Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Σχετικά έγγραφα
Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

A, και εξετάστε αν είναι διαγωνίσιμη.

a b b < a > < b > < a >.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

Ε Μέχρι 18 Μαΐου 2015.

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των,

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

Γραμμική Άλγεβρα II Εαρινό εξάμηνο

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

B είναι ισοδύναμοι αν και μόνο αν υπάρχουν διατεταγμένες βάσεις ˆv του. , b, έχει λύση αν και μόνο αν rank( A) rank( A b)

Θεωρια ακτυλιων. Ασκησεις

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.

Θεωρια ακτυλιων. Ασκησεις

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

= s 2m 1 + s 1 m 2 s 1 s 2

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Ε Μέχρι 31 Μαρτίου 2015.

x y x z για κάθε x, y, . Ένας δακτύλιος R καλείται μεταθετικός αν

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.

Αλγεβρικές Δομές Ι. 1 Ομάδα I

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

a = a a Z n. a = a mod n.

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

Εφαρμοσμένα Μαθηματικά ΙΙ

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

t t Αν κάποιος από αυτούς είναι αντιστρέψιμος, υπολογίστε τον αντίστροφό του. 2. Υπολογίστε την ορίζουσα του Δείξτε τα εξής.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Πρώτα και Μεγιστοτικά Ιδεώδη

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.

Το Θεώρημα CHEVALLEY-WARNING

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 1

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Γραμμική Άλγεβρα Ι Εξέταση Φεβρουαρίου. Επώνυμο. Όνομα. ΑΜ (13 ψηφία) Σύνολο

a 11 a 1n b 1 a m1 a mn b n

α) () z i z iz i Αν z i τότε i( yi) i + + y y y ( y) i i y + 4y + 4, y y 4. Άρα z i. 4 β) ( z) z i z z i z ( i) z, οπότε ( z ) i z z Άρα z z γ) Αν z τ

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Γραμμική Άλγεβρα Ι,

n = dim N (A) + dim R(A). dim V = dim ker L + dim im L.

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Εφαρμοσμένα Μαθηματικά ΙΙ

< a 42 >=< a 54 > < a 28 >=< a 36 >

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7

2 ο Διαγώνισμα Ύλη: Συναρτήσεις

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

Transcript:

11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το M ( x, y) x 2y 0mod5 είναι ελεύθερο -υποπρότυπο του και βρείτε μια βάση του Αληθεύει ότι κάθε -υποπρότυπο του M είναι ελεύθερο; 2 Έστω περιοχή και M ελεύθερο -πρότυπο a Δείξτε ότι για κάθε m M, m 0, ισχύει Ann( m) (0) b Αληθεύει ότι το -πρότυπο c Αληθεύει ότι το -πρότυπο N είναι ελεύθερο, όπου a (6,15) ; N είναι ελεύθερο, όπου a (1,3) ; 3 Δείξτε ότι τα a b, c d, όπου a, b, c, d, αποτελούν βάση του -προτύπου [ ] αν και μόνο αν a b det 1 c d 4 Βρείτε τα ιδεώδη I του [ ] τέτοια ώστε το -πρότυπο [ ] I είναι ελεύθερο 5 Έστω M, N -πρότυπα Δείξτε τα εξής a Αν τα M, N είναι ελεύθερα, τότε το M N είναι ελεύθερο b Αν N M και τα N, M N είναι ελεύθερα, τότε το M είναι ελεύθερο 6 Δείξτε τα εξής a Αν κάθε ιδεώδες του είναι ελεύθερο -πρότυπο, τότε ο είναι περιοχή κυρίων ιδεωδών b Αν κάθε κυκλικό -πρότυπο είναι ελεύθερο, τότε ο είναι σώμα 7 Έστω F ελεύθερο -πρότυπο και B { b1,, b } F a Δείξτε ότι αν το B παράγει το F, τότε B ranf b (δύσκολη άσκηση, προαιρετική) *Αν το B είναι γραμμικά ανεξάρτητο, τότε B ranf 8 Έστω περιοχή κυρίων ιδεωδών, F ελεύθερο -πρότυπο και B { b1,, b } F, όπου ranf a Δείξτε ότι αν το B παράγει το F, τότε το B είναι βάση του F 1 b Αληθεύει η ακόλουθη πρόταση; Αν το B είναι γραμμικά ανεξάρτητο, τότε το B είναι βάση του F c Δείξτε ότι αν f : F F είναι επιμορφισμός προτύπων, τότε είναι ισομορφισμός 9 Εξετάστε ποιες από τις ακόλουθες προτάσεις αληθεύουν Δικαιολογήστε τις απαντήσεις σας a Έστω F ελεύθερο -πρότυπο Αν f : F F είναι μονομορφισμός προτύπων, τότε είναι ισομορφισμός b Έστω F ελεύθερο -πρότυπο, M F και N F με F M N Τότε το M είναι ελεύθερο -πρότυπο 1 Τα αποτελέσματα a και c ισχύουν με την ασθενέστερη υπόθεση ότι ο είναι μεταθετικός δακτύλιος

c Υπάρχει επιμορφισμός -προτύπων I F μηδενικό ελεύθερο -πρότυπο, όπου I μη μηδενικό ιδεώδες του και F μη d Υπάρχει πεπερασμένο [ ] -πρότυπο M με M 2015 και AnnM (2 3 ) 10 Έστω N M ελεύθερα -πρότυπα με M N και rann ranm Δείξτε ότι το M N δεν είναι ελεύθερο 11 Αν υπάρχει μη μηδενικό ελεύθερο -πρότυπο τέτοιο ώστε κάθε πηλίκο του είναι ελεύθερο -πρότυπο, τότε το είναι σώμα 12 Έστω περιοχή κυρίων ιδεωδών Δείξτε τα εξής a Κάθε υποπρότυπο πεπερασμένα παραγόμενου -προτύπου είναι πεπερασμένα παραγόμενο b Αν F είναι ελεύθερο -πρότυπο και M, N F, τότε ran( M N) ranm rann ran( M N) 13 Θεωρούμε το σώμα των ρητών συναρτήσεων πάνω από το f ( x) ( x) { f ( x), g( x) [ x], g( x) 0} g( x) με τις συνήθεις πράξεις f 1( x ) f 2( x ) f 1( x ) g 2( x ) f x g x, f x f x f x f x g ( x) g ( x) g ( x) g ( x) g ( x) g ( x) g ( x) g ( x) 1 2 1 2 1 2 1 2 Το ( x) είναι [ x] -πρότυπο με εξωτερικό πολλαπλασιασμό που ορίζεται από f ( x) f ( x) [ x] ( x) ( x), ( r( x), ) r( x) g( x) g( x) Δείξτε ότι ( x) δεν είναι ελεύθερο [ x] -πρότυπο 14 Έστω V μη μηδενικός -διανυσματικός χώρος και :V V γραμμική απεικόνιση Είδαμε στην τάξη ότι το V είναι [ x] -πρότυπο με εξωτερικό πολλαπλασιασμό που ορίζεται από f ( x) v f ( )( v), όπου f ( x) [ x] και v V Δείξτε ότι το V δεν είναι ελεύθερο [ x] -πρότυπο 15 Αν M, N είναι -πρότυπα, με Hom ( M, N ) συμβολίζουμε το σύνολο των ομομορφισμών - προτύπων M N Το Hom ( M, N ) είναι πρότυπο με πρόσθεση που ορίζεται από ( f g)( m) f ( m) g( m), όπου f, g Hom ( M, N), m M, και εξωτερικό πολλαπλασιασμό που m n ορίζεται από ( rf )( m) rf ( m), όπου f Hom ( M, N), r, m M Δείξτε ότι το Hom (, ), όπου m, n 0, είναι ελεύθερο -πρότυπο με τάξη mn 12

13 Υποδείξεις Ασκήσεις 3 1 Κάθε υποπρότυπο του M είναι ελεύθερο από το Θεώρημα 335 2b To N δεν είναι ελεύθερο σύμφωνα με το προηγούμενο ερώτημα καθώς το στοιχείο b (2,5) N είναι μη μηδενικό (γιατί;) και έχει μη μηδενικό μηδενιστή αφού 3b 0 N 2c Το N εδώ είναι ελεύθερο Πράγματι, θεωρώντας τον ομομορφισμό -προτύπων f :, f ( x, y) 3x y, παρατηρούμε ότι er f και επομένως N Im f σύμφωνα με το 1 ο θεώρημα ισομορφισμών προτύπων Είναι σαφές ότι Im f, οπότε N Το σύνολο {1} είναι βάση του και επειδή f (0, 1) 1, έπεται ότι το σύνολο {(0, 1) } είναι βάση του N (καθώς η εικόνα βάσης κάτω από ισομορφισμό προτύπων είναι βάση) 2 ος τρόπος για το N Παρατηρούμε ότι δύο στοιχεία ( x, y), ( x, y) του N είναι ίσα αν και μόνο αν ( x, y) ( x, y) y y 3( x x) y 3x y 3x Άρα ( x, y) (0, y 3 x) Αυτό σημαίνει ότι το στοιχείο (0,1) παράγει το N ως -πρότυπο Είναι σαφές ότι το στοιχείο αυτό είναι γραμμικά ανεξάρτητο πάνω από το και άρα το σύνολο {(0,1) } είναι βάση του N Σχόλιο: Στο παρακάτω σχήμα παρίσταται το N, a (1,3) Τα σημεία που έχουν ακέραιες συντεταγμένες και ανήκουν στην ίδια ευθεία με εξίσωση y 3 x,, έχουν ίσες εικόνες στο N Για παράδειγμα, τα σημεία (0,3), ( 1, 0), ( 2, 3) ανήκουν στην ευθεία y 3x 3και άρα στο N έχουμε (0,3) ( 1,0) ( 2, 3) Από το σύνολο των σημείων που έχουν ακέραιες συντεταγμένες και ανήκουν στην ίδια ευθεία y 3 x, επιλέγουμε ένα, πχ την τομή με τον άξονα των y (τα ανοιχτά σημεία στην εικόνα) Αυτά δίνουν μια εικόνα του N, a (1,3)

14 (0,3) (-1,0) (-2,-3) 3 Για τη μία κατεύθυνση, έστω ότι το 2 { a b, c d} είναι (διατεταγμένη) βάση του -προτύπου [ ] Έχουμε επίσης τη (διατεταγμένη) βάση 1 {1, } του [ ] Ο ομομορφισμός -προτύπων f : [ ] [ ] που ορίζεται από f (1) a b, f ( ) c d είναι ισομορφισμός Επομένως ο πίνακας a c A f : 1, 2 M 2( ) b d είναι αντιστρέψιμο στοιχείο του δακτυλίου M ( ) 2 (δικαιολογήστε το) και συνεπώς έχει ορίζουσα 1 4 Αν z I, τότε ο ακέραιος m zz ανήκει στο I και ma 0 [ ] I για κάθε a [ ] I m Ann ( [ ] I) Άρα αν I (0), το -πρότυπο [ ] I δεν είναι ελεύθερο Δηλαδή 5b Εφαρμόστε το Λήμμα 316 στο φυσικό επιμορφισμό M M N και χρησιμοποιήστε το ερώτημα a 6b Θεωρείστε το -πρότυπο ( a ), όπου a, a 0, για να δείξετε ότι το a είναι αντιστρέψιμο 7a Ένας τρόπος είναι να τροποποιήστε την πρώτη απόδειξη που είδαμε στην τάξη ότι για μη τετριμμένους μεταθετικούς δακτυλίους η τάξη ελεύθερου προτύπου είναι καλά ορισμένη Ένας άλλος τρόπος έπεται άμεσα από τη δεύτερη απόδειξη που είδαμε στην τάξη 8a Έστω { e1,, e } μια βάση του F και f : F F ο επιμομορφισμός -προτύπων που ορίζεται από f ( e ) b Εφαρμόστε το Λήμμα 316 για να συμπεράνετε ότι er f {0} 8c Πάλι το Λήμμα 316

15 9 Όλες οι προτάσεις είναι λανθασμένες Ένα αντιπαράδειγμα του a είναι ο μονομορφισμός -προτύπων f :, f ( m) 2 m Για το b ένα αντιπαράδειγμα είναι F M N 6, [2], [3] Για ο d παρατηρούμε ότι το M είναι 13 -διανυσματικός χώρος και το 2015 δεν είναι δύναμη του 13 10 Αν ήταν ελεύθερο, τότε από το Λήμμα 316 παίρνουμε ranm rann ran M N ran M N 0 M N, άτοπο 11 Έστω F ελεύθερο -πρότυπο με την ιδιότητα της εκφώνησης και έστω a, a 0 Θεωρώντας το -πρότυπο F af, δείξτε ότι F af Αν { e1,, e n } είναι βάση του F, τότε από την τελευταία σχέση έπεται ότι υπάρχουν a με e 1 ( aa 1 ) e 1 ( aan ) en Καθώς τα e είναι γραμμικά ανεξάρτητα παίρνουμε aa1 1, δηλαδή το a είναι αντιστρέψιμο 12 a Έστω M πεπερασμένα παραγόμενο -πρότυπο και N M Ξέρουμε ότι υπάρχει επιμορφισμός προτύπων f : M για κάποιο θετικό ακέραιο Το του και άρα ελεύθερο, αφού παραγόμενο Επειδή N f f N ελεύθερο και ΠΚΙ Ειδικά, το 1 f ( N) { a f N} είναι υποπρότυπο f 1 ( N) είναι πεπερασμένα 1 ( ( )), το N είναι επίσης πεπερασμένα παραγόμενο b Αρχικά παρατηρούμε ότι τα πρότυπα M, N, M N, M N είναι ελεύθερα ως υποπρότυπα ελεύθερου -προτύπου, όπου ΠΚΙ Η απεικόνιση f : M N M N, ( a, b) a b, είναι επιμορφισμός - προτύπων και έχουμε er f {( a, b) M N a b 0} {( a, a) M N a M N} Εύκολα αποδεικνύεται ότι er f M N Τώρα επειδή το M N είναι ελεύθερο, από τον επιμορφισμό f : M N M N, έπεται ότι M N er f ( M N) ( M N) ( M N) Λαμβάνοντας τάξεις προκύπτει το ζητούμενο 13 Πρώτα παρατηρήστε ότι αν ήταν ελεύθερο, θα είχε βάση αποτελούμενη από ένα στοιχείο Επιλέγοντας ρητή συνάρτηση με κατάλληλο παρονομαστή, δείξτε ότι αυτό είναι αδύνατο 14 Δείξτε ότι κάθε στοιχείο του V έχει μη μηδενικό μηδενιστή Ένας τρόπος είναι με το Θεώρημα των Cayley-Hamlton τη γραμμικής άλγεβρας m n 15 Ένας τρόπος είναι να δείξουμε ότι τα -πρότυπα Hom (, ) και M ( ) είναι ισόμορφα nm