ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY)
|
|
- Ευτροπια Αργυριάδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΜΕΘΟΔΟΙ ΕΛΕΓΧΟΥ ΑΚΡΙΒΕΙΑΣ (ACCURACY) 1) Ανάλυση 1 δείγματος (Πιστοποιημένο Υλικό Αναφοράς (CRM), εμπορικό δείγμα ελέγχου (control sample), υπόλειμμα διεργαστηριακού) με γνωστή τιμή αναφοράς (μ). Αναλύεται το δείγμα με την υπό αξιολόγηση μέθοδο Ν φορές και βρίσκεται η μέση τιμή X mean και η τυπική απόκλιση. Εφαρμόζεται η δοκιμασία t (t-student test) για τον έλεγχο ύπαρξης στατιστικά σημαντικής διαφοράς μεταξύ Χ mean και τιμής αναφοράς μ: t μ - x mean (1) Η τιμή t συγκρίνεται με t theor από πίνακα για στάθμη εμπιστοσύνης 95% και βαθμούς ελευθερίας ν Ν-1. Παράδειγμα: Υλικό αναφοράς CRM με τιμή αναφοράς μ 150 μg/g αναλύεται με την υπό αξιολόγηση εις 5-πλουν (Ν 5) και βρέθηκε μέσος όρος X mean 158 μg/g και τυπική απόκλιση 7,8 μg/g. Να αξιολογηθεί η ακρίβεια της μεθόδου t,93 () 7,8 Επειδή t,93 <,776 (95% ν5-1) συμπεραίνεται ότι η μέθοδος στερείται συστηματικού σφάλματος και το παρατηρούμενο σφάλμα [( )/150] x 100 5,3% είναι τυχαίο, ίδιας τάξης μεγέθους με τη %RD (7,8 / 158) x 100 4,9%. 1
2 ) Ανάλυση 1 δείγματος με τιμή αναφοράς Χ αναφ που συνοδεύεται από τυπική απόκλιση ( αναφ ) που προέκυψε από Ν αναφ αναλύσεις (δείγμα που έχει αναλυθεί με μια άλλη πρότυπη μέθοδο). Αναλύεται το δείγμα με την υπό αξιολόγηση μέθοδο Ν μεθ φορές και βρίσκεται η μέση τιμή X mean και η τυπική απόκλιση μεθ. Εφαρμόζεται η δοκιμασία t (t-student test) για τον έλεγχο ύπαρξης στατιστικά σημαντικής διαφοράς μεταξύ Χ mean και τιμής αναφοράς Χ αναφ : t X X 1 mean 1 1 (3) όπου 1- η συνδυασμένη τυπική απόκλιση ίση με Παράδειγμα: ( 1) ( 1) (4) 1 Δείγμα με τιμή αναφοράς Χ αναφ 16 ng/g και τυπική απόκλιση αναφ 6,4 (Ν αναφ 5) αναλύεται με την υπό αξιολόγηση εις 7-πλουν (Ν 7) και βρέθηκε μέσος όρος X mean 196 ng/g και τυπική απόκλιση 5,8 ng/g. Να αξιολογηθεί η ακρίβεια της μεθόδου. Υπολογίζεται η συνδυασμένη τυπική απόκλιση: 40,9(4) 33,6(6) Με αντικατάσταση σην εξίσωση (3) έχουμε: t 5,66. 6,0
3 Επειδή t 5,66 > t theor,8 (95% ν ) συνεπάγεται ότι η διαφορά δεν είναι τυχαία και υπάρχει συστηματικό σφάλμα ίσο με [(196-16)/16] x 100-9,% που είναι μεγαλύτερο από την %RD (5,8/196) x 100 3,0%. Σημείωση: Πριν γίνει η ανωτέρω αξιολόγηση εκτελείται δοκιμασία F : F 1 / 6,4 / 5,8 1,18 < 6,16 (95%, ν 1 7-1, ν 5-1) για να συγκριθούν οι επαναληψιμότητες των δύο μεθόδων. Επειδή F test < F theor συνεπάγεται ότι οι δύο επαναληψιμότητες είναι παρόμοιες και η ανωτέρω δοκιμασία t είναι έγκυρη. 3) Ανάλυση σειράς προτύπων δειγμάτων γνωστής περιεκτικότητας μ i (εμβολιασμένα δείγματα (spiked samples) ή αναλυμένα με μέθοδο αναφοράς) ευρείας περιοχής συγκεντρώσεων. Αναλύονται τα δείγματα όπως ακριβώς απαιτεί η μέθοδος και υπολογίζονται οι πειραματικές τιμές Χ i. Κατασκευάζεται με τη μέθοδο ελαχίστων τετραγώνων το διάγραμμα Χ ι a (± a ) + b(± b ) μ i y/x ####, r ##### Από τις τιμές των παραμέτρων της εξισώσεως αξιολογείται η ακρίβεια και η επαναληψιμότητα της μεθόδου. Παραδείγματα Για την αξιολόγηση της ακρίβειας της μεθόδου παρασκευάσθηκε σειρά εμβολιασμένων δειγμάτων σε λευκό μητρικό υλικό και αναλύθηκε εις απλούν με την υπό 3
4 αξιολόγηση μέθοδο. Να γίνει αξιολόγηση της μεθόδου από τα αποτελέσματα των πινάκων: Παράδειγμα Α Α/Α Γνωστή μ i (mg/dl) 1 15,0 14,9 5,0 5, 3 50,0 49,0 4 75,0 76, , Ευρεθείσα Χ i (mg/dl) Εξίσωση παλινδρόμησης ελαχίστων τετραγώνων: X i -1,06±(1,) + 1,05± (0,014) μ i y/x 1,58, r 0,9996 Έλεγχος γραμμικότητας: Εξαιρετική r 0,9996 Έλεγχος σημαντικής διαφοράς τομής από μηδέν: t -1,06 / 1, 0,883 <,776 t theor (95%, ν 6-4) Επομένως η τομή είναι πρακτικά μηδέν και δεν υπάρχει σταθερό συστηματικό σφάλμα. Έλεγχος σημαντικής διαφοράς κλίσεως από μονάδα: t 1,055-1,000 / 0,014 1,81 <,776 t theor (95%, ν 6-4) Επομένως η κλίση είναι πρακτικά ίση με τη μονάδα και δεν υπάρχει αναλογικό συστηματικό σφάλμα. Υπάρχει μόνο ένα μικρό τυχαίο σφάλμα ίσο με y/x 1,6 mg/dl. 4
5 Παράδειγμα Β: Α/Α Γνωστή μ i (mg/dl) 1 15,0 13,7 5,0,0 50,0 45, 75,0 66, , ,3 Ευρεθείσα Χ i (mg/dl) Εξίσωση παλινδρόμησης ελαχίστων τετραγώνων: X i -0,9±(0,48) + 0,903± (0,0058)μ i y/x 0,656, r 0,9999 Έλεγχος γραμμικότητας: Εξαιρετική r 0,9999 Έλεγχος σημαντικής διαφοράς τομής από μηδέν: t -0,9 / 0,48 0,604 <,776 t theor (95%, ν 6-4) Επομένως η τομή είναι πρακτικά μηδέν και δεν υπάρχει σταθερό συστηματικό σφάλμα. Έλεγχος σημαντικής διαφοράς κλίσεως από μονάδα: t 0,903-1,000 / 0, ,7 >,776 t theor (95%, ν 6-4) Επομένως η κλίση είναι σημαντικά διαφορετική από τη μονάδα και υπάρχει αναλογικό συστηματικό σφάλμα, ίσο με (0,903-1,000) x 100-9,7% Υπάρχει μόνο ένα μικρό τυχαίο σφάλμα ίσο με y/x 0,66 mg/dl. 5
6 Παράδειγμα Γ: Α/Α Γνωστή μ i (mg/dl) 1 15,0 4,6 5,0 35,9 3 50,0 59,7 4 75,0 85, , Ευρεθείσα Χ i (mg/dl) Εξίσωση παλινδρόμησης ελαχίστων τετραγώνων: X i 10,05±(0,40) + 1,0006± (0,0049) μ i y/x 0,551, r 0,99995 Έλεγχος γραμμικότητας: Εξαιρετική r 0,99995 Έλεγχος σημαντικής διαφοράς τομής από μηδέν: t 10,05 / 0,40 5,1 >,776 t theor (95%, ν 6-4) Επομένως η τομή είναι σημαντικά διάφορη του μηδενός και άρα υπάρχει σταθερό συστηματικό σφάλμα, ίσο με +10,0 mg/dl. Έλεγχος σημαντικής διαφοράς κλίσεως από μονάδα: t 1,0006-1,0000 / 0,0049 0,1 <,776 t theor (95%, ν 6-4) Επομένως η κλίση είναι πρακτικά ίση με τη μονάδα και δεν υπάρχει αναλογικό συστηματικό σφάλμα. Υπάρχει επίσης ένα μικρό τυχαίο σφάλμα ίσο με y/x 0,55 mg/dl. 4. Μέθοδος προσθήκης γνωστής ποσότητας σε άγνωστο θετικό δείγμα και υπολογισμός ανάκτησης. 6
7 Αναλύεται άγνωστο δείγμα και προσδιορίζεται η συγκέντρωσή του C 0. Στο δείγμα γίνεται προσθήκη (χωρίς μεταβολή όγκου) γνωστής ποσότητας του αναλύτη και επαναπροσδιορίζεται η C 1 του ενισχυμένου δείγματος. Η ανάκτηση (Recovery, R) ως μέτρο της ακρίβειας δίνεται από τη σχέση: C1 C0 % R 100 (αυστηρός τύπος) (5) ΔC % C 0 C1 x100 + ΔC ή R (ελαστικός τύπος) (6) Παράδειγμα Α: Άγνωστο δείγμα αναλύθηκε με την υπό αξιολόγηση μέθοδο και βρέθηκε C ng / ml. Στο δείγμα έγινε προσθήκη γνωστής ποσότητας του αναλύτη ΔC 100 ng/ml ΧΩΡΙΣ ΑΡΑΙΩΣΗ ΤΟΥ ΔΕΙΓΜΑΤΟΣ. Κατά τον επαναπροσδιορισμό βρέθηκε C ng/ml. Να υπολογισθεί η %ανάκτηση: Χρησιμοποιώντας τον τύπο (5) έχουμε % R % 100 Χρησιμοποιώντας τον τύπο (6) έχουμε 195 % R x100 94,7% Παράδειγμα Β: Κατά την αξιολόγηση μεθόδου Κλινικού Εργαστηρίου αναλύθηκε ορός ασθενούς και έδωσε τιμή μιας 7
8 παραμέτρου C mg/dl. Το δείγμα αναμείχθηκε σε αναλογία 1:1 με ορό ελέγχου με τιμή αναφοράς για τη παράμετρο 50 mg/dl. To μείγμα αναλύθηκε και έδωσε τιμή μέτρησης 07 mg/dl. Να υπολογισθεί η ανάκτηση της μεθόδου: Χρησιμοποιώντας τροποποιημένη μορφή της εξισώσεως (6) έχουμε: 07 % R x ,5% (150/ ) + (50/ ) 5. Με προσδιορισμό μεγάλου αριθμού () αγνώστων δειγμάτων με την υπό αξιολόγηση μέθοδο και με μια μέθοδο αναφοράς και αξιολόγηση των διαφορών με κατά ζεύγη δοκιμασία t. Χρησιμοποείται ο τύπος: d t (7) d όπου d η μέση τιμή των διαφoρών (με χρήση προσήμου +/-) και d η τυπική απόκλιση των διαφορών. Παράδειγμα: Για την αξιολόγηση μιας αναλυτικής μεθόδου αναλύθηκαν 0 άγνωστα δείγματα με την υπό αξιολόγηση μέθοδο και μια μέθοδο αναφοράς αυξημένης αξιοπιστίας. Από τα αποτελέσματα του πίνακα αξιολογείστε την ακρίβεια της μεθόδου: 8
9 Α/Α Αξιολογούμενη Μέθοδος mg/l Μέθοδος Αναφοράς mg/l ΜΕΣΗ ΔΙΑΦΟΡΑ d - 7,5 ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ d 10,8 Διαφορά Ελεγχόμενης - Αναφοράς t 7,5 10,8 0 3,00 Η τιμή t ther για ν0-1 95% είναι ίση με,10 < t και επομένως υπάρχει σημαντική διαφορά των δύο μεθόδων και η ελεγχόμενη μέθοδος δεν είναι ισοδύναμη με τη μέθοδο αναφοράς. 9
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Αναλυτική Μέθοδος- Αναλυτικό Πρόβλημα. Ανάλυση, Προσδιορισμός και Μέτρηση. Πρωτόκολλο. Ευαισθησία Μεθόδου. Εκλεκτικότητα. Όριο ανίχνευσης (limit of detection, LOD).
Διαβάστε περισσότεραΗ ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ
Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Οι Ενόργανες Μέθοδοι Ανάλυσης είναι σχετικές μέθοδοι και σχεδόν στο σύνολο τους παρέχουν την αριθμητική τιμή μιας φυσικής ή φυσικοχημικής ιδιότητας, η
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ. Σινάνογλου Ι. Βασιλεία
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Σινάνογλου Ι. Βασιλεία Βασικές έννοιες Αναλυτικό Πρόβλημα Επιλογή Αναλυτικής Μεθόδου Πρωτόκολλο Ανάλυσης, προετοιμασία Ευαισθησία Μεθόδου Εκλεκτικότητα Όριο ανίχνευσης (limit
Διαβάστε περισσότεραΕισαγωγή στην Ανάλυση Δεδομένων
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός
Διαβάστε περισσότεραΔιαστήματα εμπιστοσύνης. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Διαστήματα εμπιστοσύνης Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Διαστήματα εμπιστοσύνης Το διάστημα εμπιστοσύνης είναι ένα διάστημα αριθμών
Διαβάστε περισσότεραΈλεγχοι. Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού
Έλεγχοι Τη συγκέντρωση του φαρμάκου σε δείγμα ιστού ή βιολογικού υγρού Το ρυθμό απελευθέρωσης του φαρμάκου από το σκεύασμα Έλεγχο ταυτότητας και καθαρότητας της πρώτης ύλης και των εκδόχων( βάση προδιαγραφών)
Διαβάστε περισσότεραΣΦΑΛΜΑΤΑ. Όσο μικρότερο είναι το σφάλμα, τόσο μεγαλύτερη είναι η ακρίβεια.
ΣΦΑΛΜΑΤΑ Αληθινήηπραγματικήτιμή(μ) είναι μια παραδεκτή τιμή προς την οποία μπορούν να συγκριθούν όλες οι πειραματικές τιμές. Μετά την εκτέλεση αριθμού (n) επαναλαμβανόμενων μετρήσεων και τη λήψη xi αριθμητικών
Διαβάστε περισσότεραΈλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι
Διαβάστε περισσότεραΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Έστω τυχαίο δείγμα παρατηρήσεων από πληθυσμό του οποίου η κατανομή εξαρτάται από μία ή περισσότερες παραμέτρους, π.χ. μ. Επειδή σε κάθε δείγμα αναμένεται διαφορετική τιμή του μ, είναι προτιμότερο να επιδιώκεται
Διαβάστε περισσότεραO έλεγχος ποιότητας του αναλυτή Cobas Mira
O έλεγχος ποιότητας του αναλυτή Cobas Mira Επιμέλεια: Πέτρος Καρκαλούσος Εισαγωγή Ο αναλυτής Cobas Mira είναι βιοχημικός αναλυτής που εκτελεί φωτομετρικές αναλύσεις (σάκχαρο, ουρία κτλ), μετρήσεις φαρμάκων
Διαβάστε περισσότεραΈλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 5: Εκτίμηση αβεβαιότητας στην ενόργανη ανάλυση Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΕΙΣΗΓΗΣΗ ΕΙΣΑΓΩΓΗ ΑΠΑΙΤΗΣΕΙΣ ΤΟΥ ISO/IEC 1705 ΟΡΙΣΜΟΙ
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για την συνόρθωση ενός τοπογραφικού
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΛΟΗ Β. PDF created with pdffactory trial version
Αξιολόγηση προσδιορισμών Αναλυτική επίδοση προσδιορισμού Επιλογή μεθόδου προσδιορισμού βάσει αναλυτικών χαρακτηριστικών και ελέγχου ποιότητας των μετρήσεων Διαγνωστική αξία ανάλυσης Επιλογή δοκιμασίας
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για τη συνόρθωση ενός τοπογραφικού
Διαβάστε περισσότεραΣτατιστική Ι. Ανάλυση Παλινδρόμησης
Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι
Διαβάστε περισσότεραΈλεγχος υποθέσεων και διαστήματα εμπιστοσύνης
1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από
Διαβάστε περισσότεραΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.
Διαβάστε περισσότεραΑντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Διαβάστε περισσότεραΠΙΣΤΟΠΟΙΗΜΕΝΑ ΥΛΙΚΑ ΑΝΑΦΟΡΑΣ ΕΞΩΤΕΡΙΚΟΣ ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ
ΠΙΣΤΟΠΟΙΗΜΕΝΑ ΥΛΙΚΑ ΑΝΑΦΟΡΑΣ ΕΞΩΤΕΡΙΚΟΣ ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ Νικ. Σ. Θωμαΐδης Eργ. Αναλυτικής Χημείας Τμ. Χημείας, Παν. Αθηνών Ορθότητα: Υλικά αναφοράς: Σύγκριση της πειραματικής τιμής με την «αληθή» τιμή
Διαβάστε περισσότεραΠειραματική Ρευστοδυναμική. Σφάλματα και Αβεβαιότητα Μετρήσεων
Εργαστήριο Τεχνικής Θερμοδυναμικής Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Πανεπιστήμιο Πατρών Πειραματική Ρευστοδυναμική Σφάλματα και Αβεβαιότητα Μετρήσεων Αλέξανδρος Γ. Ρωμαίος Χειμερινό Εξάμηνο 2018
Διαβάστε περισσότεραΠροσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη µία σωστή
Σειρά Α σ1 Επώνυµο Όνοµα Αρ. Μητρώου Ζήτηµα 1 ο (3 µονάδες) Εξετάσεις Φεβρουαρίου (2011/12) στο Μάθηµα: Στατιστική Θεσσαλονίκη: 03/03/2012 Προσοχή: Για κάθε λανθασµένη απάντηση δεν θα λαµβάνεται υπόψη
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών
Διαβάστε περισσότεραΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε
Διαβάστε περισσότεραΑνάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα
Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια
Διαβάστε περισσότεραΈλεγχος και Διασφάλιση Ποιότητας - Διαπίστευση
Έλεγχος και Διασφάλιση Ποιότητας - Διαπίστευση Ενότητα 8: Διασφάλιση ποιότητας αποτελεσμάτων δοκιμών Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ΔΙΑΣΦΑΛΙΣΗ ΠΟΙΟΤΗΤΑΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ
Διαβάστε περισσότεραΕνότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι
ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι 1. ΜΕΤΡΟΛΟΓΙΑ, ΠΟΙΟΤΗΤΑ ΜΕΤΡΗΣΕΩΝ, ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΠΑΡΑΜΕΤΡΩΝ ΑΞΙΟΠΙΣΤΙΑΣ ΜΕΤΡΗΣΕΩΝ ΓΚΛΩΤΣΟΣ ΔΗΜΗΤΡΗΣ dimglo@teiath.gr Εργαστήριο Επεξεργασίας
Διαβάστε περισσότεραΕΠΑΛΗΘΕΥΣΗ ΑΝΑΛΥΤΙΚΩΝ ΜΕΘΟΔΩΝ ΚΛΙΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ. Ειρήνη Δ. Λεϊμονή Δρ. Βιολόγος, Υπεύθυνη Ποιότητας, Κεντρικά Εργαστήρια, EUROMEDICA A.E.
ΕΠΑΛΗΘΕΥΣΗ ΑΝΑΛΥΤΙΚΩΝ ΜΕΘΟΔΩΝ ΚΛΙΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΩΝ Ειρήνη Δ. Λεϊμονή Δρ. Βιολόγος, Υπεύθυνη Ποιότητας, Κεντρικά Εργαστήρια, EUROMEDICA A.E. Η διασφάλιση ποιότητας των εργαστηριακών διαδικασιών είναι απαραίτητη
Διαβάστε περισσότεραΕισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Διαβάστε περισσότερα5. Έλεγχοι Υποθέσεων
5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Διαβάστε περισσότεραΑνάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017
Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών
Διαβάστε περισσότεραΘεώρημα Κεντρικού Ορίου (Central Limit Theorem)
Θεώρημα Κεντρικού Ορίου (Central Limit Theorem) Περιγράφει τα χαρακτηριστικά του "πληθυσμού των μέσων τιμών" που σχηματίζεται από τις μέσες τιμές άπειρων πληθυσμιακών δειγμάτων καθένα από τα οποία αποτελείται
Διαβάστε περισσότεραΣτατιστική ΙΙ-Διαστήματα Εμπιστοσύνης Ι (εκδ. 1.1)
Στατιστική ΙΙ- Ι (εκδ. 1.1) Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 17 Ιουλίου 2013 Περιγραφή 1 Δ.Ε.γιατονμέσο µ Δ.Ε. για την αναλογία Τί είναι τα
Διαβάστε περισσότεραΣυσχέτιση μεταξύ δύο συνόλων δεδομένων
Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,
Διαβάστε περισσότεραΜέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Διαβάστε περισσότερα4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου
4 o Μάθημα Διάστημα Εμπιστοσύνης του Μέσου Για την εκτίμηση των παραμέτρων ενός πληθυσμού (όπως η μέση τιμή ή η διασπορά), χρησιμοποιούνται συνήθως δύο μέθοδοι εκτίμησης. Η πρώτη ονομάζεται σημειακή εκτίμηση.
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που
Διαβάστε περισσότεραΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις,
Διαβάστε περισσότερα10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης
10.7 Λυμένες Ασκήσεις για Διαστήματα Εμπιστοσύνης Διαστήματα εμπιστοσύνης για τον μέσο ενός πληθυσμού (Μικρά δείγματα) Άσκηση 10.7.1: Ο επόμενος πίνακας τιμών δείχνει την αύξηση σε ώρες ύπνου που είχαν
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ
Διαβάστε περισσότεραΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
Διαβάστε περισσότερα6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων
6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά
Διαβάστε περισσότεραΣτατιστική, Άσκηση 2. (Κανονική κατανομή)
Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...
Διαβάστε περισσότεραΠΡΟΣΑΡΤΗΜΑ IΙΙ (III-1.1) όπου x i η τιµή της µέτρησης i και Ν ο αριθµός των µετρήσεων.
ΠΡΟΣΑΡΤΗΜΑ IΙΙ IΙΙ-1. Αξιολόγηση Αναλυτικών εδοµένων ύο όροι που χρησιµοποιούνται ευρύτατα στη διερεύνηση της αξιοπιστίας των δεδοµένων είναι η επαναληψιµότητα (precson) και η ακρίβεια (accurac). Επαναληψιµότητα
Διαβάστε περισσότεραΑγωγιμομετρία. Η Πορεία των Υπολογισμών με Παραδείγματα.
Αγωγιμομετρία Η Πορεία των Υπολογισμών με Παραδείγματα. Πρώτα πρέπει να υπολογίσουμε την ισοδύναμη αγωγιμότητα άπειρης αραίωσης για κάθε ηλεκτρολύτη. Εδώ πρέπει να προσέξουμε τις μονάδες. Τα μεγέθη που
Διαβάστε περισσότερα9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Διαβάστε περισσότεραΑνάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 18-19 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 11 ο Ο ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΑΝΑΛΥΣΕΙΣ ΚΛΙΝΙΚΗΣ ΧΗΜΕΙΑΣ
ΚΕΦΑΛΑΙΟ 11 ο Ο ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΣΤΙΣ ΣΥΓΧΡΟΝΕΣ ΑΝΑΛΥΣΕΙΣ ΚΛΙΝΙΚΗΣ ΧΗΜΕΙΑΣ Σύνοψη Βασικό καθήκον κάθε αναλυτή στο κλινικό εργαστήριο είναι εκτός των άλλων και ο έλεγχος ποιότητας των αποτελεσμάτων που
Διαβάστε περισσότεραΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
Διαβάστε περισσότεραΧ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
Διαβάστε περισσότεραΧημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ Πρόβλημα απουσιών στ)
ΑΣΚΗΣΕΙΣ. Ο διευθυντής προσωπικού μιας μεγάλης εταιρείας πιστεύει ότι ίσως υφίσταται κάποια σχέση μεταξύ των ημερών απουσίας και της ηλικίας των εργαζομένων. Με βάση την υπόθεση αυτή ενδιαφέρεται να κατασκευάσει
Διαβάστε περισσότεραΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ. Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης
ΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Γρηγόρης Χλουβεράκης, Ph.D. Αναπληρωτής Καθηγητής Πανεπιστήμιο Κρήτης Από την περασμένη φορά... Πληθυσμός (population): ένα σύνολο ατόμων Παράμετρος (parameter): χαρακτηριστικό του
Διαβάστε περισσότεραΜέθοδοι και Όργανα Περιβαλλοντικών Μετρήσεων Μέρος Α. Διαπίστευση Εργαστηρίου Δοκιμών
Μέθοδοι και Όργανα Περιβαλλοντικών Μετρήσεων Μέρος Α Διαπίστευση Εργαστηρίου Δοκιμών ΑΠΟΤΥΠΩΣΗ ΤΗΣ ΥΦΙΣΤΑΜΕΝΗΣ ΚΑΤΑΣΤΑΣΗΣ Πίνακας των προς διαπίστευση δοκιμών Περιγραφή Δοκιμής/Ανάλυσης Υλικό/α που ελέγχονται
Διαβάστε περισσότεραΔιαστήματα Εμπιστοσύνης
Διαστήματα Εμπιστοσύνης 00 % Διαστήματα Εμπιστοσύνης για τη μέση τιμή ενός πληθυσμού Κατανομή Διασπορά Μέγεθος δείγματος Διάστημα Εμπιστοσύνης Κανονική Γνωστή Οποιοδήποτε Οποιαδήποτε Γνωστή Μεγάλο 30 Z
Διαβάστε περισσότεραΔιάστημα εμπιστοσύνης της μέσης τιμής
Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:
Διαβάστε περισσότεραΣτατιστική Επιχειρήσεων ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΔιαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Διαβάστε περισσότεραΚουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 8: Εκτίμηση αβεβαιότητας αναλυτικών μεθόδων με τη μεθοδολογία NORDTEST Σύγκριση με τη μεθοδολογία GUM-EURACHEM Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής
Διαβάστε περισσότεραΑνάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 16-17 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις 26/5/2017
Επαναληπτικές Ασκήσεις 2 Άσκηση 1 η (1) Ένας ερευνητής μέτρησε τη συγκέντρωση γλυκόζης (σε mg/dl) στο αριστερό και το δεξί μάτι 35 τυχαία επιλεγμένων υγιών σκύλων συγκεκριμένης ράτσας Έστω ότι με Χ και
Διαβάστε περισσότεραστατιστική θεωρεία της δειγµατοληψίας
στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 0. Απλή Γραμμική Παλινδρόμηση. Ένα Πρόβλημα. Η επιδιωκόμενη ιδιότητα. Ένα χρήσιμο γράφημα. Οι υπολογισμοί. Η μέθοδος ελαχίστων τετραγώνων ...
ΚΕΦΑΛΑΙΟ 0 Ένα Πρόβλημα Δεδομένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Απλή Γραμμική Παλινδρόμηση Μωυσιάδης Χρόνης 6 o Εξάμηνο Μαθηματικών Έχει σχέση το με το ; Ειδικότερα
Διαβάστε περισσότεραiii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος
iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων
Διαβάστε περισσότεραΥ: Νόσος. Χ: Παράγοντας Κινδύνου 1 (Ασθενής) 2 (Υγιής) Σύνολο. 1 (Παρόν) n 11 n 12 n 1. 2 (Απών) n 21 n 22 n 2. Σύνολο n.1 n.2 n..
Μέτρα Κινδύνου για Δίτιμα Κατηγορικά Δεδομένα Σε αυτή την ενότητα θα ορίσουμε δείκτες μέτρησης του κινδύνου εμφάνισης μίας νόσου όταν έχουμε δίτιμες κατηγορικές μεταβλητές. Στην πιο απλή περίπτωση μας
Διαβάστε περισσότεραΜεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Διαβάστε περισσότερασυγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;
Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται
Διαβάστε περισσότεραχ 2 = με β.ε =1 και a=0.05 το κρίσιμο χ 2 =3.841
Έστω, ότι ένα δείγμα ελέγχου χρησιμοποιήθηκε σε ένα πείραμα ελέγχου ποιότητας μιας μεθόδου για 30 συνεχόμενες ημέρες. Η θεωρητική (ισχυριζόμενη) συγκέντρωση της γλυκόζης στο δείγμα αυτό είναι 0 mg/l. Ο
Διαβάστε περισσότεραΓ. Πειραματισμός - Βιομετρία
Γ. Πειραματισμός - Βιομετρία Πληθυσμοί και δείγματα Πληθυσμός Περιλαμβάνει όλες τις πιθανές τιμές μιας μεταβλητής, δηλαδή αναφέρεται σε μια παρατήρηση σε όλα τα άτομα του πληθυσμού Ο πληθυσμός προσδιορίζεται
Διαβάστε περισσότεραΣτατιστική. Ανάλυση ιασποράς με ένα Παράγοντα. One-Way Anova. 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς
Στατιστική Ανάλυση ιασποράς με ένα Παράγοντα One-Way Anova Χατζόπουλος Σταύρος Κεφάλαιο 8ο. Ανάλυση ιασποράς 8.1 Εισαγωγή 8.2 Προϋποθέσεις για την εφαρμογή της Ανάλυσης ιασποράς 8.3 Ανάλυση ιασποράς με
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΓεωργικά Φάρμακα ΙΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Μέθοδοι ανάλυσης γεωργικών φαρμάκων. Β Μέρος. Ουρανία Μενκίσογλου-Σπυρούδη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΣτατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
Διαβάστε περισσότεραΣυνοπτικά περιεχόμενα
b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότερα1. Πειραματικά Σφάλματα
. Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017
Διαβάστε περισσότεραΑνασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΠολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29
ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...
Διαβάστε περισσότεραΕπιστημονική γραφή αποτελεσμάτων
Επιστημονική γραφή αποτελεσμάτων 1. Σημαντικά ψηφία - Στρογγυλοποίηση Οι αριθμοί που προκύπτουν από μετρήσεις ή έπειτα από αριθμητικές πράξεις πρέπει να γράφονται σύμφωνα με τους κανόνες καθορισμού σημαντικών
Διαβάστε περισσότεραΚλωνάρης Στάθης. ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας
Κλωνάρης Στάθης ΠΜΣ: Οργάνωση & Διοίκηση Επιχειρήσεων Τροφίμων και Γεωργίας Μέχρι τώρα ασχοληθήκαμε με τις τεχνικές εκτίμησης παραμέτρων για ένα πληθυσμό όπως: τον Μέσο µ και το ποσοστό p Θα συνεχίσουμε
Διαβάστε περισσότερα09_Μη παραμετρικοί έλεγχοι υποθέσεων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.
Ν161_(6)_Στατιστική στη Φυσική Αγωγή 09_Μη παραμετρικοί έλεγχοι υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Όταν δεν υπάρχουν διαθέσιμες πληροφορίες για την κατανομή των πληθυσμών,
Διαβάστε περισσότεραΓ. Πειραματισμός Βιομετρία
Γενικά Πειραματικό σχέδιο και ANOVA Η βασική διαφορά μεταξύ των πειραματικών σχεδίων είναι ο τρόπος με τον οποίο ταξινομούνται ή κατατάσσονται οι πειραματικές μονάδες (πειραματικά τεμάχια) Σε όλα τα σχέδια
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegean.gr Τηλ: 7035468 Εκτίμηση
Διαβάστε περισσότεραΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Διαβάστε περισσότερα