ΥΠΟΛΟΓΙΣΜΟΣ ΕΝΔΟΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΝΑΠΑΡΑΓΩΓΙΜΟΤΗΤΑΣ (ΕΝΔΙΑΜΕΣΗΣ ΠΙΣΤΟΤΗΤΑΣ, INTERMEDIATE PRECISION)

Σχετικά έγγραφα
Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΑΝΑΛΥΤΙΚΩΝ ΜΕΘΟ ΩΝ ΜΕ ΤΗ ΜΕΘΟ ΟΛΟΓΙΑ NORDTEST ΣΥΓΚΡΙΣΗ ΜΕ ΜΕΘΟ ΟΛΟΓΙΑ GUM-EURACHEM

ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY)

Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

Δοκιμές προτίμησης και αποδοχής

Στατιστική: Δειγματοληψία X συλλογή δεδομένων. Περιγραφική στατιστική V πίνακες, γραφήματα, συνοπτικά μέτρα

Έλεγχος και Διασφάλιση Ποιότητας - Διαπίστευση Ενότητα 4: Επικύρωση/Επαλήθευση αναλυτικών μεθόδων (2)

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Ανάλυση ποσοτικών δεδομένων. ΕΡΓΑΣΤΗΡΙΟ 2 ΔΙΟΙΚΗΣΗ & ΚΟΙΝΩΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΣΤΗΝ ΤΟΞΙΚΟΕΞΆΡΤΗΣΗ Dr. Ρέμος Αρμάος

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ. Σινάνογλου Ι. Βασιλεία

Έλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού

Γεωργικά Φάρμακα ΙΙΙ

Έλεγχος ποιότητας φαρμακευτικών αναλύσεων

Για τους σκοπούς του παρόντος παραρτήματος, εφαρμόζονται οι ακόλουθοι ορισμοί:

Ελληνικό Ανοικτό Πανεπιστήμιο

Ανάλυση διακύμανσης (Μονοδιάστατη) One-Way ANOVA

Ο! ΠΕΡΙ ΤΡΟΦΙΜΩΝ (ΕΛΕΓΧΟΣ ΚΑΙ ΠΩΛΗΣΗ) ΝΟΜΟΙ ΤΟΥ 1996 ΕΩΣ (ΑΡ. 3) ΤΟΥ Κανονισμοί δυνάμει του άρθρου 29

ΕΚΤΙΜΗΣΗ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΤΙΣ ΧΗΜΙΚΕΣ ΜΕΤΡΗΣΕΙΣ Μ. Κωστάκης, Ν. Θωμαϊδης, Μ. Κουππάρης Εργαστήριο Αναλυτικής Χημείας, Τμ.

Έλεγχος υποθέσεων Ι z-test & t-test

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

Επιστημονική γραφή αποτελεσμάτων

& 4/12/09 Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ

Έλεγχος υποθέσεων ΙI ANOVA

τατιστική στην Εκπαίδευση II

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική Εργαστήριο 6 :

Συνοπτικά περιεχόμενα

Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 29 Ιανουαρίου 2015 (OR. en)

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Περιεχόμενα. Πρόλογος... 15

Ανάπτυξη και επικύρωση μεθόδου ειδικής για τον έλεγχο σταθερότητας (stabilityindicating

10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Διαστήματα Εμπιστοσύνης

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

ΕΠΑΛΗΘΕΥΣΗ ΑΝΑΛΥΤΙΚΩΝ ΜΕΘΟΔΩΝ ΚΛΙΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ. Ειρήνη Δ. Λεϊμονή Δρ. Βιολόγος, Υπεύθυνη Ποιότητας, Κεντρικά Εργαστήρια, EUROMEDICA A.E.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Στατιστική Επιχειρήσεων ΙΙ

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Επικύρωση/Επαλήθευση αναλυτικών μεθόδων (2) Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

ΑΠΑΙΤΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΝΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΙΧΝΗΘΕΤΕΣ

Θέματα Στατιστικής στη γλώσσα R

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

ΕΠΑΝΑΛΗΠΤΙΚΟ ΒΙΝΤΕΟ ΣΤΑΤΙΣΤΙΚΗ

Εφαρμοσμένη Στατιστική

Έλεγχος και Διασφάλιση Ποιότητας - Διαπίστευση

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 6: Ορισμοί διακρίβωσης. Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

ΑΝΑΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΪΟΝΤΩΝ

Στατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση

ISO ΜΕΘΟΔΟΙ ΔΟΚΙΜΩΝ ΚΑΙ ΕΠΙΚΥΡΩΣΗ ΤΩΝ ΜΕΘΟΔΩΝ

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πίνακας 4.4 Διαστήματα Εμπιστοσύνης. Τιμές που Επίπεδο εμπιστοσύνης. Διάστημα εμπιστοσύνης

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

Γ. Πειραματισμός - Βιομετρία

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου

Περιγραφή των εργαλείων ρουτινών του στατιστικού

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

σ = και σ = 4 αντιστοίχως. Τότε θα ισχύει

ΣΤΑΤΙΣΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

3. Κατανομές πιθανότητας

ΜΕΘΟΔΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΥΔΡΑΡΓΥΡΟΥ ΣΕ ΙΧΘΥΗΡΑ ΚΑΙ ΠΡΟΙΟΝΤΑ ΑΥΤΩΝ

Οι παρατηρήσεις του δείγματος, μεγέθους n = 40, δίνονται ομαδοποιημένες κατά συνέπεια ο δειγματικός μέσος υπολογίζεται από τον τύπο:

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΛΟΗ Β. PDF created with pdffactory trial version

ΣΧ0ΛΗ ΤΕΧΝ0Λ0ΓΙΑΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΕΡΓΑΣΤΗΡΙΟ: ΟΡΓΑΝΟΛΗΠΤΙΚΟΥ ΕΛΕΓΧΟΥ ΓΙΑΝΝΑΚΟΥΡΟΥ ΜΑΡΙΑ ΤΑΛΕΛΛΗ ΑΙΚΑΤΕΡΙΝΗ

Γ. Πειραματισμός Βιομετρία

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΑΤΑΝΑΛΩΣΗ ΓΑΛΑΚΤΟΣ ΚΑΙ ΓΑΛΑΚΤΟΚΟΜΙΚΩΝ ΠΡΟΪΟΝΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

6.3 Ο ΑΜΦΙΠΛΕΥΡΟΣ ΕΛΕΓΧΟΣ SMIRNOV ΓΙΑ k ΑΝΕΞΑΡΤΗΤΑ ΔΕΙΓΜΑΤΑ

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική

Διασφάλιση Ποιότητας στο Εργαστήριο Κλινικής Βιοχημείας

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ ΚΑΙ ΔΙΑΣΦΑΛΙΣΗΣ ΠΟΙΟΤΗΤΑΣ (ΕΡΓΑΣΤΗΡΙΟ)

Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Δρ Νεοφύτου Λ. & Σταύρου Χ. Παιδαγωγικό Ινστιτούτο Κύπρου

1. Πειραματικά Σφάλματα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Transcript:

ΥΠΟΛΟΓΙΣΜΟΣ ΕΝΔΟΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΝΑΠΑΡΑΓΩΓΙΜΟΤΗΤΑΣ (ΕΝΔΙΑΜΕΣΗΣ ΠΙΣΤΟΤΗΤΑΣ, INTEMEDIATE PECIION) Ως ιδανικές συνθήκες ενδοεργαστηριακής αναπαραγωγιμότητας (ενδιάμεσης πιστότητας) θεωρούνται το ίδιο εργαστήριο, διαφορετικός χρόνος, διαφορετικός αναλυτής, διαφορετικό όργανο και διαφορετικές παρτίδες κρίσιμων αντιδραστηρίων και αναλωσίμων. Σε περίπτωση μη διαθεσιμότητας δεύτερου οργάνου ή/και αναλυτή περιοριζόμαστε στους διαφορετικούς χρόνους με προσπάθεια χρήσεως και διαφορετικών παρτίδων κρίσιμων αναλωσίμων. Τρόποι Υπολογισμού: 1) Από τα διαγράμματα εσωτερικού ελέγχου ποιότητας με χρήση δείγματος ελέγχου ποιότητας γνωστής συγκέντρωσης (σε περίπτωση σταθερού δείγματος σε μεγάλο χρονικό διάστημα) ή ενισχυμένου δείγματος (spiked) που παρασκευάζεται καθημερινά (σε περίπτωση ασταθούς χρονικά δείγματος). Στην περίπτωση αυτή ως ενδοεργαστηριακή αναπαραγωγιμότητα (ενδιάμεση πιστότητα) D, και %D θεωρείται αντίστοιχα η D και %D των μετρήσεων του διαγράμματος ελέγχου ποιότητας (εντός του διαστήματος ±D). ) Από εφαρμογή της μεθόδου στο ίδιο δείγμα σε διαφορετικές ημέρες σε μια προσχεδιαμένη μελέτη αναπαραγωγιμότητας. Το D και %D των αποτελεσμάτων αυτών θεωρείται, αντίστοιχα ως D και %D. Ο υπολογισμός γίνεται σε τελικά δεδομένα συγκέντρωσης, ποσότητας, περιεκτικότητας ή ανάκτησης και όχι σε δεδομένα αναλυτικού σήματος, έτσι ώστε να ληφθούν υπόψη όλες οι συνιστώσες διασποράς, π.χ. η διαφορετική καμπύλη αναφοράς. 3) Από μια προσχεδιασμένη μελέτη πολλαπλής εφαρμογής της μεθόδου στο «ίδιο δείγμα» με όσο το δυνατό περισσότερες διαφορετικές συνθήκες. Στην περίπτωση αυτή, η τυπική απόκλιση ενδοεργαστηριακής αναπαραγωγιμότητας ή ενδιάμεσης πιστότητας υπολογίζεται από τον τύπο: r g (1) Όπου, r = εντός ομάδων διασπορά (Itra-erial Variace ή Withi Groups Variace) g = μεταξύ ομάδων διασπορά (Iter-erial Variace ή Betwee Groups Variace) Για την εντός ομάδων διασπορά: Στην περίπτωση k ομάδων με ίδιο αριθμό μετρήσεων, τότε: 1

r ( ) Όπου η τυπική απόκλιση της σειράς (ομάδας) k () Στην περίπτωση διαφορετικού αριθμού μετρήσεων στη σειρά από τις k σειρές, τότε: 1 r k (3) Για την μεταξύ ομάδων διασπορά: Στην περίπτωση k σειρών με ίδιο αριθμό μετρήσεων, τότε: g r x (4) Όπου x είναι η τυπική απόκλιση των μέσων όρων των k σειρών. Η διασπορά των μέσων όρων διορθώνεται (με αφαίρεση) ως προς τη διασπορά του μέσου όρου μέσα στην κάθε σειρά. Στην περίπτωση διαφορετικού αριθμού μετρήσεων στη σειρά από τις k σειρές, τότε: x x k 1 k 1 g (5) r Εάν g < 0, τότε = r και Η παραπάνω στατιστική επεξεργασία μπορεί να γίνει και με ONE WAY ANOVA.

ΠΑΡΑΔΕΙΓΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΕΝΔΟΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΝΑΠΑΡΑΓΩΓΙΜΟΤΗΤΑΣ (ΕΝΔΙΑΜΕΣΗΣ ΠΙΣΤΟΤΗΤΑΣ) ΜΕ ΙΣΟ ΑΡΙΘΜΟ ΜΕΤΡΗΣΕΩΝ ΑΝΑ ΣΕΙΡΑ Αποτελέσματα %Ανάκτησης στο ίδιο δείγμα Αναλυτής Α Αναλυτής Β Ημέρα 1 η Ημέρα 1 η Όργανο Α Όργανο Α Αναλυτής Α Ημέρα Όργανο Α Αναλυτής Α Ημέρα 1 η Όργανο Β 1 99,84 100,1 98,7 99,41 99,93 99,31 99,31 99,41 3 99,50 99,86 98,6 99,3 4 100,4 100,59 99,43 99,91 5 101,30 100,54 100,01 99,13 6 10,00 100,70 99,76 98,86 Μέσος όρος 100,4683 100,017 99,17333 99,350 (Τυπική 0,97078 0,533945 0,745511 0,351 Απόκλιση) εντός ομάδας (Variace) 0,94417 0,85097 0,555787 0,1399 Εντός Ομάδων Διασπορά: r = [0,94417+0,85097+0,555787+0,1399]/4=0,4768 Ολική Επαναληψιμότητα: 0,4768 0, 69 Τυπική Απόκλιση Μέσων Όρων Διασπορά Μέσων Όρων Μεταξύ Ομάδων Διασπορά Ενδιάμεση Πιστότητα Σχόλια: x x r = 0,6399 = 0,408696 g = 0,408696 [0,4768 / 6] = 0,393 0,4768 0,393 0,90 1) Εάν υπολογισθεί η ενδιάμεση πιστότητα από όλες τις 4x6 = 4 μετρήσεις θα βρεθεί: = 0,86 (ασθενής υποεκτίμηση). ) Εάν υπολογισθεί ως τυπική απόκλιση των μέσων όρων των ομάδων θα βρεθεί: = 0,64 (ισχυρή υποεκτίμηση). 3

Ο υπολογισμός της ενδιάμεσης πιστότητας / ενδοεργαστηριακής αναπαραγωγιμότητας μπορεί να γίνει και από την Ανάλυση ANOVA igle Factor: Aova: igle Factor UMMAY Groups Cout um Average Variace Colum 1 6 60,81 100,4683 0,94417 Colum 6 601,1 100,017 0,85097 Colum 3 6 595,04 99,17333 0,555787 Colum 4 6 595,95 99,35 0,1399 ANOVA ource of Variatio df M F P-value F crit Betwee Groups 7,356546 3,4518 5,14756 0,008477 3,098391 Withi Groups 9,53645 0 0,47683 Total 16,893 3 Εντός Ομάδων Διασπορά: r = Withi Groups M = 0,47683 Διασπορά Μέσων Όρων: x = [Betwee Groups M] / =,4518 / 6 = 0,408697 Μεταξύ Ομάδων Διασπορά: g = x r 0,408697 [0,47683/6] = 0,393 Ενδιάμεση πιστότητα: 0,47683 0, 393 = 0,90 ΠΑΡΑΔΕΙΓΜΑ ΥΠΟΛΟΓΙΣΜΟΥ ΕΝΔΟΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΝΑΠΑΡΑΓΩΓΙΜΟΤΗΤΑΣ (ΕΝΔΙΑΜΕΣΗΣ ΠΙΣΤΟΤΗΤΑΣ) ΜΕ ΔΙΑΦΟΡΕΤΙΚΟ ΑΡΙΘΜΟ ΜΕΤΡΗΣΕΩΝ ΑΝΑ ΣΕΙΡΑ Έστω ότι στο προηγούμενο παράδειγμα χρησιμοποιούνται 6 μετρήσεις στην πρώτη σειρά (Αναλυτής Α-Ημέρα 1 η Όργανο Α) και από 3 μετρήσεις στις υπόλοιπες 3 σειρές. Η Ανάλυση ANOVA ενός παράγοντα δίνει τα παρακάτω αποτελέσματα: 4

Α Β Γ Δ 99,84 100,1 98,7 99,41 99,93 99,31 99,31 99,41 99,5 99,86 98,6 99,3 100,4 101,3 10 Aova: igle Factor UMMAY Groups Cout um Average Variace Colum 1 6 60,81 100,4683 0,94417 Colum 3 99,38 99,79333 0,05833 Colum 3 3 95,84 98,61333 0,364033 Colum 4 3 98,05 99,35 0,0108 ANOVA ource of Variatio df M F P-value F crit Betwee Groups 7,455757 3,4855 4,654493 0,046 3,587434 Withi Groups 5,873417 11 0,533947 Total 13,3917 14 Υπολογίζεται ο τελευταίος όρος της σχέσεως (5) [(k,)συνδυασμός αριθμού σειρών και μετρήσεων σε κάθε σειρά]: k, k 1 (4 1)(6 3 3 3) 3x15 k, = 0, 7778 (15) (6 3 3 3 ) 5 63 Εντός Ομάδων Διασπορά: r = Withi Groups M = 0,533947 Μεταξύ Ομάδων Διασπορά: g = (M x k,) ( r x k,) = (,4855 x 0,7778) (0,533947 x 0,7778) = 0,5403 Ενδιάμεση πιστότητα: 0,533947 0, 5403 =1,04 5

Σχόλια: 3) Εάν υπολογισθεί η ενδιάμεση πιστότητα από όλες τις 15 μετρήσεις θα βρεθεί: = 0,98 (ασθενής υποεκτίμηση). 4) Εάν υπολογισθεί ως τυπική απόκλιση των μέσων όρων των ομάδων θα βρεθεί: = 0,78 (ισχυρή υποεκτίμηση). 6