Ανίχνευση Συμβάντος σε Πολυδιάστατα Δεδομένα Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Διπλωματική Εργασία Μεταπτυχιακού Προγράμματος Ηλεκτρονικού Αυτοματισμού Καλβουρίδη Ειρήνη
Ανίχνευση Συμβάντος σε Πολυδιάστατα Δεδομένα Διαγράμματα Ελέγχου Shewhart Περιγραφή Διαγράμματων Διαγράμματα Ελέγχου Cusum o Μίας μεταβλητής o Πολλών μεταβλητών Πλατφόρμα SuSPOT Εφαρμογές που υλοποιήθηκαν
Διαγράμματα Ελέγχου Διάφοροι τύποι διαγραμμάτων ανάλογα με: Τη χαρακτηριστική παράμετρο που ελέγχεται (. κ.λπ (διαστάσεις, θερμοκρασία, Τη στατιστική συνάρτηση που χρησιμοποιούν (. κ.λπ (μέση τιμή, διασπορά, Παραδείγματα: διαγράμματα Shewhart διαγράμματα συσσωρευτικού αθροίσματος CUSUM διαγράμματα εκθετικά σταθισμένων κινητών μέσων EWMA
Κατηγορίες Διαγραμμάτων Διαγράμματα ελέγχου μεταβλητών: o o συνεχή και μετρήσιμα πχ. βάρος, θερμοκρασία, όγκος, κ.λπ. Διαγράμματα ελέγχου χαρακτηριστικών ιδιοτήτων: o o διακριτά και μη μετρήσιμα πχ. συχνότητα απορριπτέων ανά δείγμα
Διαγράμματα Ελέγχου Shewhart Mια σειρά μετρήσεων που ακολουθούν μια χρονική σειρά (τουλάχιστον 20-25 σημεία) Τρεις οριζόντιες γραμμές: Κάτω όριο ελέγχου (Lower Cotrol Limit: LCL) Κεντρική γραμμή (Cetral Lie: CL) και Άνω όριο ελέγχου (Upper Cotrol Limit: UCL) ( LCL Εύρος Μεταβλητότητας: (UCL Διαγράμματα χωρίς μνήμη
Διαγράμματα Ελέγχου Shewhart
Διαγράμματα Ελέγχου CUSUM CUSUM: Cumulative Sum Charts, Διαγράμματα συσσωρευτικού αθροίσματος Μίας μεταβλητής: Tabular CUSUM Πολλών μεταβλητών: Στατιστική Hotellig Δύο συσσωρευτικά αθροίσματα o Άνω συσσωρευτικό άθροισμα o Κάτω συσσωρευτικό άθροισμα Διαγράμματα με μνήμη
Tabular CUSUM Θεωρούμε ότι: x : συνεχής μεταβλητή (χαρακτηριστικό διεργασίας) x i : μετρήσεις της μεταβλητής x μ 0 : μέση τιμή μεταβλητής x (γνωστή) σ K 0 : τυπική απόκλιση μεταβλητής x (γνωστή) : τιμή αναφοράς (σταθερά) h, h : όρια ελέγχου
Tabular CUSUM Άνω συσσωρευτικό άθροισμα: Κάτω συσσωρευτικό άθροισμα: Ο αλγόριθμος CUSUM θα δώσει ένδειξη εκτός ελέγχου όταν: ] ) (, max[ K μ x S S S i i i 0 1 0 0 0 ] ) (, mi[ K μ x S S S i i i 0 1 0 0 0 h S h S i i ή
Tabular CUSUM
Στατιστική T 2 του Hotellig Είναι ένα μέτρο με το οποίο μελετάται η συνδιακύμανση μιας πολυμεταβλητής κανονικής κατανομής. T 2 1 ( x μ)'σ ( x μ) ( x μ)' : το ανάστροφο διάνυσμα αποκλίσεων μεταξύ μετρήσεων και μέσης τιμής Σ ( x μ) 1 : ο αντίστροφος πίνακας συνδιακύμανσης : το διάνυσμα των αποκλίσεων μεταξύ μετρήσεων και μέσης τιμής
Πολυμεταβλητός Tabular CUSUM Θεωρούμε: : το μέτρο του διανύσματος, δηλαδή : άθροισμα του Tabular CUSUM, το οποίο μετατρέπεται στο διάνυσμα με ( μ) x s 1 C 2 1 1 1 1 / ) ( )'Σ ( μ x s μ x s C s k C μ x s C k k C s, 1, 0 1 ) )( / ( s 0 0
Πολυμεταβλητός Tabular CUSUM Ο αλγόριθμος Tabular CUSUM για πολλές μεταβλητές ελέγχει το παρακάτω μέτρο Y s Σ 1 s 1/ 2 ' Θα δώσει ένδειξη εκτός ελέγχου (συναγερμός) όταν: Y h Οι παραπάνω σχέσεις ορίζουν τον πολυμεταβλητό αλγόριθμο CUSUM, όπως περιγράφεται από τον R.B.Crosier
Πλατφόρμα SuSPOT ARM920T (180MHz) 512K RAM, 4MB Flash IEEE 802.15.4 (2.4GHz) USB επιταχυνσιόμετρο αισθητήρες o θερμοκρασίας, o φωτεινότητας, o υγρασίας εικονική μηχανή Squawk JVM εργαλείο προσομοίωσης Solarium (περιλαμβάνεται στο developmet kit)
Αλγόριθμος CUSUM Μονόπλευρος: εξετάζει μόνο το άνω συσσωρευτικό άθροισμα S + Σαν έξοδο παράγει ένα σήμα output, το οποίο μπορεί να λάβει μόνο μία εκ των τριών τιμών {-1,0,1}: o output = 1: Ανίχνευση αλλαγής κάτω από το όριο h o output = 0 : Κατάσταση Σταθερή (S + > h, S + < h) o output = 1 : Ανίχνευση αλλαγής πάνω από το όριο h Επίσης, παράγει την έξοδο state, η οποία κρατάει αποθηκευμένη την κατάσταση του συστήματος (stable, ustable)
Καταστάσεις Αλγορίθμου CUSUM
Μηχανή Καταστάσεων Αλγορίθμου CUSUM
Αλγόριθμος CUSUM για μία μεταβλητή R 0 output 0 state stable while (true) R = max[0, x - (m + k) + R] if (R > h) if (state = stable ) output = 1 state = ustable else-if (state = ustable ) output = 0 ed-if ed-if (R > h) if (R < h) if (state = stable ) output = 0 else-if (state = ustable ) output = -1 state = stable ed-if ed-if (R < h) END.
Αλγόριθμος CUSUM για μία μεταβλητή Αποτελέσματα εφαρμογής αλγορίθμου CUSUM για μία μεταβλητή μέσω του εργαλείου Solarium
Αλγόριθμος CUSUM για πολλές μεταβλητές Y 0 output 0 state stable while (true) C = [(S -1 +x -m) Σ -1 (S -1 +x - m)] 1/2 if (C k) S = (1 k/c )(S -1 +x -m) else-if (C < k) S = 0 ed-if Y = [S Σ -1 S ] 1/2 if (Y > h) if (state = stable ) output = 1 state = ustable else-if (state = ustable ) output = 0 ed-if ed-if (Y > h) if (Y < h) if (state = stable ) output = 0 else-if (state = ustable ) output = -1 state = stable ed-if ed-if (Y < h) END.
Εφαρμογή Αλγορίθμου Crosier σε δίκτυο από SuSPOTs Τρία SuSPOTs: o 7f00.0001.0000.1001: SederTemperature o 7f00.0001.0000.1002: SederBrightess o 7f00.0001.0000.1003: CrosierOlieAppReceiver Τα δύο SuSPOTs διαβάζουν δεδομένα θερμοκρασίας και φωτεινότητας από ένα αρχείο και τα στέλνουν στο τρίτο για να τρέξει τον αλγόριθμο Crosier. Για το συγχρονισμό τους έχει οριστεί το SuSPOT που τρέχει τον αλγόριθμο να στέλνει ένα μήνυμα OK στα άλλα δύο, ώστε να αρχίσουν να στέλνουν τα δεδομένα.
Ανίχνευση Συμβάντος σε Πολυδιάστατα Δεδομένα ΕΥΧΑΡΙΣΤΩ ΠΟΛΥ Καλβουρίδη Ειρήνη