Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

Σχετικά έγγραφα
HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε Αποδείξεις

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

Αποφασισιµότητα. HY118- ιακριτά Μαθηµατικά. Βασικές µέθοδοι απόδειξης. 07 -Αποδείξεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά

Παράδειγμα άμεσης απόδειξης. HY118-Διακριτά Μαθηματικά. Μέθοδοι αποδείξεως για προτάσεις της μορφής εάν-τότε

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Προηγούµενη φορά. «ανήκει» 10 Θεωρία συνόλων

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Νόµοι ισοδυναµίας. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Παρασκευή, 24/02/2017

HY118- ιακριτά Μαθηµατικά. Θεωρία Συνόλων. Το δυναµοσύνολο ενός συνόλου. Προηγούµενη φορά. 10 Θεωρία συνόλων. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2016

HY118- ιακριτά Μαθηµατικά. Συναρτήσεις. Συνάρτηση. Συνάρτηση: Τυπικός ορισµός Συναρτήσεις

HY118- ιακριτά Μαθηµατικά

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Ένα παράδειγµα... Έχουµε δει. Κατηγορηµατικός Λογισµός. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο Πέµπτη, 23/02/2017

HY118- ιακριτά Μαθηµατικά

HY118-Διακριτά Μαθηματικά

Μερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

ιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

HY118- ιακριτά Μαθηµατικά

HY118-Διακριτά Μαθηματικά

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2019 Λύσεις ασκήσεων προόδου

HY118-Διακριτά Μαθηματικά

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

HY118- ιακριτά Μαθηµατικά. Σχέσεις. ιµελής σχέση. 12 Εισαγωγή στις Σχέσεις. ιακριτά Μαθηµατικά, Εαρινό εξάµηνο 2017.

Κεφάλαιο 6. Πεπερασµένα παραγόµενες αβελιανές οµάδες. Z 4 = 1 και Z 2 Z 2.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

1 Οι πραγµατικοί αριθµοί

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

HY118- ιακριτά Μαθηµατικά

Ανοικτά και κλειστά σύνολα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

Όνοµα: Λιβαθινός Νικόλαος 2291

Κεφάλαιο 1. Εισαγωγικές Εννοιες. 1.1 Σύνολα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

HY118-Διακριτά Μαθηματικά

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

HY118- ιακριτά Μαθηµατικά

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

ιαδικαστικά θέµατα HY118- ιακριτά Μαθηµατικά Συνάρτηση: Τυπικός ορισµός Ορολογία 17 - Η αρχή του περιστερώνα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Κεφάλαιο 7 Βάσεις και ιάσταση

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

HY118-Διακριτά Μαθηματικά. Προτασιακός Λογισμός. Προηγούμενη φορά. Βάσεις της Μαθηματικής Λογικής. 02 Προτασιακός Λογισμός

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

A. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

HY118-Διακριτά Μαθηματικά

3 Αναδροµή και Επαγωγή

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές:

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά

Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville

HY118-Διακριτά Μαθηματικά

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Transcript:

HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017 1 1 Άµεση απόδειξη Έµµεση απόδειξη Απαγωγή σε άτοπο Κατασκευαστικές αποδείξεις Σύνθετες αποδείξεις Αποδείξεις µε περιπτώσεις 3/7/2017 2 2 Κι άλλη απόδειξη µε περιπτώσεις Θεώρηµα: n Z ( (2 n 3 n) 24 (n 2 1) ) Απόδειξη: Αφού 2 3=6, η τιµή του n mod 6 µπορεί να µας πει κατά πόσον 2 n ή 3 n. Εάν (n mod 6) είναι ένα από τα {0,3} τότε 3 n; εάν είναι ένα από τα {0,2,4} τότε 2 n. Άρα εάν (2 n 3 n) τότε (n mod 6) είναι ένα από τα {1,5}. Περ. #1: Εάν n mod 6 = 1, τότε ( k) n=6k+1. n 2 =36k 2 +12k+1, άρα n 2 1=36k 2 +12k = 12(3k+1)k=12*2m = 24*m γιατί ο (3k+1)k είναι άρτιος *1. Άρα 24 (n 2 1). Περ. #2: Εάν n mod 6 = 5, τότε n=6k+5. n 2 1 = (n 1) (n+1) = (6k+4) (6k+6) = 12 (3k+2) (k+1). Είτε ο k+1 είτε ο 3k+2 είναι άρτιος *2. Άρα, 24 (n 2 1). *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός 3 Από τις υποθέσεις στα συµπεράσµατα... Έχουµε υποθέσεις p, θέλουµε να αποδείξουµε το συµπέρασµα q. Βρες ένα s 1 τέτοιο ώστε p s 1 Τότε o κανόνας modus ponens δίνει το s 1. Μετά, βρές s 2 τέτοιο ώστε s 1 s 2. Τότε o κανόνας modus ponens δίνει το s 2.. Και ελπίζουµε να βρούµε ένα s n τ.ω.: s n q. Το πρόβληµα µε αυτή τη άµεση απόδειξη είναι ότι µπορεί να είναι δύσκολο να «δούµε» το «µονοπάτι» που οδηγεί στην p. 4 1

Από τα συµπεράσµατα στις υποθέσεις... Παράδειγµα Συχνά είναι πιο εύκολο να «δούµε» το ίδιο ακριβώς µονοπάτι, αν ξεκινήσουµε από το συµπέρασµα q κι όχι από τις υποθέσεις ηλαδή, πρώτα βρες ένα s n τέτοιο ώστε s n q. Μετά ένα s n-1 : s n-1 s n, κ.ο.κ µέχρις ότου βρείς ένα s 1 τέτοιο ώστε p s 1. Σηµειώστε ότι εξακολουθούµε να χρησιµοποιούµε modus ponens για να διαδώσουµε την ισχύ των προτάσεων από την p στην s 1 στην στην s n στην q Βρίσκουµε το µονοπάτι προς τα πίσω, αλλά το εφαρµόζουµε προς τα εµπρός!!!! Αυτό δεν είναι το ίδιο µε την έµµεση απόδειξη!!! Θεώρηµα: a>0,b>0,a b: (a+b)/2 > (ab) 1/2. Απόδειξη: εν είναι προφανές πως από τις υποθέσεις a>0, b>0, a b οδηγούµαστε στο συµπέρασµα (a+b)/2 > (ab) 1/2. Οπότε, ας δοκιµάσουµε να ξεκινήσουµε από το συµπέρασµα, (a+b)/2 > (ab) 1/2! 5 6 Βήµατα... (a+b)/2 > (ab) 1/2 (a+b) 2 /4 > ab (a+b) 2 > 4ab a 2 +2ab+b 2 > 4ab a 2 2ab+b 2 > 0 (a b) 2 > 0 Τώρα, εφόσον a b, (a b) 0, προκύπτει ότι (a b) 2 >0, και µπορούµε να ακολουθήσουµε την σωστή σειρά των βηµάτων Απόδειξη παραδείγµατος Θεώρηµα: a>0,b>0,a b: (a+b)/2 > (ab) 1/2. Απόδειξη: a b (a b) 0 (a b) 2 >0 a 2 2ab+b 2 > 0 a 2 2ab+b 2 +4ab > 4ab a 2 +2ab+b 2 > 4ab (a+b) 2 > 4ab (a+b) 2 /4 > ab. Αφού ab>0, προκύπτει ότι (a+b)/2 > (ab) 1/2. 7 8 2

Άλλο ένα παράδειγµα Ξεκινώντας από το τέλος... Παιχνίδι µε τους εξής κανόνες: Υπάρχουν 15 πέτρες σε µία στοίβα. ύο παίκτες παίζουν εναλλάξ και καθένας τους µπορεί να πάρει 1, 2, ή 3 πέτρες από τη στοίβα. Νικητής είναι αυτός που παίρνει την τελευταία πέτρα. Θεώρηµα: Υπάρχει µία στρατηγική η οποία εξασφαλίζει στον 1 ο παίκτη την νίκη σε κάθε περίπτωση. Πως το αποδεικνύουµε; Ξεκινώντας από το τέλος του παιχνιδιού!!! Ο Π1 νικά αν είναι σειρά του Π2 και δεν υπάρχουν πέτρες Ο Π1 µπορεί να το επιτύχει αυτό αν του µείνουν 1 ή 2 ή 3 πέτρες... Αυτό θα συµβεί αν στον Π2 µείνουν 4 πέτρες... Ο Π1 µπορεί να το επιτύχει αυτό αν του µείνουν 5 ή 6 ή 7 πέτρες... Αυτό θα συµβεί αν στον Π2 µείνουν 8 πέτρες... Κλπ! Παίκτης 1 Παίκτης 2 0 1, 2, 3 4 5, 6, 7 8 9, 10, 11 12 13, 14, 15 9 10 ιατυπώνοντας την απόδειξη από την αρχή... Θεώρηµα: Υπάρχει µία στρατηγική η οποία εξασφαλίζει στον 1 ο παίκτη την νίκη σε κάθε περίπτωση. Απόδειξη. Ο Π1 παίρνει 3 πέτρες, αφήνοντας 12. Αφού παίξει ο Π2, θα περισσέψουν 11, 10, ή 9 πέτρες. Σε κάθε περίπτωση, ο Π1 µπορεί να µειώσει τον αριθµό από πέτρες σε 8. Τότε ο Π2 θα µειώσει τον αριθµό από πέτρες σε 7, 6, ή 5. Σε κάθε περίπτωση, ο Π1 µπορεί να µειώσει τον αριθµό από πέτρες σε 4. Τότε, ο Π2 πρέπει να τις µειώσει σε 3 ή 2, ή 1. Ο Π1 παίρνει τις τελευταίες πέτρες και κερδίζει!!! Τέλος, κάποιες κοινές απατηλές αποδείξεις Μία απατηλή απόδειξη είναι ένας µηχανισµός εξαγωγής συµπερασµάτων ο οποίος δεν ευσταθεί λογικά. Απατηλότητα αποδοχής του συµπεράσµατος: p q αληθές, και q αληθές, άρα p αληθές. (Όχι, γιατί F T αληθές.) Απατηλότητα άρνησης της υπόθεσης: p q αληθές, και p ψευδές, άρα q ψευδές. (Όχι, πάλι επειδή F T αληθές.) 11 3/7/2017 3

3/7/2017 Κυκλικός συλλογισµός Η απατηλότητα (εµµέσως ή αµέσως) του να υποθέτουµε την ισχύ του συµπεράσµατος, στην πορεία προς την απόδειξή του! Παράδειγµα: (για ακεραίους n) εάν ο n 2 είναι άρτιος τότε ο n είναι άρτιος. Επιχειρούµενη απόδειξη: Ο n 2 είναι άρτιος. Τότε ο n 2 =2k για κάποιο ακέραιο k. ιαιρώντας και τα δύο µέλη µε n µας δίνει n = (2k)/n = 2(k/n). Οπότε υπάρχει ένας ακέραιος j (ο k/n) τέτοιος ώστε n=2j. Αρα ο n είναι άρτιος. Σε ποιό σηµείο χρησιµοποιείται κυκλικός συλλογισµός; Πως αποδεικνύεται ότι ο j= k/n = n/2 είναι ακέραιος, χωρίς πρώτα να υποθέσουµε ότι ο n είναι άρτιος;;;; 3/7/2017 Ας µην ξεχνάµε Έχουµε επίσης δει µία ορθή απόδειξη για την ίδια πρόταση: µία καλή υπενθύµιση για το ότι εάν µία απόδειξη είναι εσφαλµένη, αυτό δεν σηµαίνει ότι η πρόταση δεν ισχύει!!! Όρια των αποδείξεων Μερικές πολύ απλές προτάσεις της θεωρίας αριθµών δεν έχουν αποδειχτεί ακόµα! Π.χ.. Εικασία του Goldbach: Έστω Α(x) = x άρτιος, P(x) = x πρώτος x( [x>2 A(x)] p q P(p) P(q) p+q = x). Κάθε άρτιος αριθµός µεγαλύτερος του 2 είναι το άθροισµα δύο πρώτων. Έχουν υπάρξει εικασίες που αργότερα αποδείχθηκε πως δεν ευσταθούν! Ο Euler έκανε την εικασία ότι εάν n>2, το άθροισµα n 1 n οστών δυνάµεων θετικών ακεραίων δεν είναι n οστή δύναµη κάποιου ακεραίου. Παρέµεινε «αληθής» για όλες τις περιπτώσεις που δοκιµάστηκαν για 200 χρόνια, χωρίς όµως να µπορεί να βρεθεί απόδειξη. Το 1966, διαπιστώθηκε ότι 27 5 + 84 5 + 110 5 + 133 5 = 144 5 15 16 4

Εισαγωγή στη θεωρία συνόλων Θεωρία Συνόλων Ένα σύνολο είναι µία δοµή που αναπαριστά µία συλλογή διαφορετικών αντικειµένων (ενδεχοµένως κενή) τα οποία δεν έχουν διάταξη. Η θεωρία συνόλων ασχολείται µε πράξεις, σχέσεις και προτάσεις σχετικά µε τα σύνολα. Τα σύνολα είναι πανταχού παρόντα στα υπολογιστικά συστήµατα. Όλα τα µαθηµατικά µπορούν να οριστούν µε κάποια µορφή της θεωρίας συνόλων (χρησιµοποιώντας κατηγορηµατικό λογισµό). 3/7/2017 17 3/7/2017 18 18 Εισαγωγή στη θεωρία συνόλων Σχεδόν οτιδήποτε µπορείτε να κάνετε µε διαφορετικά αντικείµενα, µπορείτε να το κάνετε και µε σύνολα αντικειµένων. Π.χ. (µιλώντας άτυπα), µπορείτε Να αναφέρεστε σε αυτά, να τα συγκρίνετε, να τα συνδυάζετε, Επίσης, µπορείτε να κάνετε µε σύνολα, πράγµατα που δεν µπορείτε, πιθανά, να κάνετε µε συγκεκριµένα αντικείµενα: Π.χ., µπορείτε: Να ελέγξετε αν ένα σύνολο περιέχεται σε ένα άλλο Να καθορίσετε πόσα στοιχεία έχει Να τα χρησιµοποιήσετε σαν το πεδίο ορισµού µεταβλητών στον κατηγορηµατικό λογισµό Βασικοί συµβολισµοί για τα σύνολα Για τα σύνολα, θα χρησιµοποιούµε τις µεταβλητές S, T, U, Μπορούµε να συµβολίζουµε ένα σύνολο S µε το να απαριθµούµε όλα τα στοιχεία του σε αγκύλες: Το σύνολο S = {a, b, c} περιέχει τρία στοιχεία, τα οποία συµβολίζονται µε τα a, b, c. Επίσης, µπορούµε να ορίσουµε ένα σύνολο µε βάση µία ιδιότητα P που έχουν τα στοιχεία του το {x P(x)} είναι το σύνολο όλων των x που έχουν την ιδιότητα P. 3/7/2017 19 19 3/7/2017 20 20 5

Βασικές ιδιότητες των συνόλων Τα σύνολα είναι από τη φύση τους µη διατεταγµένα: Ανεξάρτητα από το τι είναι τα στοιχεία a, b, και c, {a, b, c} = {a, c, b} = {b, a, c} = Όλα τα στοιχεία είναι διαφορετικά µεταξύ τους. Οι πολλαπλές εµφανίσεις ενός στοιχείου δεν κάνουν καµία διαφορά! Εάν a=b, τότε {a, b, c} = {a, c} = {b, c} = {a, a, b, a, b, c, c, c, c}. Πόσα στοιχεία περιλαµβάνει; 2 στοιχεία (το πολύ)! Πολυσύνολα Υπάρχει ένα διαφορετικό µαθηµατικό κατασκεύασµα το οποίο ονοµάζεται πολυσύνολο, για το οποίο η προηγούµενη υπόθεση δεν ισχύει. Εάν a=b, τότε [c, a] = [c, b], αλλά [a, b, c] [a, c] [a,a,a,c] Συµβολισµός: Εάν B είναι πολυσύνολο, τότε count B (e)=πλήθος εµφανίσεων του e στο B Εποµένως, count [1,2,3,3,1,3,3] (3)=4 3/7/2017 21 21 3/7/2017 22 22 Ορισµός της ισότητας συνόλων ύο σύνολα είναι ίσα αν και µόνο αν περιέχουν ακριβώς τα ίδια στοιχεία. εν έχει σηµασία πως το σύνολο έχει οριστεί: Για παράδειγµα: {1, 2, 3, 4} = {x x ακέραιος όπου x>0 και x<5 } = {x x θετικός ακέραιος του οποίου το τετράγωνο είναι µεγαλύτερο του 0 και µικρότερο του 25} Άπειρα σύνολα Τα σύνολα µπορεί να είναι άπειρα. Σύµβολα και µερικά άπειρα σύνολα ειδικού ενδιαφέροντος: N = {1, 2, } Οι φυσικοί (Natural). Z = {, -2, -1, 0, 1, 2, } Οι ακέραιοι (Γερµανικά: Zahl=αριθµός). R = Οι πραγµατικοί (Real) Q = Οι ρητοί (Quotient) Οι συµβολισµοί (N, Z, R, Q) χρησιµοποιούνται επίσης για τα παραπάνω ειδικά σύνολα. Τα άπειρα σύνολα έχουν διαφορετικά µεγέθη (!!!) Περισσότερα γι αυτό αργότερα... 3/7/2017 23 23 3/7/2017 24 24 6

ιαγράµµατα Venn «ανήκει» John Venn 1834-1923 x S ( το στοιχείο x ανήκει στο σύνολο S ), είναι η πρόταση που λέει ότι το αντικείµενο x είναι ένα στοιχείο/µέλος του συνόλου S. π.χ. 3 N, α {x x γράµµα του αλφάβητου} : Από το ελληνικό «στίν» Συµβολισµός: x S : ορ. (x S) Πως θα ορίζαµε την ισότητα συνόλων µε βάση τον κατηγορηµατικό λογισµό; 3/7/2017 25 25 3/7/2017 26 26 Ισότητα συνόλων Η ισότητα συνόλων ορίζεται µε βάση το : ύο σύνολα είναι ίσα αν και µόνο αν έχουν τα ίδια στοιχεία. S=T : ορ. x (x S x T) Ένα σύνολο µπορεί να είναι κενό Υποθέστε ότι καλούµε ένα σύνολο S κενό αν και µόνο αν δεν περιέχει κανένα στοιχείο: x(x S). Καλούµαστε να αποδείξουµε ότι: S,T((κενό(S) κενό(t) S=T) Ποιό είναι το νόηµα της παραπάνω πρότασης; 3/7/2017 27 27 3/7/2017 28 28 7

Ένα σύνολο µπορεί να είναι κενό Θέλουµε να αποδείξουµε ότι υπάρχει το πολύ ένα κενό σύνολο. Πως αυτό µπορούµε να το αποδείξουµε τυπικά; 3/7/2017 29 29 Υπάρχει µόνο ένα κενό σύνολο Θέλουµε να αποδείξουµε ότι: S,T((κενό(S) κενό(t) S=T) Ας υποθέσουµε ότι υπάρχουν δύο σύνολα S και T διαφορετικά µεταξύ τους, έτσι ώστε και τα δύο να είναι κενά. Εποµένως, x(x S) x(x T) Εφόσον S T, θα ισχύει πως x(x S (x T)) x(x T (x S)) Η 1η πρόταση δεν µπορεί να ισχύει γιατί x(x S). Η 2η πρόταση δεν µπορεί να ισχύει γιατί x(x T) Αντίφαση. Εποµένως υπάρχει το πολύ ένα κενό σύνολο. και επειδή υπάρχει και τουλάχιστον ένα, το κενό σύνολο είναι ένα και µοναδικό. 3/7/2017 30 30 Το Κενό Σύνολο Είδαµε ότι υπάρχει ακριβώς ένα κενό σύνολο, εποµένως θα του δώσουµε ένα ειδικό όνοµα: ( το κενό σύνολο ) είναι το µοναδικό σύνολο που δεν περιέχει κανένα στοιχείο. = {} S T ( Το S είναι υποσύνολο του T ) σηµαίνει ότι κάθε στοιχείο του S είναι επίσης και στοιχείο του T. Πως µπορούµε να ορίσουµε τη σχέση υποσυνόλου µε βάση τον κατηγορηµατικό λογισµό; 3/7/2017 31 31 3/7/2017 32 32 8

S T ( Το S είναι υποσύνολο του T ) σηµαίνει ότι κάθε στοιχείο του S είναι επίσης και στοιχείο του T. S T : ορ. x (x S x T) S S ; S ; 3/7/2017 33 33 3/7/2017 34 34 S S ; ΝΑΙ S ; S S ; ΝΑΙ S ; ΝΑΙ 3/7/2017 35 35 3/7/2017 36 36 9

S S ; S ; S S ;ΟΧΙ S ; 3/7/2017 37 37 3/7/2017 38 38 S S ;ΟΧΙ S ; ΌΧΙ πάντα! Π.χ., {, α, β} αλλά {α, β} 3/7/2017 39 39 10