Πολυδιάστατα Δεδομένα

Σχετικά έγγραφα
2. ΑΝΙΧΝΕΥΣΗ ΣΥΜΒΑΝΤΩΝ ΣΕ ΡΟΕΣ ΔΕΔΟΜΕΝΩΝ ΑΙΣΘΗΤΗΡΩΝ ΠΟΛΛΑΠΛΩΝ ΜΕΤΑΒΛΗΤΩΝ

1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Μοντέλο συστήματος διαχείρισης της ποιότητας

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

O στατιστικός έλεγχος ποιότητας του αναλυτή ILAB 600

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

ΤΕΧΝΙΚΕΣ ΕΛΕΓΧΟΥ ΜΗ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Ελληνικό Ανοικτό Πανεπιστήμιο

ΘΕΜΑΤΑ Α : ΕΚΦΩΝΗΣΕΙΣ - ΛΥΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ

ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ SHEWHART KAI KANONAΣ ΡΟΩΝ r / m

Κεφάλαιο 10 Επανάληψη Ασκήσεις 02

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas

F x h F x f x h f x g x h g x h h h. lim lim lim f x

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

a n n! = ea e y2 2 y 0 10E(n A) = = 100 E(k) = n p = = 4.6

ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ SHEWHART ΜΕ ΚΑΝΟΝΕΣ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗΣ ΠΟΥ ΒΑΣΙΖΟΝΤΑΙ ΣΤΗ ΘΕΩΡΙΑ ΡΟΩΝ

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Πολλαπλή παλινδρόμηση (Multivariate regression)

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Πίνακες. 1 Πίνακες. 30 Μαρτίου 2014

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

ΔΙΟΙΚΗΣΗ ΠΟΙΟΤΗΤΑΣ. Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ

ΕΝΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΟ ΔΙΑΓΡΑΜΜΑ ΕΛΕΓΧΟΥ ΜΕ ΧΡΗΣΗ ΔΙΑΤΕΤΑΓΜΕΝΩΝ ΔΕΙΓΜΑΤΩΝ

HMY 795: Αναγνώριση Προτύπων

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

Ενότητα 3: Ανάλυση Διακύμανσης κατά ένα παράγοντα One-Way ANOVA

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΣΥΝΘΕΤΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ

ΣΕΙΡΑ ΚΑΤΑΓΡΑΦΙΚΩΝ Ultima

HMY 795: Αναγνώριση Προτύπων

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

οµήτης παρουσίασης Marzullo και Neiger αλγόριθµος Παράδειγµα Distributed Debugging Εισαγωγικά

Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ ΣΥΝΑΡΤΗΣΗ ΓΝΗΣΙΩΣ ΦΘΙΝΟΥΣΑΣΥΝΑΡΤΗΣΗ ΤΟΠΙΚΟ ΜΕΓΙΣΤΟ ΤΟΠΙΚΟ ΕΛΑΧΙΣΤΟ

Σκοπός. Προγραμματίζοντας τον Arduino ΙΙ Εντολή Εκχώρησης & Εντολές. Συλλογή & Επεξεργασία Δεδομένων. Πρόγραμμα. Εντολές Επεξεργασίας Δεδομένων

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Μέρος IV. Πολυδιάστατες τυχαίες μεταβλητές. Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ15 ( 1 )

Συμπίεση Πληροφορίας Πλαισίου με Ανάλυση Κύριων Συνιστωσών

Ελλιπή δεδομένα. Εδώ έχουμε Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

ΕΚΤΙΜΗΣΗ ΤΗΣ ΤΥΠΙΚΗΣ ΑΠΟΚΛΙΣΗΣ ΣΤΟ ΣΤΑΤΙΣΤΙΚΟ ΕΛΕΓΧΟ ΠΟΙΟΤΗΤΑΣ

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

Παράδειγμα. Χρονολογικά δεδομένα. Οι πωλήσεις μιας εταιρείας ανά έτος για το διάστημα (σε χιλιάδες $)

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

Μορφοποίηση των πακέτων δεδομένων που μεταδίδονται από το Floor Board

Συνεχείς Τυχαίες Μεταβλητές

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Τεχνικές Ελέγχου της Διασποράς Διεργασιών Εντός Γραμμής Παραγωγής.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

Educational Laboratory of Multi Instruments (ELMI) for LabVIEW TM and MultiSIM TM

Ψηφιακή Επεξεργασία Σήματος

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

Προγραµµατισµός ΙΙ. Ηγλώσσααντικειµενοστραφούς. ιδάσκων ηµήτριος Κατσαρός, Τµ. Μηχανικών Η/Υ, Τηλεπικοινωνιών & ικτύων Πανεπιστήµιο Θεσσαλίας

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

Δ Ι Π Λ Ω Μ Α Τ Ι Κ Η Ε Ρ Γ Α Σ Ι Α ΕΠΙΔΡΑΣΗ ΤΗΣ ΕΚΤΙΜΗΣΗΣ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΔΙΑΓΡΑΜΜΑΤΩΝ ΕΛΕΓΧΟΥ ΓΙΑ ΤΗ ΜΕΣΗ ΤΙΜΗ

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

Μεθοδολογία των επιστημών του Ανθρώπου : Στατιστική

Συμπίεση Πληροφορίας Πλαισίου: χρήση του Αυτοπαλίνδρομου Υποδείγματος για επίτευξη Αποδοτικών Ασύρματων Επικοινωνιών

Στη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια:

Διάστημα εμπιστοσύνης της μέσης τιμής

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

πινάκων Σύγχρονα Προγραματιστικά Περιβάλλοντα ΠΕΡΙΕΧΟΜΕΝΑ

Μοντέλο συστήματος διαχείρισης της ποιότητας

Μαθηματικός Περιηγητής σχ. έτος

Θέματα Προγραμματισμού Η/Υ

ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός - Βιομετρία

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

Αποτελέσματα προόδου

Εχουμε ήδη συναντήσει μονοδιάστατους πίνακες, οι οποίοι ορίζονται ως εξής:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συναρτήσεις πολλών μεταβλητών Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

4: ΣΤΑΤΙΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΉΣ ΔΙΑΔΙΚΑΣΙΑΣ (Statistical process control, SPC)

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Transcript:

Ανίχνευση Συμβάντος σε Πολυδιάστατα Δεδομένα Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Διπλωματική Εργασία Μεταπτυχιακού Προγράμματος Ηλεκτρονικού Αυτοματισμού Καλβουρίδη Ειρήνη

Ανίχνευση Συμβάντος σε Πολυδιάστατα Δεδομένα Διαγράμματα Ελέγχου Shewhart Περιγραφή Διαγράμματων Διαγράμματα Ελέγχου Cusum o Μίας μεταβλητής o Πολλών μεταβλητών Πλατφόρμα SuSPOT Εφαρμογές που υλοποιήθηκαν

Διαγράμματα Ελέγχου Διάφοροι τύποι διαγραμμάτων ανάλογα με: Τη χαρακτηριστική παράμετρο που ελέγχεται (. κ.λπ (διαστάσεις, θερμοκρασία, Τη στατιστική συνάρτηση που χρησιμοποιούν (. κ.λπ (μέση τιμή, διασπορά, Παραδείγματα: διαγράμματα Shewhart διαγράμματα συσσωρευτικού αθροίσματος CUSUM διαγράμματα εκθετικά σταθισμένων κινητών μέσων EWMA

Κατηγορίες Διαγραμμάτων Διαγράμματα ελέγχου μεταβλητών: o o συνεχή και μετρήσιμα πχ. βάρος, θερμοκρασία, όγκος, κ.λπ. Διαγράμματα ελέγχου χαρακτηριστικών ιδιοτήτων: o o διακριτά και μη μετρήσιμα πχ. συχνότητα απορριπτέων ανά δείγμα

Διαγράμματα Ελέγχου Shewhart Mια σειρά μετρήσεων που ακολουθούν μια χρονική σειρά (τουλάχιστον 20-25 σημεία) Τρεις οριζόντιες γραμμές: Κάτω όριο ελέγχου (Lower Cotrol Limit: LCL) Κεντρική γραμμή (Cetral Lie: CL) και Άνω όριο ελέγχου (Upper Cotrol Limit: UCL) ( LCL Εύρος Μεταβλητότητας: (UCL Διαγράμματα χωρίς μνήμη

Διαγράμματα Ελέγχου Shewhart

Διαγράμματα Ελέγχου CUSUM CUSUM: Cumulative Sum Charts, Διαγράμματα συσσωρευτικού αθροίσματος Μίας μεταβλητής: Tabular CUSUM Πολλών μεταβλητών: Στατιστική Hotellig Δύο συσσωρευτικά αθροίσματα o Άνω συσσωρευτικό άθροισμα o Κάτω συσσωρευτικό άθροισμα Διαγράμματα με μνήμη

Tabular CUSUM Θεωρούμε ότι: x : συνεχής μεταβλητή (χαρακτηριστικό διεργασίας) x i : μετρήσεις της μεταβλητής x μ 0 : μέση τιμή μεταβλητής x (γνωστή) σ K 0 : τυπική απόκλιση μεταβλητής x (γνωστή) : τιμή αναφοράς (σταθερά) h, h : όρια ελέγχου

Tabular CUSUM Άνω συσσωρευτικό άθροισμα: Κάτω συσσωρευτικό άθροισμα: Ο αλγόριθμος CUSUM θα δώσει ένδειξη εκτός ελέγχου όταν: ] ) (, max[ K μ x S S S i i i 0 1 0 0 0 ] ) (, mi[ K μ x S S S i i i 0 1 0 0 0 h S h S i i ή

Tabular CUSUM

Στατιστική T 2 του Hotellig Είναι ένα μέτρο με το οποίο μελετάται η συνδιακύμανση μιας πολυμεταβλητής κανονικής κατανομής. T 2 1 ( x μ)'σ ( x μ) ( x μ)' : το ανάστροφο διάνυσμα αποκλίσεων μεταξύ μετρήσεων και μέσης τιμής Σ ( x μ) 1 : ο αντίστροφος πίνακας συνδιακύμανσης : το διάνυσμα των αποκλίσεων μεταξύ μετρήσεων και μέσης τιμής

Πολυμεταβλητός Tabular CUSUM Θεωρούμε: : το μέτρο του διανύσματος, δηλαδή : άθροισμα του Tabular CUSUM, το οποίο μετατρέπεται στο διάνυσμα με ( μ) x s 1 C 2 1 1 1 1 / ) ( )'Σ ( μ x s μ x s C s k C μ x s C k k C s, 1, 0 1 ) )( / ( s 0 0

Πολυμεταβλητός Tabular CUSUM Ο αλγόριθμος Tabular CUSUM για πολλές μεταβλητές ελέγχει το παρακάτω μέτρο Y s Σ 1 s 1/ 2 ' Θα δώσει ένδειξη εκτός ελέγχου (συναγερμός) όταν: Y h Οι παραπάνω σχέσεις ορίζουν τον πολυμεταβλητό αλγόριθμο CUSUM, όπως περιγράφεται από τον R.B.Crosier

Πλατφόρμα SuSPOT ARM920T (180MHz) 512K RAM, 4MB Flash IEEE 802.15.4 (2.4GHz) USB επιταχυνσιόμετρο αισθητήρες o θερμοκρασίας, o φωτεινότητας, o υγρασίας εικονική μηχανή Squawk JVM εργαλείο προσομοίωσης Solarium (περιλαμβάνεται στο developmet kit)

Αλγόριθμος CUSUM Μονόπλευρος: εξετάζει μόνο το άνω συσσωρευτικό άθροισμα S + Σαν έξοδο παράγει ένα σήμα output, το οποίο μπορεί να λάβει μόνο μία εκ των τριών τιμών {-1,0,1}: o output = 1: Ανίχνευση αλλαγής κάτω από το όριο h o output = 0 : Κατάσταση Σταθερή (S + > h, S + < h) o output = 1 : Ανίχνευση αλλαγής πάνω από το όριο h Επίσης, παράγει την έξοδο state, η οποία κρατάει αποθηκευμένη την κατάσταση του συστήματος (stable, ustable)

Καταστάσεις Αλγορίθμου CUSUM

Μηχανή Καταστάσεων Αλγορίθμου CUSUM

Αλγόριθμος CUSUM για μία μεταβλητή R 0 output 0 state stable while (true) R = max[0, x - (m + k) + R] if (R > h) if (state = stable ) output = 1 state = ustable else-if (state = ustable ) output = 0 ed-if ed-if (R > h) if (R < h) if (state = stable ) output = 0 else-if (state = ustable ) output = -1 state = stable ed-if ed-if (R < h) END.

Αλγόριθμος CUSUM για μία μεταβλητή Αποτελέσματα εφαρμογής αλγορίθμου CUSUM για μία μεταβλητή μέσω του εργαλείου Solarium

Αλγόριθμος CUSUM για πολλές μεταβλητές Y 0 output 0 state stable while (true) C = [(S -1 +x -m) Σ -1 (S -1 +x - m)] 1/2 if (C k) S = (1 k/c )(S -1 +x -m) else-if (C < k) S = 0 ed-if Y = [S Σ -1 S ] 1/2 if (Y > h) if (state = stable ) output = 1 state = ustable else-if (state = ustable ) output = 0 ed-if ed-if (Y > h) if (Y < h) if (state = stable ) output = 0 else-if (state = ustable ) output = -1 state = stable ed-if ed-if (Y < h) END.

Εφαρμογή Αλγορίθμου Crosier σε δίκτυο από SuSPOTs Τρία SuSPOTs: o 7f00.0001.0000.1001: SederTemperature o 7f00.0001.0000.1002: SederBrightess o 7f00.0001.0000.1003: CrosierOlieAppReceiver Τα δύο SuSPOTs διαβάζουν δεδομένα θερμοκρασίας και φωτεινότητας από ένα αρχείο και τα στέλνουν στο τρίτο για να τρέξει τον αλγόριθμο Crosier. Για το συγχρονισμό τους έχει οριστεί το SuSPOT που τρέχει τον αλγόριθμο να στέλνει ένα μήνυμα OK στα άλλα δύο, ώστε να αρχίσουν να στέλνουν τα δεδομένα.

Ανίχνευση Συμβάντος σε Πολυδιάστατα Δεδομένα ΕΥΧΑΡΙΣΤΩ ΠΟΛΥ Καλβουρίδη Ειρήνη