1.2 Βασικές Τριγωνομετρικές Εξισώσεις

Σχετικά έγγραφα
3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Τριγωνομετρικές συναρτήσεις Τριγωνομετρικές εξισώσεις

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ - ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΙ ΜΕΘΟΔΕΥΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ

Tριγωνομετρικές εξισώσεις

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. εφχ = εφθ χ = κ + θ χ = κ π + θ ( τύποι λύσεων σε ακτίνια )

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Τριγωνοµετρικές εξισώσεις - Εσωτερικό γινόµενο διανυσµάτων

Ημερομηνία: Πέμπτη 29 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΚΥΚΛΟΣ

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

α) Αν ονομάσουμε x το πλάτος του Νείλου στην συγκεκριμένη θέση ΑΒ έχουμε: Από το ορθογώνιο τρίγωνο ΑΒΓ εφ45 o = 1 = ΒΓ = x

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Πώς ; ΣΤ)""Τριγωνομετρία. Ι. Πίνακας βασικών τριγωνοµετρικών γωνιών. π 4 rad 60 ο ή. π 6 rad 45 ο ή εν ορ-ζεται. ΙΙ. Τύποι της Τριγωνοµετρίας.

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 3ο Κεφάλαιο - Τριγωνομετρία - Βασικές τριγωνομετρικές ταυτότητες. , να βρεθούν

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Β Λυκει ου. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ. 2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑ. 1.Να βρείτε τους αριθμούς: i)ημ ii)συν( ) ΛΥΣΗ i)διαιρώντας το 1125 με το 360 βρίσκω.

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΛΓΕΒΡΑΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΔΕΚΕΜΒΡΙΟΥ 2014

1.1 Τριγωνομετρικές Συναρτήσεις

ΘΕΜΑ 1. θ (0, ). 4 α) Να δείξετε ότι οι ρίζες της εξίσωσης αυτής είναι μη πραγματικοί αριθμοί. β) Έστω z,z. Δ = 4εφ θ 4= 4(εφ θ 1) < 0 γιατί π

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

1.0 Βασικές Έννοιες στην Τριγωνομετρία

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (26/11/2014)

Απόδειξη Αποδεικνύουμε το θεώρημα στην περίπτωση που είναι f (x) 0.

ΟΙ ΠΕΡΙΟΡΙΣΜΟΙ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

Physics by Chris Simopoulos

Τριγωνομετρικοί αριθμοί οξείας γωνίας. Τριγωνομετρικοί αριθμοί γωνίας. Τριγωνομετρικοί αριθμοί οποιασδήποτε γωνίας. . Τότε ορίζουμε: ί ά ά.

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Άλγεβρας Β τάξης Γενικού Λυκείου 2o Θέμα. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 2 η (2/12/2014)

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία. Μάκος Σπύρος. Πανούσης Γιώργος. Παπαθανάση Κέλλυ. Ραμαντάνης Βαγγέλης.

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

, x > 0. Β) να µελετηθεί η µονοτονία και τα ακρότατα της f. Γ) να δείξετε ότι η C f είναι κυρτή και ότι δεν υπάρχουν τρία συνευθειακά σηµεία

1.2 Βασικές Τριγωνομετρικές Εξισώσεις

Επαναληπτικό Διαγώνισμα στα Μαθηματικά Προσανατολισμών Γ

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0

ΤΡΙΤΗ, 30 ΜΑΪΟΥ 2000 ΜΑΘΗΜΑΤΙΚΑ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Μαθηματικά Προσανατολισμού x 0 x 0. , 0,, οπότε η f είναι γνησίως αύξουσα στο 0, και

AΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ 2018

Πανελλαδικές Εξετάσεις 2017

Νίκος Ζανταρίδης. Χρήσιμες γνώσεις Τριγωνομετρίας. Λυμένες Ασκήσεις. Προτεινόμενες Ασκήσεις

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 12: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ x. Η f είναι συνεχής στο x0. lim lim 1. Παρατηρούμε, δηλαδή, ότι μια

Ένα σώμα εκτελεί ταυτόχρονα τρεις (3) απλές αρμονικές ταλαντώσεις, που έχουν ίδια διεύθυνση, ίδια θέση ισορροπίας και εξισώσεις:

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Ασκήσεις Τριγωνοµετρικοί Αριθµοί

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ Α. Υλικό σηµείο 1 εκτελεί Α.Α.Τ. Τη χρονική στιγµή t = 0 το υλικό σηµείο

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΑΛΓΕΒΡΑΣ... ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑ 1 Ο

ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΜΟΡΙΟΔΟΤΗΣΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2017

Μερικές Διαφορικές Εξισώσεις

ΘΕΜΑ 1 ο Α. α) Να δώσετε τον ορισµό της ισότητας δύο συναρτήσεων. β) Να δώσετε τον ορισµό της γνησίως αύξουσας συνάρτησης σ ένα διάστηµα.

ΕΥΤΕΡΑ 27 ΜΑΪΟΥ 2013 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

3.1 Τριγωνομετρικοί αριθμοί γωνίας

ΘΕΜΑ Ο Μιγαδικοί 5 Έστω w i w wi, όου w i,, R α. Να ρεθούν τα Rw και Im w. Να ρεθεί ο γεωμετρικός τόος των σημείων Μw στο μιγαδικό είεδο γ. Να ρεθεί τ

( f ) ( T) ( g) ( H)

ΒΑΣΙΚΑ ΟΡΙΑ. ,δηλαδή ορίζεται τουλάχιστον σ ένα από τα σύνολα (α, x. lim. lim g(x) , λ σταθερά lim g(x) (ισχύει και για περισσότερες από 2

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

(Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α. Α1. Βλέπε απόδειξη Σελ. 262, σχολικού βιβλίου. Α2. Βλέπε ορισμό Σελ. 141, σχολικού βιβλίου

ΜΔΕ Άσκηση 6 Α. Τόγκας

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

Λύσεις μερικών ασκήσεων του τέταρτου φυλλαδίου.

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ...7 ΕΝΟΤΗΤΑ 1: ΕΞΙΣΩΣΕΙΣ ΤΑΛΑΝΤΩΣΗΣ... 9 Θεωρία... 9 Ερωτήσεις... 9 Μεθοδολογία Παραδείγματα Ασκήσεις...

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

Γ ΩΝΙΕΣ Π ΟΥ Σ ΥΝΔΕΟΝΤΑΙ Μ ΕΤΑΞΥ Τ ΟΥΣ

f(x)=f(x+λ), Τότε η συνάρτηση καλείται περιοδική, ο δε ελάχιστος αριθμός λ για τον οποίο ισχύει η παραπάνω σχέση καλείται αρχική περίοδος της f.

Ράβδος σε σκαλοπάτι. = Fημθ και Fy

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 3 ου ΚΕΦΑΛΑΙΟΥ (Γ ΟΜΑ ΑΣ) Ασκήσεις σχολικού βιβλίου σελίδας

ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΠΡΟΣΟΣΜΟΙΩΣΗΣ 1, 23/03/2018 ΘΕΜΑ Α

γραφική παράσταση της συνάρτησης f, τον άξονα x x και τις ευθείες x = 1 και x = 2. lim lim (x 3) ) = 9α οπότε: (1 e ) (x 3) (1 e )(x 3) (x 3)

ανάλυση, σχόλια και προεκτάσεις με αφορμή απαντήσεις μαθητών σε ερωτήματα μαθηματικών που διατυπώθηκαν για εργασία στη σχολική τάξη

ΣΥΝΑΡΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Εκφωνήσεις των θεμάτων των εξετάσεων Επεξεργασμένες ενδεικτικές απαντήσεις Ενδεικτική κατανομή μονάδων ανά ερώτημα

ΜΑΘΗΜΑ ΤΟ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

1 η δεκάδα θεµάτων επανάληψης

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Αναγωγή στο 1ο τεταρτημόριο

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,

Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Α λ γ ε β ρ α B Λ υ κ ε ι ο υ

3.4 Οι τριγωνομετρικές συναρτήσεις

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 Απόδειξη θεωρήματος σελίδα 135 στο σχολικό

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 3ος

Παρουσίαση 1 ΣΥΣΤΗΜΑΤΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 18 MAΪΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1.Να βρείτε την συνάρτηση f(x) για την οποία ισχύει ότι f 2 (x).f (χ)=χ 2 +1,χ 0 και περνάει από την αρχή των αξόνων.

( y) ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΘΕΜΑ Α Α1. Σχολικό βιβλίο, σελίδα 135

Εξετάσεις 9 Ιουνίου Μαθηματικά Προσανατολισμού Γ Λυκείου ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Δίνονται οι συναρτήσεις: f ( x)

Transcript:

1. Βασικές Τριγωνομετρικές Εξισώσεις 1 η Μορφ Ασκσεων: Μας ζητούν να λύσουμε μια εξίσωση της μορφς: = α, α 0 = α, α 0 εφx = α, α 0 σφx = α, α 0 1. Να λυθούν οι εξ ισώσεις: i. ημ x =, ii. ημ x= 0, iii. ημ x=, iv. ημ x = 1 ΛΥΣΗ i. ημ x =. Άρα ημ x = x = κ + x = κ + = κ +, όου. ii. = 0 = ημ0 x = κ x = κ+. i ii. = εειδ δεν υάρχει γωνία θ με ημθ =, η εξίσωση είναι αδύνατη. Οι αρακάτω εξισώσεις έχουν ιο αλό τύο λύσεων, ο οοίος ροκύτει αευθείας αό τον τριγωνομετρικό κύ- κλο. = 0 x = κ, = 1 x = κ +, = 1 x = κ 71

iv. ημ x = 1 =. Άρα x = κ + ΠΡΟΣΟΧΗ!!! Η x = κ + είναι η η μορφ λύσεων της ημ x = 1, όμως είναι ίδια με την x = κ +.. Να λυθούν οι εξισώσεις: i. συν x =, ii. σφ x = 0, iii. εφ x= ΛΥΣΗ i. συν x = = συν x = κ +. ii. σφ x = 0 σφx = σφ x = κ +. x = κ, Αντιμετώιση: Για να λύσουμε την εξίσωση = α ακολουθούμε τα εξς βματα: 1. Προσδιορίζουμε μια γωνία θ, συνθως στο ρώτο τεταρτη- μόριο, ώστε ημθ = α. iii. εφ x = εφx = εφ. Άρα x = κ +.. Να λυθούν οι εξισώσεις: i. ημ x= ημ x ii. συν x= 0 iii. σφ x = σφ x 5 5 iv. εφ x = v. ημ x+ = 1 ΛΥΣΗ i. ημ x = ημ x x = κ + x. Γράφουμε: = α = ημθ οότε οι λύσεις θα είναι x = κ + θ x = κ + θ. Όμοια υολογίζου- με συν x = α, εφx = α, σφx = α 7

x = κ + x 0x = κ (αδύνατη) x = κ + x + x = κ + x = κ +. ii. συν x = 0 = x = κ+ x x = κ x x = κ x = κ x = κ κ x =, κ Ζ. iii. σφ x = σφ x x = κ + x, 5 5 5 5 κ 5 x = κ +, x = + 5 5 5 iv. εφ x = εφ x = εφ x = κ +, κ Ζ( x= κ, κ Ζ ) x= κ, κ Ζ v. Έχουμε: 1 ημ x + = 1 ημ x + = ημ x + = ημ x + = κ + x = κ x + = κ + x = κ + Οι αρακάτω εξισώσεις έχουν ιο αλό τύο λύσεων, ο οοίος ροκύτει αευθείας αό τον τριγωνομετρικό κύκλο. = 0 x = κ + = 1 x = κ = 1 x = κ + η Μορφ Ασκσεων: Μας ζητούν να λύσουμε μια εξίσωση της μορφς: = -α, α 0 = -α, α 0 εφx = -α, α 0 σφx = -α, α 0 7

1. Να λυθούν οι εξισώσεις: 1 i. ημ x =, ii. συν x= 1, iii. εφ x+ 1= 0, iv. σφ x+ = 0 ΛΥΣΗ 1 i. = = ημ = ημ 7 Άρα x = κ x = κ + + x = κ +. ii. = 1 = συν0 = συν. Ά ρα x = κ+. iii. εφx + 1 = 0 εφx = 1 εφx = εφ εφx. Άρα x = κ. iv. σφx+ = 0 σφ x = σφ x = σφ σφ x= σφ x= κ.. Να λυθούν οι εξισώσεις: x i. εφ x + εφ x= 0, ii. συν + 1 = 0 iii. εφ x = 0 iv. ημ x = 0 ΛΥΣΗ i. εφ x + εφx = 0 εφ x = εφx εφ x = εφ( x) κ x = κ x x = κ + x = +. 1 Οι λύσεις είναι δεκτές αφού ικανοοιούν τους εριορισμούς. x x x ii. συν + 1 = 0 συν = 1 συν = συν x x = κ±, κ Ζ = λ+, λ Ζ x = λ+, λ Ζ Αντιμετώιση: Για να λύσουμε τις εξισώσεις =-α, = -α, εφx= -α, σφx= -α, ακολουθούμε τα εξς βματα: 1. Προσδιορίζουμε μια γωνία θ, συνθως στο ρώτο τεταρτημόριο, ώστε ημθ = α Όμοια για τους άλλους τριγωνομετρι- κούς αριθμούς.. Εφαρμόζουμε τους αρακάτω τύους: = ημ( x) εφx = εφ( x) σφx = σφ( x) = συν x ( ). Εφαρμόζουμε την μεθοδολογία της κατγορίας 1. συν x 0, συν x 0. 7

iii. Είναι x 0 x ( x x ) εφ = εφ = εφ = εφ = Εομένως έχουμε: εφ x = εφx = εφ x = κ +, εφ x = εφx x = κ. Ο ι λύσεις είναι δεκτές, αφού γι αυτές ισχύει συν x 0. Η εφ x ορίζεται όταν. 0 x κ + iv Η εξίσωση γράφεται: ημ x = 0 ημ x = = = Εομένως: = = ημ x = κ+ x = κ+ x = κ + x = κ + = = ημ ημ x = ημ x = κ x = κ + + x = κ x = κ + η Μορφ Ασκσεων: Μας ζητούν να λύσουμε μια εξίσωση της μορφς: = συνθ = ημθ εφx = σφθ σφx = εφθ Οι αρακάτω εξισώσεις έχουν ιο αλό τύο λύσεων, ο οοίος ροκύτει αευθείας αό τον τριγωνομετρικό κύκλο. εφx=0 = 0 x = κ, σφx=0 = 0 x = κ + 1. Να λυθούν οι εξισώσεις: i. ημ x = συν x, ii. εφ x σφ x=0 75

ΛΥΣΗ i. ημ x = συν x συν x = συν x x = κ + x x = κ x + κ x = κ x = κ x = + κ x = κ x = + x = κ. Ii εφ x σφx = 0 εφ x = σφx εφ x x x = κ + x x = κ + x = κ +. 0 x κ κ x συν ( x) 0 x κ + x κ. Να λυθεί η εξίσωση: ημ x+ συν x = 0 ΛΥΣΗ + συν x = 0 συν x = συν x = ημ x συν x = συν x x x x, κ Ζ x συν = συν + = κ ± + Έχουμε λοιόν: 5 x = κ + + x 0x = κ +, ου είναι αδύνατη, x = κ x x = κ x = κ, 1 ( ) ( ) Αντιμετώιση: Για να λύσουμε εξισώσεις της αρα- κάτω μορφς = συνθ = ημθ εφx = σφθ σφx = εφθ ακολουθούμε τα εξς βματα: 7

η Μορφ Ασκσεων: Μας ζητούν να λύσουμε μια εξίσωση της μορφς: α β γ.. = 0 1. Να λυθούν οι εξισώσεις: i. ( 1 )( ) = 0 ii. ( εφx)( εφx 1) = 0 iii. εφx εφx ημ x+ = 0 ΛΥΣΗ ( )( ) 0 i. 1 = 0 1 = ημ x = 0 = 1 ημ x = = ημ ημ x = ημ x = κ + x = κ + x = κ + Άρα οι λύσεις της εξίσωσης είναι: x = κ + x = κ + x = κ +. ii. ( εφx)( εφx 1) = 0 εφx = 0 εφ x 1 = 0 εφx = εφ x = 1 εφx = εφ εφ x = εφ x = κ + x = κ +. iii. εφx εφx + = 0 εφx 1 1 = 0 ( εφx )( 1) = 0 εφx = 0 1 ημ x 1 = 0 εφx = ημ x = εφx = εφ ( ) ( ). Για την είτευξη του ρώτου βματος εφαρμόζουμε τους αρακάτω τύους: εφx = σφ x σφx x = συν x = ημ x. Εφαρμόζουμε την μεθοδολογία των κατηγοριών 1,. 0 x κ + 77

ημ x = ημ x = κ + x = κ + x = κ + 5 x = κ +, κ Ζ. x = κ + x = κ +. Να λυθούν οι εξισώσεις: α. ( ημ x+ 1)( 1) = 0 Στα ροβλματα β. 1+ ( ημ x 1) = ημ x+ συν x ου εμλέκονται εφx σφx ρέει να ελέγχουμε αν οι λύσεις ΛΥΣΗ είναι δεκτές όχι. α. Έχουμε: Δηλαδ: ( + 1)( 1) = 0 ( + 1= 0 1 = 0) i. Η εφx ορίζεται 1 = = 1 όταν x κ +, Έτσι αίρνουμε:. 1 = = ημ ημ x = ημ ii. Η σφx ορίζεται ό ταν x κ. x = κ x = κ + + 7 x = κ x = κ + ημ x = 1 x = κ + 7 Άρα, τελικά: x = κ x = κ + x = κ + β. Είναι 1 ημ x = συν x, οότε ημ x 1 = συν x. Έτσι αίρνουμε: 1+ ημ x 1 =ημ x+ 1 ημ x + = ( ) ( ) ( ) συν x συν x = συν x συν x + συν x = 0 1 συν x( 1+ ) = 0 = 0 = Όμως: συν x = 0 x = κ + 78

1 = = συν = συν = συν x = κ ± Άρα οι λύσεις της εξίσωσης δίνονται αό τους τύους x = κ + και x = κ ± με.. Να λυθεί η εξίσωση 1 εφ x+ σφ x =. συν x ΛΥΣΗ Με τη βοθεια των βασικών τριγωνομετρικών ταυτοττων αίρνουμε: σφ x = εφx 1 1 = 1+ εφ x άρα = εφ x + 1 συν x συν x H εξίσωση γίνεται: 1 εφ x + σφ x = εφ x + 1+ εφ x εφx = 0 συν x εφ x + εφ x εφx = 0 εφ x εφx + 1 εφx + 1 = 0 ( ) ( ) ( ) ( εφx + 1)( εφ x ) = 0 ( εφx + 1 = 0 εφ x = ) ( x = 1 εφx = εφx = ) 0 εφ Παίρνουμε λοιόν τις εξισώσεις: εφ x = 1 εφx = εφ εφx x = κ εφ x = εφx = εφ x = κ + εφ x = εφx = εφ εφx x = κ Οι λύσεις αυτές είναι όλες δεκτές. Αντιμετώιση: Για να λύσουμε εξισώσεις της αρα- τα εξς κάτω μορφς α β γ.. = 0 ακολουθούμε βματα: 1. Παίρνουμε τους τυχόν εριορισμούς.. Θέτω α = 0 β = 0 γ = 0 και λύνω ην καθεμία ξεχωριστά.. Πολλές φορές θα χρειασθεί να φέρουμε την εξίσωση στην αραάνω μορφ. Αυτό γίνεται με την βοθεια ταυτοττων και αραγοντοοι- σεων.. Ελέγχουμε τις λύσεις ου βρκαμε αν είναι δεκτές. 0 x κ + ημ x 0 79

. Να λυθεί η εξίσωση 1 1 ( 1+ημ x) 1+ = ( 1+συν x) 1+ x συν ΛΥΣΗ 1 1 + 1 + 1 ( 1 + ) = ( 1+ ) + 1 + 1 1 + 1+ = 0 ( 1 + ) 1+ = ( 1+ ) 1+ ( ) ( ) 1 1 ( 1 + )( 1+ ) = 0 ( 1 + = 0 1+ = 0 = ) ( = 1 = 1 = ) Αλλά: ημ x = 1 x = κ Οι τιμές αυτές αορρίτονται λόγω εριορισμών. (Οι τιμές x = κ + αεικονίζονται στον τριγωνομετρικό κύκλο στα σημεία Β, Β. Οι τιμές x = κ στο σημείο Β. Άρα οι τιμές x = κ αορρίτονται.) = 1 x = κ+ Οι τιμές αυτές είσης αορρίτονται, διότι () x κ. 1 = = 1 εφx = 1 εφx = εφ x = κ +, Οι τιμές αυτές είναι δεκτές. 0 x κ + 0 x κ, Για την εξίσωση ημ x =, έχουμε να εισημάνουμε τα εξς: Δεν μορεί να είναι συν x = 0, διότι τότε θα είναι και ημ x = 0. Έτσι: ημ x + συν x = 0 + 0 = 0 άτοο, αφού ημ x + συν x = 1. Εομένως: = = = 1 εφx = 1 x = κ + 80