was applied o he design of model predicive conrol for emperaure conrol of a high pressure CO 2 solubiliy measuremen sysem. Keywords: Idenificaion, PLS, Balanced Realizaion, Balanced Truncaion, Model Predicive Conrol 1. p rl rl p p e ˆ p ˆq p r p r l p r. v p rp rp q s l rp v p p pn l dv k. rp rl l e p pe rp r p r p p rp. e rp r p l o rp p 1970 l Ljungl p p m m (predicion error mehod) To whom correspondence should be addressed. E-mail: kslee@sogang.ac.kr 1990 l rk pe (subspace idenificaion mehod) p [1]. p m m p parameric p p. rp p p (SISO)( p p p (MISO)) p p m m Ž r l rp kp r p rp r Ž p qrp v., pe p nonparameric l p, r p p n l, QR p p n l rp kr q p (MIMO) ˆ p }k vp [2, 3]. Van Overscheem DeMoorl p N4SID q o, p p l p pe p p rnl p l l [4-8]. pe p p 67

68 omlovpp p pn n p(biased) p r l, kr l l ˆ pe e p l o rl pep l. r l p r p k l p r p p l o m m l p p n rp v. r p er rp m p n, r p p rp l eˆv (collineariy)l p illcondiioningp edš Ž r rl q p. MIMO rp e r rp l eˆ l l l p r p kv., r p er r p n, PRBS(pseudo random binary sequence)m p k Ž p r e p r p pp p l p r. l p r rp kp p rp r p l o, l l sl l p s l lrp e p pe edšp m. p vp qd (parial leas square regression) p l (muli-collineariy) l p Ž r r, q (balanced) realizaion q runcaionp l p(minimal) q MIMO ˆ p ll. 2. m m rl rl p r p r l p p r, rp q p pp n n. p o pp p rp pe p m. Ì 1: p r}. Ì 2: MIMO rp MISO rp. Ì 3: 2 l r MISO rl ARX r qd n l Ž r. Ì 4: MISO ARX r ˆ. Ì 5: MISO ˆ p p(non-minimal) MIMO ˆ. Ì 6: q realizaion q runcaionp p q ˆ. op p np p. 2-1. m nz o sp pe l o p r} rp n. p p (oulier) r l o Ž mlp s p f, k vv kp p l p r p. p o, l l e (1) p p p p l p r, Ž r s p eˆ o l p p r (normalizaion) m. o45 o1 2007 2k y () l, y m m u p r r m p p, y m u p σ y m σ u p. p, MIMO rp p l MISO rp m. 2-2. y ARX }o ARX p Ž r k ARMAX, p Ž r p p, ARMAXm p q p n v k er rp q p qrp p [1]. l l MISO rp e (2)m p ARX m. l, y r, u rp, e n p. np, n u p p, n y p p. e (2) 1,...,N kp p k e e (3). e (3)l Φ i m Y i p r rl ppp ˆ rl m p ˆ v k m. Y i Φ i Θ i + E i l i1,..., n y Φ i y m y u m u ---------------------, u() --------------------- σ y σ u n n u a ik ( k) + b jk u j ( k) + e i k 1 j 1 l i1,..., n y (2) ( n + 1) Y i ( N) n () () 1 u 1 () n u 1 () 1 u nu () n u nu () 1 ( ) ( N n) u 1 ( N 1) u 1 ( N n) u nu ( N 1) u nu ( N n) N 1 ARX p r p mis-specificaionp p l p r ill-condiioning l, Ž r rl r p. p l p r o p m qd o. p e (4)m p p llv Φ i p p Y i p n p f, p v p pn l l p r r p. Φ i [ U Ũ ] D 0 V T UDV T UQ T 0 D Ṽ T e (3)p rl e (4)m p rp Φ i m Yi p p l p pn l, m p rp v p Φ i p Y i mp q l., qd e (5)m p Φ i m Y i el l, pp p (1) (3) (4)

p v p r } l, Φ i k Y i m r. pm p Φ i m Y i l p n l Ž r r p kr r vp prp p. l Abdi[9]p qd k vp pn l e (2)p Ž a ik, b jk (i 1,...,n y, j1,...,n u, k 1,...,n) r m. MISO ARX p MIMO ˆ p pe: m rn 69 Φ i ΤΡ Τ Y i TS T (5) l Sm P (loading marix)p, T qq (laen vecors) l r (score marix)p. 2-3. Realizaion MIMO m e (2)p MISO ARX r pp ˆ. x ( + 1) A i x () + B ij u j A i C i x () a i1 1 0 n u j 1 l i1,...,n y, j1,...,n u a i 2 0 0,, C i [1 0... 0] (6) B b ij2 ij 0 0 a in b ij1 b ijn (similariy ransformaion)p q realizaionp [10]. p p ˆ, ˆm pp l p e (8)p rl L c (x)m L o (x)p l p. L c ( x) 1 --x T 1 G C x 2 l G c C C T, C [ B AB A n 1 B] 1 L o ( x) --x T G o x 2 l G o Õ T Õ, Õ [ ( CT CA) T ( CA n 1 ) T ] T (8) l C rl, Õ, G c rl gramian, G o gramian, np p. l l e (7)p MIMO ˆ p XMZl q MIMO ˆ p m. p p e (9) p, e (10)p s. l Mp [11]p k vp l m. Z ( + 1) AZ + BU() Y () CZ() l A M 1 AM, B M 1 B, C CM (9) l MISO ˆ p e (7) p MIMO ˆ. X ( + 1) AX + BU() l Y () CX() Y () y 1, y ny A 1 0 U () 2-4. m realizaion m runcaion r p p rl l edšp ˆ pp sr p edšp rl, r p ed Šp ˆ r p edšp [12]. e (6)p MISO ˆ p rl ˆ p p realizaionp. v p e (7) p MIMO ˆ rl ˆ l p realizaionp. MIMO ˆ p rl rl p p p v k ˆ p. l q p ˆ, ˆm pp l p p p rp kr ˆ, rl p p p p u 1 u ny B 11 B 1nu A, B, C 0 A ny B ny B 1 ny n u C 1 0 0 C ny (8) G c G o Σ 0 σ 2 0, σ 1 > σ 2 >... > σ n (10) o el q MIMO ˆ p rl gramian gramianp Hankel p p o p. l 1/σ i p i w ˆl p l vp l ˆ, σ i p l vl i w ˆp l ˆ. q realizaionp p vp pn l q runcaionp m. q runcaionp e (9)p q MIMO ˆ l rl ˆ r p f p q MIMO ˆ p l. p o r e (10)l Hankel p p l p rp Σ p p r m. Σ e (9)p Σ 1 0, Σ 1» Σ 2 0 Σ 2 ( A, B, C) p. (11) e (11)p Σl p, r A 11 A 12 A A 11, B B 1, C [ C 1 C 2 ] C 1 A 21 A 22 B 2 (12) e (12)l Σ 2 0l A 11 kr ( A 11, B 1, C 1 ) p p realizaionp [14]. σ 1 0 0 0 0 σ n B 1 Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007

70 omlovpp p 3. m sm Fig. 1l pe l p C++ ll pe Žˆv p m. Fig. 1(a)l *.csv(d ) Žp rq p p m pe l p, qe Fig. 1(b)m p qq ˆ p ˆ. p, p Φm Y q rp qq ˆ. Fig. 1(c)m p q runcaionp o Hankel p p ˆ p ˆ, p rr Hankel p p l s rp llv p q MIMO ˆ p A.csv, B.csv, C.csv Žpl rq. er p m p m p Y_Simulaion.csv Žpl rq, p pe llv r p r p. 4. Fig. 2l l l p k CO 2 n r e q ˆ l. lv k l l CO 2 ~m pm k~ l, k l p p p k r l ~p k~l n. k l p k l ms p m s r p f m r pr ov p rl rp. p msm p ql. rp rl D/A l 4-20 map r e sq, m rl, n m n p SISO rp. k CO 2 n r e q lv m l r n p rp o, r m rl n. e p p o m r l k r ov lk. v 60 bar p k CO 2 ~ n l p p, p p msm pp lr l p sq. rep edšp l, ˆ p o q r p. p vp sp PID rl rl l rm, qld p m p v rl Fig. 1. Human-machine inerface (HMI) of he developed idenificaion package program; (a) an iniial screen, (b) variance able, (c) Hankel singular value able. o45 o1 2007 2k Fig. 2. Process flow diagram of he concerned solubiliy measuremen experimenal sysem.

MISO ARX p MIMO ˆ p pe: m rn 71 Fig. 3. Resuls of emperaure predicion in he solubiliy measuremen sysem; (a) mean cenered and normalized emperaure, (b) inpu exciaion signal. rn o. m rl r p r l p p r, er rp q sp p pp n n. r p pe p rq lp, p o pe e p l. m ˆp p l Fig. 3(b)p 7-10 ma p e l - ˆl 57e k p m p, e p 1 p l 3,420 p m p m. p, pe p r p rq l m rl l rn m. r p 5 r l Ž r mp, m rl Won [13]p rl p p l m., PID rl r n l m rlp nr m m. p PID r l Ziegler-Nichols sp p sp, spp r sp m. Fig. 4. Closed-loop response agains a se poin change under MPC and PID conrol; (a) rajecory of emperaure, (b) process inpu of MPC, (c) process inpu of PID conrol. Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007

72 omlovpp p Table 1. Variance of Φ and Y explained by he laen vecors Laen Vecor Percenage of Explained Cumulaive Percenage of Percenage of Explained Cumulaive Percenage of Variance for Φ Explained Variance for Φ Variance for Y Explained Variance for Y 1 91.80 91.80 94.99 94.99 2 7.78 99.58 4.97 99.96 3 0.22 99.80 0.01 99.97 5. m rk pe p rq r p rr m rl l rn l k CO 2 n r e q p m rl m. Fig. 3(a)l p ep r m r m pe p llv m m p m. p l pe p m m p er m r p q p p. p m m p Table 1 l 2 qq p ˆ l T p, e (5) o Ŷ TS pn l T l. Fig. 4l PID rlm pe p rq r p ˆq m rl k CO 2 n r q p m rll rn ˆ l. p, rl 1 p r m. PID rlp n m rlm l m r l rp rl qp p. PID rl p m p l l rl m l rl qp m p r, m r l l kr m e p. rp msm pp lr l p p v rp, 2 qo v PID rl rl l p. pe l p rq 5 r p ˆq m rl m r l sp rl p l. m rlp m p p rl p rk s p s e q l, p p m p p. p f m r l kr. rp n, p k rp p e sp rl p lp pl. 6. l qd pn l ARX p r, q realizaion, q runcaionp p q p e ˆ p rq p e p m. p rr m rl n r rp m rll rn p f, pe p lv r p p v m. l lqo l e r ll lp p p ld. 2 p v q p qrrp vol. y 1. Ljung, L., Sysem Idenificaion Theory for he user, 2nd ed., Prenice-Hall, New Jersey, NJ(1999). 2. Favoreel, W., Moor, B. D. and Overschee, P. V., Subspace Sae Space Sysem Idenificaion for Indusrial Processes, J. Process Conrol, 10(2), 149-155(2000). 3. Overschee, P. V. and Moor, B. D., N4SID: Subspace Algorihms for he Idenificaion of combined deerminisic-sochasic Sysems, Auomaica, 30(1), 75-93(1994). 4. Qin, S. J., An Overview of Subspace Idenificaion, Comp. Chem. Eng., 30(10), 1502-1513(2006). 5. Chiuso, A. and Picci, G., The Asympoic Variance of Subspace Esimaes, J. Economerics, 118(1), 257-291(2004). 6. Jia, C., Rohani, S. and Juan, A., FCC Uni Modeling, Idenificaion and Model Predicive Conrol, a Simulaion Sudy, Chem. Eng. Proc., 42(4), 311-325(2003). 7. Lee, K. S., Eom, Y., Chung, J. W., Choi, J. and Yang, D., A Conrol-relevan Model Reducion Technique for Nonlinear Sysems, Comp. Chem. Eng., 24(2), 309-315(2000). 8. Sima, V., Sima, D. M. and Huffle, S. V., High-Performance Numerical Algorihms and Sofware for Subspace-based Linear Mulivariable Sysem Idenificaion, J. Comp. Appl. Mah., 170(2), 371-397(2004). 9. Abdi, H., Parial Leas Squares (PLS) Regression, Enc. Soc. Sci. Res. Meh., Thousand Oaks (CA), TO(2003). 10. Helmke, U. and Hüper, K., A Jacobi-ype Mehod for Compuing Balanced Realizaion, Sys. Con. Le., 39(1), 19-30(2000). 11. Chen, C. T., Linear Sysem Theory and Design, 3rd ed., OXFORD, New York, NY(1999). 12. Åsröm, K. J. and Wienmark, B., Compuer-conrolled sysems heory and design, 3rd ed., Prenice-Hall, New Jersey, NJ(1997). 13. Won, W., Lee, K. S., Lee, B., Lee, S. and Lee, S., Model Predicive Conrol of Condensae Recycle Process in a Cogeneraion Power Saion: I. Conroller Design and Numerical Applicaion, Proceedings of SICE-ICASE Inernaional Join Conference 2006, Busan, Korea, 178(2006). 14. Zhou, K., Doyle, J. C. and Glover, K., Robus and Opimal Conrol, Prenice-Hall, New Jersey, NJ(1996). o45 o1 2007 2k