Εφαρμοσμένα Μαθηματικά ΙΙ

Σχετικά έγγραφα
Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Ανασκόπηση-Μάθημα 32 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού πεδίου

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος (Λύσεις) Ι. Λυχναρόπουλος

ΚΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Κεφάλαιο 7 Επικαμπύλια και Επιφανειακά Ολοκληρώματα

13 ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ

Λύσεις στο επαναληπτικό διαγώνισμα 3

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

Εφαρμοσμένα Μαθηματικά ΙΙ

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

ΕΠΙΚΑΜΠΥΛΙΑ ΚΑΙ ΕΠΙΕΠΙΦΑΝΕΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Μαθηματικά για μηχανικούς ΙΙ ΛΥΣΕΙΣ/ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ

Εφαρμοσμένα Μαθηματικά ΙΙ

k = j + x 3 j + i + + f 2

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35

6. Κεφάλαιο Διανύσματα, Διανυσματικές εξισώσεις, Διανυσματικά Πεδία.

1 ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ

Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος

0.8 Επικαµπύλια ολοκληρώµατα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ I (Βασικό 3 ου Εξαμήνου) Διδάσκων : Δ.Σκαρλάτος ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ. Α. Τριγωνομετρικές Ταυτότητες

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 4. Ασκήσεις. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών Α.Π.Θ.

Δ Ι Α Φ Ο Ρ Ι Κ Ο Ι Τ Ε Λ Ε Σ Τ Ε Σ

ΚΕΦΑΛΑΙΟ 6 ΙΑΝΥΣΜΑΤΙΚEΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ. 1. Όριο Συνέχεια Παράγωγος διανυσµατικών συναρτήσεων.

ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ

Εφαρμοσμένα Μαθηματικά ΙΙ

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1

KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Όπως είδαμε στο Κεφάλαιο 1 κάθε συνεχής απεικόνιση

Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης

Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών. Διανυσματική Ανάλυση. Δρ. Θεόδωρος Ζυγκιρίδης

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

r (t) dt f ds r (t) = (x (t)) 2 + (y (t)) 2 + (z (t)) 2.

ΣΗΜΕΙΩΣΕΙΣ 4. bt (γιατί;).

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

Λογισμός 4 Ενότητα 13

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

EPIKAMPULIA KAI EPIFANEIAKA OLOKLHRWMATA

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς

Λογισμός 4 Ενότητα 14

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

Ανασκόπηση-Μάθημα 29 Σφαιρικές συντεταγμένες- Εφαρμογές διπλού και τριπλού ολοκληρώματος- -Επικαμπύλιο ολοκλήρωμα α είδους

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ 2ο Σετ Ασκήσεων (Λύσεις) Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος

< F ( σ(h(t))), σ (h(t)) > h (t)dt.

Λογισμός 4 Ενότητα 18

Μαθηµατικός Λογισµός ΙΙ

ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ 1. Σχήµα 1 Σχήµα 2

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

Στροβιλισμός & συντηρητικά πεδία

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1.

Περιεχόμενα. Λίγα λόγια για τους συγγραφείς

Σημειώσεις Λογισμού ΙΙ

( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1

Νόμος Ampere- Διανυσματικό Δυναμικό

Δείκτες Poincaré και Θεώρημα Frommer

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

Εφαρμοσμένα Μαθηματικά ΙΙ

Φυσική για Μηχανικούς

ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΔΕΥΤΕΡΑ ΑΙΘ.ΖΑ

Λογισμός 4 Ενότητα 19

Εργαστήριο Ανώτερης Γεωδαισίας Μάθημα 7ου Εξαμήνου (Ακαδ. Έτος ) «Εισαγωγή στο Γήινο Πεδίο Βαρύτητας»

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

Πραγματικοί Αριθμοί 2

Γενικά Μαθηματικά ΙΙ

Τα θεωρήματα Green, Stokes και Gauss

website:

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ

Εφαρμοσμένα Μαθηματικά ΙΙ 4ο Σετ Ασκήσεων (Λύσεις) Διπλά Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

Στροβιλισµός πεδίου δυνάµεων

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ. Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: Τότε. Ν-οστή ρίζα µιγαδικού

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Επιπτώσεις της διανυσµατικής µορφής του πεδίου βαρύτητας. βαρύτητας

Διάνυσμα: έχει μέτρο, διεύθυνση και φορά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. Πνευματικός ΜΕΡΟΣ Β.

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

KΕΦΑΛΑΙΟ 6 ΕΠΙΚΑΜΠΥΛΙΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Όπως είδαµε στο Κεφάλαιο 1 κάθε συνεχής απεικόνιση

Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη

Κλασική Hλεκτροδυναμική

Transcript:

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Θεώρημα Green Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Επικαμπύλιο Ολοκλήρωμα Βαθμωτής Συνάρτησης Πολλών Μεταβλητών Ορισμός σε σχέση με το μήκος τόξου n f( x, y) ds = lim f( x, y ) s n i = i i i Ισούται με το εμβαδό της μπλε επιφάνειας Επικαμπύλιο α' είδους Σε περίπτωση κλειστής καμπύλης, το ολοκλήρωμα συμβολίζεται και ως: Η καμπύλη : f ( x, y) ds r () πρέπει να είναι (τμηματικά) λεία, δηλ r'( )

Υπολογισμός Επικαμπύλιου Ολοκληρώματος Βαθμωτής Συνάρτησης r ( ), Έστω μία παραμετροποίηση της λείας καμπύλης, τότε: f ( x) ds = f r () v() d = f r () r '() d ( ) ( ) Σε D r () = x (), y () f ( x, y) ds = f x(),y() x '() + y '() d Σε 3D r () = x (), y (), z () ( ) f ( x, y, z) ds = f x(),y(), z() x '() + y '() + z '() d Το τελικό ολοκλήρωμα είναι ένα απλό ολοκλήρωμα μίας συνάρτησης μόνον του ( )

Ιδιότητες Επικαμπύλιου Ολοκληρώματος Βαθμωτής Συνάρτησης Το f ( x) ds k f ( x) ds = k f ( x) ds είναι ανεξάρτητο από την επιλογή της παραμετροποίησης της f ( x ) ± g( x ) ds = f ( x ) ds ± g( x ) ds f ( x ) ds = f ( x ) ds + f ( x ) ds + f ( x) ds = f ( x) ds

Εφαρμογές Επικαμπύλιου Ολοκληρώματος Βαθμωτής Συνάρτησης Εμβαδό Tο εμβαδό της κυλινδρικής επιφάνειας που έχει οδηγό την καμπύλη στο επίπεδο Oxy και γεννέτειρες παράλληλες προς τον άξονα zz και της οποίας τα σημεία επαληθεύουν την σχέση z f( xy, ) Μάζα ( ) Κέντρο μάζας x, y σύρματος Αν η καμπύλη περιγράφει ένα σύρμα, του οποίου δίνεται η πυκνότητα ρ(x,y), τότε m = ρ ( x, y) ds Μήκος καμπύλης E x = L f ( x, y) ds m ( ) xρ( x, y) ds yρ( x, y) ds =, y = m m = ds

Διανυσματικά Πεδία Στο επίπεδο (D) F: F( xy, ) = Mxyi (, ) ˆ+ Nxyj (, ) ˆ= Mxy (, ), Nxy (, ) Στο χώρο (3D) 3 3 F: F( xyz,, ) = M( xyzi,, ) ˆ+ Nxyz (,, ) ˆj+ Pxyzk (,, ) ˆ = = M( xyz,, ), Nxyz (,, ), Pxyz (,, ) Παραδείγματα Πεδίο δυνάμεων, Πεδίο ταχυτήτων, Πεδίο κλίσεως f= fiˆ+ f ˆj + fkˆ x y z

Αναπαράσταση Διανυσματικών Πεδίων Fxy (, ) =< xy, > Fxy (, ) =< yx, > Fxyz (,, ) =< xyz,, >

Συνέχεια Διαφορισιμότητα- Παράγωγος Διανυσματικού Πεδίου Ένα διανυσματικό πεδίο είναι συνεχές όταν κάθε μία συνιστώσα του είναι συνεχής ως συνάρτηση πολλών μεταβλητών Ένα διανυσματικό πεδίο είναι διαφορίσιμο όταν κάθε μία συνιστώσα του είναι διαφορίσιμη ως συνάρτηση πολλών μεταβλητών Παράγωγος Διανυσματικού Πεδίου F( xy, ) = Mxy (, ), Nxy (, ) DF( xy, ) π.χ. Έστω M Mx M y = = N Nx N y F( xy, ) = f( xy, ) = f, f x y Ιακωβιανός Πίνακας Αντίστοιχα σε 3D DF( xy, ) fxx fxy = fyx f yy η Παράγωγος της f Εσσιανός Πίνακας

Επικαμπύλια Ολοκληρώματα Βαθμωτής Συνάρτησης επί της καμπύλης, σε σχέση με τις μεταβλητές x, y, z ( ) f ( x, y, z) dx = f x(), y(), z() x '() d ( ) f ( x, y, z) dy = f x(), y(), z() y '() d ( ) f ( x, y, z) dz = f x(), y(), z() z '() d Συμβολισμός αθροίσματος Pdx + Qdy + Rdz = Pdx + Qdy + Rdz Ιδιότητες Ανεξάρτητα από την παραμετροποίηση της Pdx + Qdy + Rdz = Pdx + Qdy + Rdz Επικαμπύλια β είδους

Επικαμπύλια Ολοκληρώματα Διανυσματικών Πεδίων F= M( xyz,, ), Nxyz (,, ), Pxyz (,, ) W = F T ds = F dr = Mdx + Ndy + Pdz ( ˆ ) Παριστάνει το Έργο που εκτελείται από τη δύναμη F για μετακίνηση επί της λείας καμπύλης Υπολογισμός του επικαμπύλιου ολοκληρώματος : r () = x (), y (), z (), W = F r r d ( ) ( () '()) Επικαμπύλια β είδους W= ( M( r ()) x'() + N( r ()) y'() + Pr ( ()) z'() ) d

Ερμηνεία Προσήμου Επικαμπύλιου Ολοκληρώματος Διανυσματικού Πεδίου F= yx, F Αν η φορά διαγραφής της dr > F dr < καμπύλης, στο μεγαλύτερο μέρος της, είναι παραπλήσια με τη φορά του διανυσματικού πεδίου Αν η φορά διαγραφής της καμπύλης, στο μεγαλύτερο μέρος της, είναι αντίθετη με τη φορά του διανυσματικού πεδίου F dr = Αν η καμπύλη είναι κάθετη στη φορά του διανυσματικού πεδίου

Ιδιότητες Επικαμπύλιων Ολοκληρωμάτων Διανυσματικών πεδίων F Το dr ( ) είναι ανεξάρτητο από την επιλογή της παραμετροποίησης της F ± G dr = F dr ± G dr F dr = F dr + F dr + k F dr = k F dr F dr = F dr

Ροή - Κυκλοφορία Έστω F = Πεδίο Ταχυτήτων Ροή κατά μήκος (flow) της καμπύλης (παράλληλα στην καμπύλη) ( F T ˆ ) ( F T ˆ ) ds Κυκλοφορία κατά μήκος (circulaion) της καμπύλης ds Ροή παράλληλα σε κλειστή καμπύλη Ροή διαμέσου (flux) κλειστής καμπύλης του επιπέδου (κάθετα στην καμπύλη, στην κατεύθυνση του n) F n ds = M dy N dx ( ˆ ) ˆn= Tˆ kˆ (Για κίνηση κατά την ορθή φορά) n=

Απόκλιση - Στροβιλισμός F( xyz,, ) = M( xyz,, ), Nxyz (,, ), Pxyz (,, ) Απόκλιση Διανυσματικού Πεδίου M( xyz,, ) Nxyz (,, ) Pxyz (,, ) divf = F = + + x y z Στροβιλισμός Διανυσματικού Πεδίου iˆ ˆj kˆ P N M P N M curlf = F = =,, x y z y z z x x y M N P =,, x y z Ισχύουν οι ταυτότητες div curlf = F = ( ) ( ) ( ) = ( f ) curl grad f Βαθμωτή Συνάρτηση =

Ερμηνεία Απόκλισης (ή Πυκνότητας Εξερχόμενης Ροής) στο επίπεδο F( xy, ) = Mxy (, ), Nxy (, ), Mxy (, ) Nxy (, ) divf = F = + x y Μετράει την τοπική διαστολή ή συστολή του πεδίου

Ερμηνεία Στροβιλισμού (ή Πυκνότητας Κυκλοφορίας) στο επίπεδο F( xy, ) = Mxy (, ), Nxy (, ), curlf Nxy (, ) Mxy (, ) =,, x y Μετράει την τοπική τάση του πεδίου για περιστροφή

Ακριβής Διαφορική Μορφή Μία σχέση της μορφής: M ( x, y, z) dx + N( x, y, z) dy + P( x, y, z) dz καλείται Διαφορική Μορφή Μία διαφορική μορφή καλείται Ακριβής Διαφορική Μορφή αν υπάρχει συνάρτηση Qxyz (,, ) τέτοια ώστε dq = M ( x, y, z) dx + N( x, y, z) dy + P( x, y, z) dz δηλ. η διαφορική μορφή να αποτελεί το τέλειο διαφορικό της Q Κριτήριο για Ακριβή Διαφορική Μορφή P N M P N M =, =, = y z z x x y curlf = ή

Συνεκτικά χωρία / Απλές καμπύλες Απλά Συνεκτικό Πολλαπλά Συνεκτικό Μη Συνεκτικό Δεν τέμνει τον εαυτό της Απλή Ανοικτή Απλή Κλειστή Μη Απλή Ανοικτή Μη Απλή Κλειστή

Συντηρητικά Πεδία σε απλά συνεκτικά χωρία R Αν το πεδίο F = Miˆ+ N ˆj + Pkˆ είναι συντηρητικό, τότε ισχύουν οι εξής ισοδύναμες προτάσεις: Υπάρχει τέτοια ώστε To είναι ανεξάρτητο της καμπύλης. Εξαρτάται μόνον Β από τα άκρα της, και ισχύει: F Θεμελιώδες dr = f ( B) f ( A) Θεώρημα Επ. Ολοκλ/μάτων H F dr F dr = Mdx + Ndy + Pdz F = P N M P N M =, =, = y z z x x y Το f( xyz,, ) df = Mdx + Ndy + Pdz Α για κάθε κλειστή καμπύλη στο R Προϋποθέσεις: Το R ανοιχτό, απλά συνεκτικό Η καμπύλη τμηματικά λεία Η F και οι παράγωγοί της συνεχείς f f: Συνάρτηση Δυναμικού (Υπάρχουν άπειρες f με διαφορά σταθεράς) είναι ακριβής διαφορική μορφή δηλ. ή curlf = F Αστρόβιλο Πεδίο είναι τέλειο διαφορικό =

Συντηρητικά Πεδία σε πολλαπλά συνεκτικά χωρία Έστω ένα συντηρητικό πεδίο F ορισμένο σε ένα πολλαπλά συνεκτικό χωρίο R, τότε Το επικαμπύλιο ολοκλήρωμα επί απλής, κλειστής καμπύλης που δεν περικλείει την οπή ισούται με μηδέν: F dr = R 3 Το επικαμπύλιο ολοκλήρωμα επί οποιασδήποτε απλής, κλειστής καμπύλης που περικλείει την οπή ισούται με την ίδια ποσότητα, η οποία καλείται Κυκλική Σταθερά της Οπής: F dr = F dr Οπή 3

Θεώρημα Green (στο επίπεδο) F= Miˆ+ N ˆj R Εφαπτομενική Μορφή N M F T ds = Mdx + Ndy = da x y ( ˆ ) R Κυκλοφορία ή Έργο (κατά μήκος της ) Κάθετη Μορφή ( ˆ) R Προϋποθέσεις: Το χωρίο R απλά συνεκτικό και ορίζεται από την καμπύλη H καμπύλη απλή, κλειστή, τμηματικά λεία και διαγράφεται κατά την ορθή φορά Η F και οι παράγωγοι της συνεχείς στο R (ορίζονται παντού στο R) Ολοκλήρωμα Στροβιλισμού M N F n ds = Mdy Ndx = + da x y Εξερχόμενη ροή (κάθετα στη ) ˆ ( ) ˆ N M curlf k = F k = x y Ολοκλήρωμα Απόκλισης M N divf = F = + x y

Θεώρημα Green σε πολλαπλά συνεκτικά χωρία π.χ. R Η φορά διαγραφής των καμπυλών είναι τέτοια ώστε το εσωτερικό του R να βρίσκεται πάντοτε στο αριστερό μας χέρι: Η εξωτερική καμπύλη θα έχει φορά αντίθετη των δεικτών του ρολογιού ενώ όλες οι εσωτερικές θα έχουν φορά ίδια με των δεικτών του ρολογιού R: Το σύνορο του χωρίου R Mdx + Ndy = Mdx + Ndy + Mdx + Ndy + Mdx + Ndy = R N M = da x y R

Υπολογισμός Εμβαδών μέσω Θεωρήματος Green Εμβαδό χωρίου R που περικλείεται από την απλή, λεία και κλειστή καμπύλη Green με Μ=-y/, Ν=x/ Green με Μ=, Ν=x Green με Μ=-y, Ν= ER = x dy y dx = x dy = y dx Πολλές φορές, ιδίως σε συμμετρικά ως προς x και y χωρία, είναι ευκολότερος ο υπολογισμός του πρώτου ολοκληρώματος Ορισμένο Ολοκλήρωμα ως Επικαμπύλιο Ολοκλήρωμα b ER = f ( x) dx = y dx α