ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

Σχετικά έγγραφα
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ

ΒΑΣΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ (ΣΥΝΕΧΕΙΑ)

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

P(200 X 232) = =

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

Τυχαίες Μεταβλητές (τ.µ.)

Τυχαία μεταβλητή (τ.μ.)

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

Στατιστική Ι-Θεωρητικές Κατανομές Ι

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

Θεωρία Πιθανοτήτων & Στατιστική

P (M = 9) = e 9! =

Θεωρητικές Κατανομές Πιθανότητας

0, x < 0 1+x 8, 0 x < 1 1 2, 1 x < x 8, 2 x < 4

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΕΣ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Βιομαθηματικά BIO-156

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης

ιωνυµική Κατανοµή(Binomial)

Τυχαίες Μεταβλητές Γεώργιος Γαλάνης Κωνσταντίνα Παναγιωτίδου

Θεωρία Πιθανοτήτων & Στατιστική

0. Σύντοµη επισκόπηση θεωρίας πιθανοτήτων

II. Τυχαίες Μεταβλητές

3 ο Μέρος Χαρακτηριστικά τυχαίων μεταβλητών

Πανεπιστήμιο Πελοποννήσου

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ


ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ

ΕΡΓΑΣΤΗΡΙΟ ΠΙΘΑΝΟΤΗΤΩΝ

c(2x + y)dxdy = 1 c 10x )dx = 1 210c = 1 c = x + y 1 (2xy + y2 2x + y dx == yx = 1 (32 + 4y) (2x + y)dxdy = 23 28

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

ρ. Ευστρατία Μούρτου

ΣΥΝΑΡΤΗΣΗ ΚΑΤΑΝΟΜΗΣ - ΜΕΣΗ ΤΙΜΗ

, x > a F X (x) = x 3 0, αλλιώς.

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ - ΑΣΚΗΣΕΙΣ. αλλού

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις

Θεωρία Πιθανοτήτων & Στατιστική

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν την πρώτη εργασία της ενότητας ΔΙΠ50

f(x) dx. f(x)dx = 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 7: Ολοκλήρωµα Riemann Α Οµάδα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνεχείς τυχαίες μεταβλητές Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του έβδομου φυλλαδίου ασκήσεων. f X (t) dt για κάθε x. F Y (y) = P (Y y) = P X y b ) a.

10ο Φροντιστηριο ΗΥ217 - Επαναληπτικό

p B p I = = = 5

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο ιδάσκων : Π.

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t

Κατανομές Πιθανοτήτων. Γεωργία Φουτσιτζή, Καθηγήτρια, Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων Ακαδ.

ΚΕΦΑΛΑΙΟ 4ο ΔΕΙΓΜΑΤΟΛΗΨΙΑ ΑΠΟ ΣΥΝΕΧΕΙΣ ΚΑΙ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΣΤΑΤΙΣΤΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΤΗΛΕΦΩΝΙΚΗΣ ΚΙΝΗΣΗΣ

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

Στατιστική. Ενότητα 3 η : Χαρακτηριστικά Τυχαίων Μεταβλητών Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

Στατιστική. 4 ο Μάθημα: Θεωρητικές και Εμπειρικές - Δειγματοληπτικές Κατανομές. Γεώργιος Μενεξές Τμήμα Γεωπονίας

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Ι ΜΕΡΟΣ Α (Σ. ΧΑΤΖΗΣΠΥΡΟΣ) . Δείξτε ότι η στατιστική συνάρτηση T = X( n)

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

(365)(364)(363)...(365 n + 1) (365) k

P( X < 8) = P( 8 < X < 8) = Φ(0.6) Φ( 1) = Φ(0.6) (1 Φ(1)) = Φ(0.6)+Φ(1) 1

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

(X1 X 2 ) 2}. ( ) f 1 (x i ; θ) = θ x i. (1 θ) n x i. x i log. i=1. i=1 t2 i

Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών Εθνικό Μετσόβιο Πολυτεχνείο. Στοχαστικές Ανελίξεις. Ασκήσεις Κεφαλαίου 2. Κοκολάκης Γεώργιος

3. Κατανομές πιθανότητας

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΤΜΗΜΑΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ( ) ΟΜΑΔΑ Α ( 40% )

f(x) dx. f(x)dx = 0. f(x) dx = 1 < 1 = f(x) dx. Θα είχαµε f(c) = 0, ενώ η f δεν µηδενίζεται πουθενά στο [0, 2].

f(y) dy = b a dy = b a x f(x) dx = b a dx = x 2 = b2 a 2 2(b a) b a dx = = (a2 + ab + b 2 )(b a) 3(b a)

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Επισκόπηση Αναλυτικών Τεχνικών Θεωρίας Πιθανοτήτων για Εφαρμογή σε Ουρές Αναμονής M/G/1

ΠΟΛΥΔΙΑΣΤΑΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

Τυχαίες Μεταβλητές. Ορισμός

Στατιστική ΙΙ Ενότητα 2: ειγµατοληψία

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 17 Απριλίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

P(Ο Χρήστος κερδίζει) = 1 P(Ο Χρήστος χάνει) = 1 P(X > Y ) = 1 2. P(Ο Χρήστος νικά σε 7 από τους 10 αγώνες) = 7

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας

ΤΥΧΑΙΑ ΙΑΝΥΣΜΑΤΑ. Στατιστική Συµπερασµατολογία Ι, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

P (M = n T = t)µe µt dt. λ+µ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης

Θεωρία Πιθανοτήτων & Στατιστική

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

Transcript:

Χαράλαµπος Α. Χαραλαµπίδης 3 Νοεµβρίου 29

ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Ας ϑεωρήσουµε µια συνεχή τυχαία µεταβλητή X ορισµένη στον Ω µε πεδίο τιµών το διάστηµα [α, ϐ], όπου α < ϐ πραγµατικοί αριθµοί. Η οµοιόµορφη εκχώρηση πιθανότητας εκφράζεται από τη σχέση P(x 1 X x 2 ) = c (x 2 x 1 ), α x 1 x 2 ϐ, (1) όπου c προσδιοριστέα σταθερά. Θέτοντας x 1 = α, x 2 = ϐ και χρησιµοποιώντας τη σχέση P(α X ϐ) = 1, συµπεραίνουµε ότι c = 1 ϐ α. (2) Σηµειώνουµε ότι στην περίπτωση αυτή, στην οποία η τυχαία µεταβλητή X είναι συνεχής, οπότε P(X = x) = για κάθε x R, η εκχώρηση πιθανότητας δεν γίνεται σε σηµεία αλλά σε διαστήµατα και είναι ανάλογη του µήκους των. Τούτο είναι ισοδύναµο µε το ότι διαστήµατα του ιδίου µήκους είναι ισοπίθανα.

ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Η συνάρτηση κατανοµής της τυχαίας µεταβλητής X, όπως προκύπτει από τις (1) και (2), δίνεται από την F(x) =, < x < α, x α ϐ α, α x < ϐ, 1, ϐ x <. Η συνάρτηση αυτή είναι συνεχής και έτσι παραγωγίζοντάς την συνάγουµε την συνάρτηση πυκνότητας της τυχαίας µεταβλητής X: f(x) = 1 ϐ α, α x ϐ, x < α ή x > ϐ. (3) (4)

ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Ορισµός Εστω X µια συνεχής τυχαία µεταβλητή µε πυκνότητα την (4). Η κατανοµή της τ.µ. X συµβολίζεται µε U(α, ϐ) και καλείται οµοιόµορφη ή ορθογώνια στο διάστηµα [α, ϐ]. Τα σηµεία α και ϐ είναι παράµετροι της κατανοµής. Θεώρηµα Εστω ότι η τυχαία µεταβλητή X έχει την οµοιόµορφη κατανοµή U(α, ϐ). Τότε η µέση τιµή και η διασπορά αυτής δίνονται από τις µ = E(X) = α + ϐ, σ 2 = V(X) = 2 (ϐ α)2. (5) 12

ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Απόδειξη. Η µέση τιµή της τ.µ. X, σύµφωνα µε τον ορισµό, είναι µ = E(X) = 1 ϐ α ϐ α [ x 2 xdx = 2(ϐ α) και επειδή (ϐ 2 α 2 ) = (ϐ α)(ϐ + α), ] ϐ α = ϐ2 α 2 2(ϐ α) µ = E(X) = α + ϐ. 2

ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Επίσης είναι E(X 2 ) = 1 ϐ α ϐ α [ x 2 x 3 dx = 3(ϐ α) και επειδή ϐ 3 α 3 = (ϐ α)(ϐ 2 + αϐ + α 2 ), Η διασπορά της τ.µ. X είναι τότε E(X 2 ) = α2 + αϐ + ϐ 2. 3 ] ϐ α = ϐ3 α 3 3(ϐ α) σ 2 = V(X) = E(X 2 ) [E(X)] 2 = α2 + αϐ + ϐ 2 α2 + 2αϐ + ϐ 2 3 = α2 2αϐ + ϐ 2 12 4 (ϐ α)2 =. 12

ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Παράδειγµα Εστω ότι ο συρµός ϕθάνει σε συγκεκριµένο σταθµό του µετρό κάθε 1 λεπτά, αρχίζοντας τα δροµολόγιά του στις 5 π.µ. Αν ένας επιβάτης ϕθάνει στο σταθµό σε χρόνο ο οποίος κατανέµεται οµοιόµορφα στο διάστηµα 7:2 ως 7:4, να υπολογισθούν οι πιθανότητες να περιµένει το συρµό (α) το πολύ 4 λεπτά και (ϐ) τουλάχιστον 7 λεπτά. Εστω X ο χρόνος άφιξης του επιβάτη στο σταθµό, µετρούµενος σε λεπτά µε αρχή τη χρονική στιγµή 7:2. Τότε η τ.µ. X έχει την οµοιόµορφη κατανοµή στο διάστηµα [, 2] και έτσι F(x) =, x < x 2, x < 2 1, x 2.

ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ (α) Το ενδεχόµενο A ο επιβάτης να περιµένει το πολύ 4 λεπτά είναι ισοδύναµο µε το ενδεχόµενο να ϕθάσει στο σταθµό στο διάστηµα 7:26 ως 7:3 ή στο διάστηµα 7:36 ως 7:4. Εποµένως P(A)=P(6 < X 1)+P(16 < X 2)={F(1) F(6)}+{F(2) F(16)}= 2 5. (ϐ) Το ενδεχόµενο B ο επιβάτης να περιµένει τουλάχιστο 7 λεπτά είναι ισοδύναµο µε το ενδεχόµενο να ϕθάσει στο σταθµό στο διάστηµα 7:2 ως 7:23 ή 7:3 ως 7:33. Εποµένως P(B)=P( < X 3)+P(1 < X 13)={F(3) F()}+{F(13) F(1)}= 3 1.

ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Ορισµός Εστω X µια συνεχής τυχαία µεταβλητή µε συνάρτηση πυκνότητας f(x) = { θe θx, x <, < x <, (6) όπου < θ <. Η κατανοµή της τ.µ. X καλείται εκθετική µε παράµ. θ. Σηµειώνουµε ότι η συνάρτηση (6) είναι µη αρνητική και f(x)dx = θe θx dx = [ e θx] = 1, όπως απαιτείται από τον ορισµό της συνάρτησης πυκνότητας. Η συνάρτηση κατανοµής της τ.µ. X είναι η F(x) = {, < x < 1 e θx, x <. (7)

ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Θεώρηµα Εστω ότι η τυχαία µεταβλητή X έχει την εκθετική κατανοµή µε συνάρτηση πυκνότητας την (6). Τότε η µέση τιµή και η διασπορά αυτής δίνονται από τις µ = E(X) = 1 θ, σ2 = V(X) = 1 θ 2. (8)

ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Απόδειξη. Η µέση τιµή της τ.µ. X, σύµφωνα µε τον ορισµό, δίνεται από την µ = E(X) = xf(x)dx = θxe θx dx = 1 ye y dy, θ όπου χρησιµοποιήθηκε ο µετασχηµατισµός y = θx. Εφαρµόζοντας την ολοκλήρωση κατά παράγοντες, το τελευταίο ολοκλήρωµα είναι ye y dy = yde y = [ ye y] + e y dy = [ e y] = 1 και έτσι µ = E(X) = 1 θ.

ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Οµοίως E(X 2 ) = x 2 f(x)dx = θx 2 e θx dx = 1 θ 2 y 2 e y dy και επειδή y 2 e y dy = y 2 de y = [ y 2 e y] + 2 ye y dy = [ y 2 e y + 2ye y + 2e y] = 2 έχουµε Εποµένως E(X 2 ) = 2 θ 2. V(X) = E(X 2 ) [E(X)] 2 = 1 θ 2.

ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Θεώρηµα Εστω ότι η τυχαία µεταβλητή X έχει την εκθετική κατανοµή µε συνάρτηση πυκνότητας την (6). Τότε P(X > x + y X > x) = P(X > y), x, y. (9) Απόδειξη. P(X > x + y X > x) = = P(X > x + y, X > x) P(X > x) 1 F(x + y) 1 F(x) = = e θ(x+y) e θx P(X > x + y) P(X > x) = e θy και επειδή P(X > y) = 1 F(y) = e θy έπεται η (9).

ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Παρατήρηση Ας ϑεωρήσουµε µια ανέλιξη Poisson X t, t, µε µέση τιµή E(X t ) = θt και ας παραστήσουµε µε T το χρόνο αναµονής µέχρι την πραγµατοποίηση της πρώτης επιτυχίας (εµφάνισης του ενδεχοµένου A). Επειδή το ενδεχόµενο {T > t}, είναι ισοδύναµο µε το ενδεχόµενο {X t = }, συνάγουµε τη σχέση P(T > t) = P(X t = ) = e θt, t και από αυτή τη συνάρτηση κατανοµής της τ.µ. T, F(t) = {, < t < 1 e θt, t <. (1)

ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Παράδειγµα Εστω ότι η διάρκεια σε λεπτά ενός τηλεφωνήµατος, σ ένα δηµόσιο τηλεφωνικό ϑάλαµο, ακολουθεί την εκθετική κατανοµή µε µέση τιµή 1 λεπτά. Επίσης, έστω ότι τη στιγµή που κάποιος µπαίνει στον τηλεφωνικό αυτό ϑάλαµο για ένα τηλεφώνηµα ένας άλλος ϕθάνει εκεί και δεν συναντά κανένα να περιµένει. Να υπολογισθούν οι πιθανότητες ο δεύτερος να περιµένει (α) περισσότερο από 1 λεπτά (ϐ) µεταξύ 1 και 2 λεπτών.

ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Αν X είναι η διάρκεια του τηλεφωνήµατος του πρώτου ατόµου, τότε {, x <, F(x) = 1 e x/1, x, και οι Ϲητούµενες πιθανότητες είναι (α) και (ϐ) P(X > 1) = 1 F(1) = e 1 =,3679, P(1 < X 2) = F(2) F(1) = e 1 e 2 =,3679,1353 =,2326.

ΚΑΤΑΝΟΜΗ ERLANG Ορισµός Εστω X µια συνεχής τυχαία µεταβλητή µε συνάρτηση πυκνότητας f(x) = θ ν (ν 1)! xν 1 e θx, x <, < x <, (11) όπου ν ϑετικός ακέραιος και < θ <. Η κατανοµή της τ.µ. X καλείται κατανοµή Erlang µε παραµέτρους ν και θ.

ΚΑΤΑΝΟΜΗ ERLANG Σηµειώνουµε ότι η συνάρτηση (11) είναι µη αρνητική και επειδή I ν = x ν 1 e x dx = (ν 1)!, ν = 1, 2,..., (12) συµπεραίνουµε ότι f(x)dx = θν (ν 1)! x ν 1 e θx dx = 1 (ν 1)! y ν 1 e y dy = 1, όπως απαιτείται από τον ορισµό της συνάρτησης πυκνότητας.

ΚΑΤΑΝΟΜΗ ERLANG Το ολοκλήρωµα I ν, ν = 1, 2,..., δύναται να υπολογισθεί εφαρµόζοντας την ολοκλήρωση κατά παράγοντες ως εξής: I ν+1 = x ν e x dx = x ν de x = [ x ν e x] +ν και έτσι x ν 1 e x dx I ν+1 = νi ν, ν = 1, 2,.... (13) Εφαρµόζοντας διαδοχικά την αναγωγική αυτή σχέση και επειδή I 1 = e x dx = 1, συνάγουµε την (12).

ΚΑΤΑΝΟΜΗ ERLANG Θεώρηµα Εστω ότι η τυχαία µεταβλητή X έχει την κατανοµή Erlang µε συνάρτηση πυκνότητας την (11). Τότε η µέση τιµή και η διασπορά αυτής δίνονται από τις Απόδειξη. µ = E(X) = ν θ, σ2 = V(X) = ν θ 2. (14) Η µέση τιµή της τ.µ. X δίνεται από την E(X) = xf(x)dx = θν (ν 1)! x ν e θx dfx = 1 θ(ν 1)! y ν e y dy και χρησιµοποιώντας την (12), συνάγουµε την µ = E(X) = ν! θ(ν 1)! = ν θ.

ΚΑΤΑΝΟΜΗ ERLANG Οµοίως και E(X 2 ) = x 2 f(x)dx = E(X 2 ) = = Εποµένως η διασπορά της τ.µ. X είναι θν (ν 1)! 1 θ 2 (ν 1)! (ν + 1)! (ν + 1)ν = θ 2 (ν 1)! θ 2. x ν+1 e θx dx y ν+1 e y dy σ 2 = V(X) = E(X 2 ) [E(X)] 2 = (ν + 1)ν θ 2 ν2 θ 2 = ν θ 2.

ΚΑΤΑΝΟΜΗ ERLANG Παρατήρηση Ας ϑεωρήσουµε µια ανέλιξη Poisson X t, t, µε µέση τιµή E(X t ) = θt και ας παραστήσουµε µε T ν το χρόνο αναµονής µέχρι την πραγµατοποίηση της ν-οστής επιτυχίας (εµφάνισης του ενδεχ. A). Επειδή το ενδεχόµενο {T ν > t}, είναι ισοδύναµο µε το ενδεχόµενο {X t < ν}, συνάγουµε τη σχέση ν 1 ν 1 θt (θt)κ P(T ν > t) = P(X t < ν) = P(X t = κ) = e, t. κ! κ= κ= Η συνάρτηση κατανοµής της τ.µ. T ν δίνεται τότε από την µε F(t) =, t <. ν 1 F(t) = 1 e θt κ= (θt) κ, t, (15) κ!

ΚΑΤΑΝΟΜΗ ERLANG Παραγωγίζοντας αυτήν ως προς t, παίρνουµε f(t) = d ν 1 dt F(t) = θe θt κ= (θt) κ κ! ν 1 e θt κ= θ(θt) κ 1 (κ 1)! και εποµένως η πυκνότητα της τ.µ. T ν είναι η f(t) = θν (ν 1)! tν 1 e θt, t <. Η κατανοµή αυτή µελετήθηκε από το ανό µαθηµατικό A.K. Erlang (1878-1929).

ΚΑΤΑΝΟΜΗ ERLANG Παράδειγµα Εστω ότι ο αριθµός των τραυµατιών σε αυτοκινητιστικά δυστυχήµατα µε σοβαρά κατάγµατα που εισάγονται σε νοσοκοµεία των Αθηνών ακολουθεί την κατανοµή Poisson µε µέση τιµή 8 άτοµα ανά ηµέρα. Να υπολογισθούν (α) η πιθανότητα όπως ο χρόνος αναµονής µέχρι την άφιξη του τρίτου τραυµατία, µετρούµενος από την αρχή της ηµέρας, είναι τουλάχιστο 12 ώρες και (ϐ) ο µέσος χρόνος αναµονής µέχρι την άφιξη του τρίτου τραυµατία.

ΚΑΤΑΝΟΜΗ ERLANG (α) Ο αριθµός X t των τραυµατιών σε χρονικό διάστηµα t ωρών ακολουθεί την κατανοµή Poisson µε µέση τιµή E(X t ) = θt, όπου θ = 8/24 = 1/3. Ο χρόνος αναµονής T 3 ακολουθεί την κατανοµή Erlang µε συνάρτηση κατανοµής 2 F(t) = 1 e t/3 (t/3) κ. κ! Εποµένως και έτσι κ= P(T 3 > 12) = 1 F(12) = 1 e 4 2 κ= 4 κ κ! P(T 3 > 12) = 1 (,183 +,733 +,1465) =,7619.

ΚΑΤΑΝΟΜΗ ERLANG (ϐ) Η µέση τιµή της T 3, σύµφωνα µε την πρώτη από τις (14), είναι E(T 3 ) = 3 θ = 9.