DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r,

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (



Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

High order interpolation function for surface contact problem

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Prey-Taxis Holling-Tanner

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Blowup of regular solutions for radial relativistic Euler equations with damping

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ανώτερα Μαθηματικά ΙI

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

v w = v = pr w v = v cos(v,w) = v w

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

A generalized Holland model for wave diffraction by thin wires

div( u p 2 u) = λa(x)u q 2 u+ 1 F(u,v) u

2 SFI

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Ó³ Ÿ , º 3(180).. 313Ä320

Ó³ Ÿ , º 4(181).. 501Ä510

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Probabilistic Approach to Robust Optimization

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Déformation et quantification par groupoïde des variétés toriques

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Reverse Ball-Barthe inequality

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Lecture 26: Circular domains

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

p din,j = p tot,j p stat = ρ 2 v2 j,

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Ó³ Ÿ , º 7(163).. 755Ä764 ˆ ˆŠ ˆ ˆŠ Š ˆ .. ± Î,. ˆ. ³. ƒ ˆ, Œμ ±

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

Å/ ÅÃ... YD/ kod

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

ZZ (*) 4l. H γ γ. Covered by LEP GeV

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Finite difference method for 2-D heat equation

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

þÿ ¹µ ½  ±À±³É³ À±¹ ¹Î½ º±Ä þÿ ͼ²±Ã Ä Â ³ Â Ä Å

arxiv: v1 [math.dg] 3 Sep 2007

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Discretization of Generalized Convection-Diffusion

Ανώτερα Μαθηματικά ΙI

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Εφαρμοσμένα Μαθηματικά

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Envelope Periodic Solutions to Coupled Nonlinear Equations

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )

tan(2α) = 2tanα 1 tan 2 α

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Congruence Classes of Invertible Matrices of Order 3 over F 2

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE

SPECIAL FUNCTIONS and POLYNOMIALS

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

Transcript:

16 Ý 5 38 Ð May, 16 MATHEMATICA NUMERICA SINICA Vol.38, No. Helmholtz ± µ³ DtN ² *1) ( Ò Ì ¼, 1144) ˱ Helmholtz µå ű Dirichlet-to-Neumann (MDtN) ¹, 鱃 ¾, MDtN ÎÂÐ MDtN Å ÉÔ H 1 Ö Ð L Ö. Ü ¼Ú Ù. ÖÚ : ; Helmholtz µ; Dirichlet-to-Neumann ; ¹ ; Ö MR () ÔÝ: 65N3 1. Æ «¾ µ ÞÊ ³Ñ µä ̾ ½. ÜÆ, Ñ ¾ ̾ Ñ, ± ¾ µ ½. µ 9 Ü, Ñ ¾ Ä Ï Ç, É ÆÌ ³ ¼ µä È ÞÊ [1,]. ÆÏ Helmholtz Æ u+k u =, Ω Ú, u = g, Γ, u r iku = o(r 1 ), r, Ä Ω ßÒ Γ ÌÚ ¾Æ µ, ¾ k >. Engquist Majda [3] Ï Ë ½ à ¾. Bayliss Turkel [4] Laplace Helmholtz ¾.» ² ß³» [5,6] Ê ÀÞ µ Laplace, ÈÁ, Stokes Helmholtz Neumann Æ Ï Ó² ÏÆ«, Æ Ì Dirichlet-to-Neumann (DtN), Í Ú ¾ ½, ¾. ¾ Á µ ½ [7 1]. Í [11] Im(k) > Helmholtz Æ, DtN-FEM, Ñ Õ. ÆÍ,, DtN ¾ Ä ¾ È, ÈÓ¾ N  ÂÐ Ì Ð., ¾ ÅÙ, N Û, Û, N * 15 Ý 9 3 ¹. 1) Å Ô : Ø À Å Ô ÍÊ (No. 1114). (1.1)

Ð «: Helmholtz µç ű DtN ¹ 1 Ô ½ Ë. Harari Hughes [9,1] Û N ka ½ N ÖÐ. Ì Ö¹ N ka Ã, Grote Keller [13] ºß ź Å ¾ Đ DtN (MDtN) Ñ ¾ «ØÙ MDtN ¾ DtN ¾., Koyama [14] Ê Helmholtz Æ DtN-FEM, Schatz Goldstein [15], u u N h m,ω a (m =,1) Õ. Hsiao [16] Garding s ², ± Inf-Sup À Õ. Koyama [17]» Schatz Goldstein, u u N m,ωa u N u N h m,ω a Õ Í u u N h m,ω a (m =,1) Õ. ÆÏ Schatz Goldstein, Í µ± u u N h,ω a u u N h 1,Ω a Ñ Õ ² º u u N h 1,Ω a u u N h,ω a Õ Ð. ÆÏÊ Helmholtz Dirichlet Æ, ¹ÄÐ Đ DtN Î, 3 ¹Ä Ý ÓÑ Õ, 4 ¹Ä Û¾ Î ØÐÆÑ Ð, 5 ¹Ä».. MDtN (1.1) { u H 1 (Ω) u Γ = g, ± D(u,v) =, v H 1 (Ω), (.1) Ä H 1(Ω) = {v H1 (Ω) v Γ = }, D(u,v) = ( u v k u v)dξdη. Ì (.1) ½, Ð Ñ ¾ Γ a := {x R x = a}(a > ) «Ý Γ, ¼Í Ω Ì ¾ µ Ω a ¾ µ B a. º Ð D(u,v) = ( u v k u v)dξdη + ( u v k u v)dξdη Ω a B a D 1 (u,v)+d (u,v). Ó²Á D (u,v) = ( u v k u v)dξdη = Ku vds ˆD (u,v), (.) Γ a B a Ä K Ê Æ DtN Î, ÏÆ«( [5]): Ω Ä Ku(θ) = k π u n = Ku, Γ a, (.3) π [ + m= H m (ka)cosm(θ θ )]u(θ )dθ, H m (z) = dh m (1) (z) dz H (1) m (z) = H (1) m+1 (z) H (1) m (z) m z Î n Γ a ÍÆ Õ, H (1) m (z) É m Hankel Þ¾., m =,1,, (.4)

16 Ý º (.1) Á Û³ ß² u H 1 (Ω a ) u Γ = g, ± D 1 (u,v)+ ˆD (u,v) =, v H 1 (Ω a ), (.5) Ä H 1 (Ω a) = {v H 1 (Ω a ) v Γ = }. Æ, D 1 (, )+ ˆD (, ) ʲ ÐÐß². DtN Î K H 1 (Γ a ) H 1 (Γ a ) ¾ÐÐ Î ( [18]), ÄÊ s >, H s (Γ a ) Sobolev Ã, Â Ì H s (Γ a ) = {w L (Γ a ) w s,γa < }, Ä w s,γ a = πa + m= (1+ m ) s a m, a m Î ¾, a m = π w(θ)e imθ dθ. (.5) : u N H 1 (Ω a ) u N Γ = g, ± Ä D 1 (u N,v)+ ˆD N (un,v) =, v H 1 (Ω a), (.6) ˆD N (u,v) = KN u N,v H 1 (Γ a) H 1 (Γ a) = Γ a K N u N vds, K N u(θ) = k π π [ N m= N ] H m (ka)cosm(θ θ ) u(θ )dθ., ²Ä ¾ È Á Ì ¾, m > N, u n =. Ì Ñ È Đ, Grote Keller Đ DtN ¾ : u n = Bu, Γ a, (.7) Ä B Õ Im r=a vbvds > ( v ) ÐÐ Î, DtN ¾ (.3) Æ Å Bu, Æ È K B, ¼Í Đ DtN ¾ ( [13]): u n = (KN B N )u+bu, Γ a. (.8) ²Á B Ô¾Ó ( m > N), Ô¾ÓÌ ¾. ÆÏ Bu (ik 1 a )u, Γ a, (.9) Ø MDtN Π: u n = LN u K N u ς m N u m e imθ +ςu, Γ a, (.1) Ä ς = ik+ 1 a, u m u(θ) Î ¾, u m = π u(θ)e imθ dθ.

Ð «: Helmholtz µç ű DtN ¹ 3 3. MDtN-FEM ÓÒØĐ ÕÙ Ê (.6) MDtN : u N H 1 (Ω a ) u N Γ = g, ± D 1 (u N,v)+ D N (un,v) =, v H 1 (Ω a), (3.1) Ä D N (u,v) = LN u,v H 1 (Γ a) H 1 (Γ a) = Γ a L N u vds. Æ, D1 N(, )+ ˆD N (, ) ʲ ÐÐß²., Ð Ê ß²: u N h V h(ω a ) u N h Γ = g, ± D 1 (u N h,v h )+ D N (u N h,v h ) =, v h V,h (Ω a ), (3.) Ä V,h (Ω a ) = {v V h (Ω a ) v Γ = }, V h (Ω a ) H 1 (Ω a ) Ã Ω a ½Ã., = θ < θ 1 < θ < < θ N 1 < θ N = π ³ Γ a. Ø ÐÐ ¾ QU = F Á Ê 3., Ä Q = Q 1 +Q, Q 1 ÆÏ ÐÐß ² D 1 (, ), Q ÆÏ D N (, ). Æ Q 1, Q ÏÆ ¾ Î [q ij ] N N. (.5) (.6) (3.1) ÆÊ (3.) ½½ Ë Ð Á Ñ Ï [, 13, 16, 17, 19]. Ò Û ËÄ Õ. Þ 1. Ê z > m R, Re(H m (z)) >. (3.3). [] Ë A.1. Þ. ½ Ç k, a ¾ C ± kh ς m (ka) 1+m C.. Hankel Þ¾ ¾ ( [11]): H (1) m (.4) Á (z) = i(m 1)! π (z) m (1+ 1 m 1 H m (ka) = m ka (1+O( 1 m )). (z) ( 1 ) ) +O m, m. º m, kh m (ka) m = 1+m a 1 1 1+m (1+O( m )) a. kh m (ka) 1+m ¾, Ø ½ C >, ± kh ς m (ka) 1+m C. Þ 3. Ê u,v H 1 (Ω a ), D 1 (u,v)+ ˆD (u,v) D 1 (u,v)+ D N ÐÐ, ½ Ç Ω a ±¾ α, ± (u,v) Ä Ê² D 1 (u,v)+ ˆD (u,v) α u 1,Ωa v 1,Ωa, D 1 (u,v)+ D N (u,v) α u 1,Ωa v 1,Ωa ; Re{D 1 (u,u)+ ˆD (u,u))}+(k +1) u,ω a u 1,Ω a, Re{D 1 (u,u)+ D N (u,u)}+(k +1) u,ω a u 1,Ω a.

4 16 Ý. Æ, ³, º ˽. Î Ð Ó. º, u 1,Ω a = D 1 (u,u)+(k +1) u,ω a = D 1 (u,u)+ D N (u,u)+(k +1) u,ω a D N (u,u). Ê ², Æ, u 1,Ω a = Re{D 1 (u,u)+ D N (u,u)}+(k +1) u,ω a Re{ D N (u,u)}.», ¾ u(θ) = + m= { } Re{ D N (u,u)} = Re ūl N uds Γ a a m e imθ, a m = 1 π π u(θ)e imθ dθ, Ë 1, Á { = Re ūk N uds ς Γ a = Re {[k =. m N m N m N a m +ς a m } a m H m (kr)+( ik + 1 R ) kre{h m (kr)} a m + 1 R a m } a m ] Re{D 1 (u,u)+ D N (u,u)}+(k +1) u,ω a u 1,Ω a. É, ÆÁ Re{D 1 (u,u)+ ˆD (u,u))}+(k +1) u,ω a u 1,Ω a. Ì Î I h : H (Ω a ) V h (Ω a ) v I h v 1,Ωa C 1 h v,ωa, v H (Ω a ), Ä C 1 ³ h u. ³ ÂËÑ ²: inf u v 1,Ω a u I h u 1,Ωa C 1 h u,ωa. (3.4) v V h (Ω a) v m 1,Γa C v m,ωa, v H m (Ω a )(m = 1,), (3.5) Ä C Ç Ω a, Å v ±¾. Ð.5 Å (i) Ê ρ L (Ω a ), Ë ½ ϕ ρ H (Ω a ) H 1 (Ω a); (ii) ½ ±¾ C 3, ± D 1 (v,ϕ ρ )+ ˆD (v,ϕ ρ ) = (ρ,v), v H 1 (Ω a), (3.6) Þ 4. u u N h (.5) (3.) ½, ϕ ρ,ωa C 3 ρ,ωa. (3.7) u u N h 1,Ω a (8k +4α +1) inf u v h 1,Ω v h V h (Ω a), v h a ( Γ=g ) + 4 sup ˆD (u,v h ) D N (u,v h) v h 1,Ωa +8(k +1) u u N h,ω a, v h V,h (Ω a) (3.8)

Ð «: Helmholtz µç ű DtN ¹ 5 Ä α Ë 3 Ä ±¾.. (.5) Á ² Å (3.) D 1 (u,v h )+ D N (u,v h ) = D N (u,v h ) ˆD (u,v h ), v h V,h (Ω a ). (3.9) D 1 (u u N h,v h )+ D N (u u N h,v h ) = D N (u,v h ) ˆD (u,v h ), v h V,h (Ω a ). (3.1) Ê v h V h (Ω a ) v h Γ = g, Ì u N h v h V,h (Ω a ), Ë 3 (3.1), Á u N h v h 1,Ω a Re{D 1 (u N h v h,u N h v h)+ D N (un h v h,u N h v h)}+(k +1) u N h v h,ω a ¼Í = Re{D 1 (u v h,u N h v h )+ D N (u v h,u N h v h ) +D 1 (u N h u,un h v h)+ D N (un h u,un h v h)}+(k +1) u N h v h,ω a = Re{D 1 (u v h,u N h v h )+ D N (u v h,u N h v h ) D N (u,un h v h)+ ˆD (u,u N h v h)}+(k +1) u N h v h,ω a α u v h 1,Ωa u N h v h 1,Ωa + ˆD (u,u N h v h ) D N (u,u N h v h ) +(k +1) u N h v h,ω a ( α u v h 1,Ωa + sup v h V,h (Ω a) +(k +1) u N h v h,ω a 1 ( α u v h 1,Ωa + sup v h V,h (Ω a) + 1 un h v h 1,Ω a +(k +1) u N h v h,ω a, ( u N h v h 1,Ω a α u v h 1,Ω a + + (k +1) u N h v h,ω a. ˆD (u,v h ) D N (u,v h ) ) u N h v h 1,Ωa v h 1,Ωa ˆD (u,v h ) D N (u,v h ) ) v h 1,Ωa sup v h V,h (Ω a) ˆD (u,v h ) D N(u,v ) h) v h 1,Ωa ² ² u u N h 1,Ω a u v h 1,Ωa + u N h v h 1,Ωa Æ ², Ð u u N h 1,Ω a u v h 1,Ω a + u N h v h 1,Ω a ( (+4α ) u v h 1,Ω a +4 sup v h V,h (Ω a) + 8(k +1)( u u N h,ω a + u v h,ω a ), ˆD (u,v h ) D N (u,v h ) ) v h 1,Ωa º, (3.8). Þ 5. u H (Ω a ) H s 1 (Γ a ) u N h V h(ω a ) (.5) (3.) ½, s =,3,, (.5) Å, Ø ½ Ç N, h, s, u u N h, Ç Ω a, k a ±¾ C,C 1,C,C 3, ± u u N h,ωa C 3 { (α C 1 h+c C N 1 ) u u N h 1,Ωa +C C (C 1 h+n 1 ) ε(u,n,s),γa }, (3.11)

6 16 Ý Ä α Ë 3 Ä ±¾, ε(u,n,s) = [ (1+m ) s 1 a m ] 1 + [ (1+m ) s 1 a m ] 1 m=, a m = 1 π π u(θ)e imθ dθ.. (.3), (.1), u v ¾, Ë ÂË (3.5), Á ˆD (u,v) D ( N (u,v) = π ς = ( π π N s 1 [ (ς kh m (ka))a m b m ) a m b m k H m (ka)a m b m ) ς kh m (ka) [ (m +1) s 1 am ]1 1+m ς kh m (ka) (m +1) 1 bm ]1 1+m ε(u,n,s) C,Γa v 1,Γa ε(u,n,s) C C,Γa v 1,Ω a, (3.1) Ä a m = 1 π π u(θ)e imθ dθ b m = 1 π π v(θ)e imθ dθ. É, ÐÁ ˆD (u,v) D N (u,v) C ε(u,n,s) N s u s 1,Γa v 3,Γa C C ε(u,n,s) N s u s 1,Γa v,ω a (3.13) ˆD (u,v) D N (u,v) C N 1 u 1,Γa v 3,Γa C C N 1 u 1,Ωa v,ωa. (3.14) Ê ρ = u N h u, ϕ ρ (3.6) ½, (3.1), Ë 3, (3.1), (3.13), (3.14), (3.4), (3.5) (3.7), (u u N h,ρ) = D 1 (u u N h,ϕ ρ )+ ˆD (u u N h,ϕ ρ ) = D 1 (u u N h,ϕ ρ I h ϕ ρ )+ D N (u un h,ϕ ρ I h ϕ ρ ) +D 1 (u u N h,i hϕ ρ )+ D N (u un h,i hϕ ρ )+ ˆD (u u N h,ϕ ρ) D N (u un h,ϕ ρ) = D 1 (u u N h,ϕ ρ I h ϕ ρ )+ D N (u un h,ϕ ρ I h ϕ ρ )+ D N (u,i hϕ ρ ) ˆD (u,i h ϕ ρ ) +ˆD (u u N h,ϕ ρ ) D N (u u N h,ϕ ρ ) = D 1 (u u N h,ϕ ρ I h ϕ ρ )+ D N (u u N h,ϕ ρ I h ϕ ρ ) D N (u,ϕ ρ I h ϕ ρ ) +ˆD (u,ϕ ρ I h ϕ ρ )+ D N (u,ϕ ρ) ˆD (u,ϕ ρ )+ ˆD (u u N h,ϕ ρ) D N (u un h,ϕ ρ) α u u N h 1,Ω a ϕ ρ I h ϕ ρ 1,Ωa + D N (u,ϕ ρ I h ϕ ρ ) ˆD (u,ϕ ρ I h ϕ ρ ) + ˆD (u,ϕ ρ ) D N (u,ϕ ρ ) + ˆD (u u N h,ϕ ρ ) D N (u u N h,ϕ ρ ) α C 1 h u u N h 1,Ωa ϕ ρ,ωa +C C 1 C h ε(u,n,s),γa ϕ ρ,ωa +C C ε(u,n,s) N s u s 1,Γa ϕ ρ,ωa +C C N 1 u u N h 1,Ωa ϕ ρ,ωa C 3 {(α C 1 h+c C N 1 ) u u N h 1,Ω a +C C (C 1 h+n 1 ) ε(u,n,s),γa} ρ,ω a.

Ð «: Helmholtz µç ű DtN ¹ 7 (3.11) ². ÐÞ. u H (Ω a ) H s 1 (Γ a ) u N h V h(ω a ) (.5) (3.) ½, s =,3,, h Ô N Ô, ½ Ç N, h, s, u u N h, Ç Ω a, k a ±¾ C,C 1,C,C 3 C 4, ± Æ u u N h 1,Ω a [C 4 (8k +4α +1)]1 C 1 h u,ωa +C C [C 4 +4(1+k )C 3 C 4(C 1 h+n 1 ) ] 1 ε(u,n,s),γa, (3.15) u u N h,ω a C 1 C 3 [C 4 (8k +4α +1)]1 (α C 1 h+c C N 1 )h u,ωa +C C C 3 {[C 4 +4(1+k )C 3C 4 (C 1 h+n 1 ) ] 1 +(C1 h+n 1 )} ε(u,n,s),γa. (3.16).» (3.8), (3.4), (3.1) (3.11) Á ( ε(u,n,s) ) u u u N h 1,Ω a (8k +4α +1)C 1 h u,ω a +4C C N s 1 s 1 +8(k +1)C,Γa 3 { (α C 1 h+c CN 1 ) u u N h 1,Ωa +C C (C 1 h+n 1 ) ε(u,n,s) ( ε(u,n,s) ) u N s 1 s 1 +16(k +1)C,Γa 3,Γa } (8k +4α +1)C 1 h u,ω a +4C C { (α C 1 h+c CN 1 ) u u N h 1,Ω a +CC (C 1 h+n 1 ) ( ε(u,n,s) ) u N s 1 s }, 1,Γa 1 h Ô N Ô, Æ h h, N N C 4 = > 1 16(k +1)C3 (αc1h+cc N 1 ), u u N h 1,Ω a C 4 (8k +4α +1)C 1 h u,ω a ( ε(u,n,s) ) u +[4C 4 C C +16(1+k )C3 C 4C C (C 1h+N 1 ) ] N s 1 s 1,Γa, (3.15) ²³. (3.11) (3.15) ²Á { u u N h,ω a C 3 (α C 1 h+c C N 1 ) [C 4 (8k +4α +1)]1 C1 h u,ωa +C C [C 4 +4(k +1)C3 C 4(C 1 h+n 1 ) ] 1 ε(u,n,s) },Γa +C 3 C C (C 1 h+n 1 ) ε(u,n,s),γa (α C 1 h+c C N 1 )[C 4 (8k +4α +1)]1 C1 C 3 h u,ωa +C C C 3 {[C 4 +4(1+k )C3 C 4(C 1 h+n 1 ) ] 1 +(C1 h+n 1 )} ε(u,n,s),γa.

8 16 Ý 4. ß. Ω = {(x,y) x 1, y 1} Γ = Ω, Helmholtz Æ u+k u =, Ω Ú, u = g, Γ, u r iku = o(r 1 ), r, ½: u(r,θ) = H (1) (kr), r 1, θ π. Γ a = {(x,y) x +y = 9} Ω a È 6 16 Ì Õ P=6, Õ M=16 ²ß,  1. 3 1 1 3 3 1 1 3 à 1 6 16 É Ä É Á Æ È 3 8, 1 3, 4 64. ÑÊ u u N h L Re (Ωa) 1, Rate = u un h u u N, Order = log Rate. h/ 1 k =, DtN-FEM Ñ MDtN-FEM Ñ DtN-FEM MDtN-FEM M P N = 3 N=4 N = 5 Rate N = 3 Rate N = 5 Rate Order 8 3 1.711.3895.3877.3736.3877 16 6 1.166.1199.14 3.168.18 3.91.14 3.1681 1.6636 3 1.443.353.37 3.373.359 3.3676.37 3.373 1.757 64 4.13.98.1 3.64.1 3.585.1 3.64 1.8639

Ð «: Helmholtz µç ű DtN ¹ 9 3 8 È Ê À N, DtN-FEM ÑÊ MDtN-FEM ÑÊ Â. N = 3, Ê ÀÈ M P, DtN-FEM ÑÊ MDtN-FEM ÑÊ Â 3. 1.8 1.6 DtN FEM MDtN FEM 1.4 1. u u N h L Re (Ω a ) 1.8.6.4. 1 3 4 5 6 7 8 9 1 N à 3 8 É, ˱ Á N, DtN-FEM MDtN-FEM ÒË 1 DtN FEM MDtN FEM 1 ln( u u N h L Re (Ω a ) 3 4 5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 ln(m P) à 3 N = 3, ˱ Á ln(m P), DtN-FEM MDtN-FEM Ç ln( u u N h L Re (Ω a))  Á, N < 4, DtN-FEM, ÑÊ Ó MDtN-FEM ÑÊ ; N 4, Æ ÑÊ Æ Á. ºÁ Ó, MDtN-FEM ÛÔÂ Ê È¾ N Ã, N Á Đ ¾. ¼Â 3 Á, N = 3, Ê ÀÈ M P, MDtN-FEM DtN-FEM.

1 16 Ý 5. Û Ð ÆÏÊ ¾ µ Helmholtz Æ, Ñ ¾ Đ DtN, ¼ ÍÐ MDtN-FEM, Æ µ Ó Ý Õ. Í Û Ê DtN- FEM MDtN-FEM Æ, «ØÐ Õ Ð, Ó MDtN-FEM ÑÊ DtN-FEM ¾Ð. Å. À Ü ± ±. Ü [1] Yu D H. Natural Boundary Integral Method and Its Applications[M], Beijing/Dordrecht/New York/London: Kluwer Academic Publisher/Science Press,. [] Han H D, Wu X N. Artificial Boundary Method[M], Beijing: Tsinghua University Press, 1. [3] Enquist B, Majda A. Absorbing boundary conditions for numerical simulation of waves[j]. Math. Comput., 1977, 31(139): 69-651. [4] Bayliss A, Gunzburger M, Turkel E. Boundary conditions for the numerical solution of elliptic equations in exterior regions[j]. SIAM J. Appl. Math., 198, 4(): 43-451. [5] Feng K. Finite element method and natural boundary reduction[c]. In: Proc. Inter. Cong. Math., Warszawa, 1983, 1439-1453. [6] Feng K. Asymptotic radiation conditions for reduced wave equation[j]. J. Comput. Math., 1984, (): 13-138. [7] Feng K, Yu D. Canonical integral equations of elliptic boundary value problems and their numerical solutions[c]. In: (K. Feng, J.L. Lions, eds.) Proc. China-France Symp. on the Finite Element Method (April 198), pp. 11-5. Beijing: Science Press, 1983. [8] Keller J B, Givoli D. Exact nonreflecting boundary condition[j]. J. Comput. Phys., 1989, 8(1): 17-19. [9] Harari I and Hughes T J R. Galerkin/least squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains[j]. Comput. Methods Appl. Mech. Engrg., 199, 98(3): 411-454. [1] Bao G. Finite element approximation of time harmonic waves in periodic structures[j]. SIAM J. Numer. Anal., 1995, 3(4): 1155-1169. [11] Li R. On The coupling of BEM and FEM for exterior problems for the Helmholtz equation[j]. Math. Comput., 1999, 68(7): 945-953. [1] Harari I. A survey of finite element methods for time-harmonic acoustics[j]. Comput. Methods Appl. Mech. Engrg., 6, 195(13): 1594-167. [13] Grote M G, Keller J B. On nonreflecting boundary conditions[j]. J. Comput. Phys., 1995, 1(): 31-43. [14] Koyama D. Error estimates of the DtN finite element method for the exterior Helmholtz problem[j]. J. Comput. Appl. Math., 7, (1): 1-31. [15] Goldstein C l. A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains[j], Math. Comput., 198, 39(16): 39-34. [16] Hsiao G C, Nigamb N, Pasciak J E, Xu L. Error analysis of the DtN-FEM for the scattering problem in acoustics via Fourier analysis[j]. J. Comput. Appl. Math., 11, 35(17): 4949-4965.

Ð «: Helmholtz µç ű DtN ¹ 11 [17] Koyama D. Error estimates of the finite element method for the exterior Helmholtz problem with a modified DtN boundary condition[j]. J. Comput. Appl. Math., 9, 3(1): 19-11. [18] Masmoudi M. Numerical solution for exterior problems[j]. Numer. Math., 1987, 51(1): 87-11. [19] Jiang X, Li P J, Wei Y. Numerical solution of acoustic scattering by an adaptive DtN finite element method[j], Commun. Comput. Phys., 13 13(5): 17-144. [] Koyama D. A controllability method with an artificial boundary condition for the exterior Helmholtz problem[j]. Japan J. Indust. Appl. Math., 3, (1): 117-145. THE FINITE ELEMENT METHOD WITH A MODIFIED DtN BOUNDARY CONDITION FOR EXTERIOR PROBLEMS OF THE HELMHOLTZ EQUATION Zheng Quan Gao Yue Qin Feng (College of Sciences, North China University of Technology, Beijing 1144, China) Abstract In this paper, we investigate a finite element method with a modified Dirichlet-to- Neumann boundary condition (MDtN-FEM) for the Helmholtz equation on unbounded domains in R. The a priori error estimates depending on the mesh size, the location of MDtN boundary and the truncation of the series in MDtN are established in the H 1 - and L -norms. Numerical examples demonstrate the advantage in accuracy and efficiency for the method. Keywords: unbounded domain; Helmholtz equation; finite element method; modified Dirichlet-to-Neumann boundary condition; error estimate Mathematics Subject Classification: 65N3