ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;



Σχετικά έγγραφα
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

2 ) d i = 2e 28, i=1. a b c

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

q(g \ S ) = q(g \ S) S + d = S.

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

d(v) = 3 S. q(g \ S) S

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Πληρότητα της μεθόδου επίλυσης

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

1. Σε ένα τουρνουά με 8 παίκτες μπορεί οι παίκτες να συμμετείχαν σε: 6,5,4,4,4,3,1,1 αγώνες αντίστοιχα;

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

(a 1, b 1 ) (a 2, b 2 ) = (a 1 a 2, b 1 b 2 ).

Επίπεδα Γραφήματα (planar graphs)

Ασκήσεις μελέτης της 8 ης διάλεξης

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

Προσεγγιστικοί Αλγόριθμοι

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017

Θεωρία Γραφημάτων 11η Διάλεξη

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις

3, ( 4), ( 3),( 2), 2017

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).

x (a 1 + a 2 ) mod 9, y (a 1 a 2 ) mod 9.

Π(n) : 1 + a + + a n = αν+1 1

Διαγώνισμα στις Συναρτήσεις και τα Όρια τους

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

Μη γράφετε στο πίσω μέρος της σελίδας

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

ψ φ2 = k χ φ2 = 4k χ φ1 = χ φ1 + χ φ2 + 3 = 4(k 1 + k 2 + 1) + 1 ψ φ1 = ψ φ1 + χ φ2 = k k = (k 1 + k 2 + 1) + 1

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x

Εκτενείς Δομές Δεδομένων

ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΤΟΥ 2 ου ΚΕΦΑΛΑΙΟΥ

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Θεωρία Γραφημάτων 8η Διάλεξη

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

Υποδ: Χρησιμοποιήστε τον ορισμό της λογικής συνεπαγωγής (λογικής κάλυψης).

Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

1.2 Εξισώσεις 1 ου Βαθμού

4.3 Ορθότητα και Πληρότητα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Outline 1 Άσκηση 1 2 Άσκηση 2 3 Άσκηση 3 4 Άσκηση 4 5 Άσκηση 5 6 Προγραμματιστική Άσκηση 1 7 Προγραμματιστική Άσκηση 2 (CoReLab - NTUA) Αλγόριθμοι - 3

Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Transcript:

ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά δένδρα του γράφου είναι ο Κ,6 και ο P 7.. Σ/Λ Έχει μόνο ένα ελάχιστο συνδετικό δένδρο.. Σ/Λ Ο αλγόριθμος του Pr με αρχική κορυφή την Α θα κατασκευάσει ένα ελάχιστο συνδετικό δένδρο μία από τις ακμές του οποίου θα είναι η Δ, Ε.. Σ/Λ Ο αλγόριθμος του Djkstra για την εύρεση των συντομότερων μονοπατιών από την κορυφή Α προς όλες τις άλλες θα κατασκευάσει το ίδιο δένδρο με τον αλγόριθμο του Pr με αρχική κορυφή την A.. Σωστό Ένα συνδετικό δένδρο του γράφου είναι το αστέρι το Κ,6 με κεντρική κορυφή την Δ και περιφερειακές τις υπόλοιπες. Ένα άλλο συνδετικό δένδρο του γράφου είναι το μονοπάτι ο P 7, π.χ Α,Β,Ε,Η,Ζ,Γ,Δ.. Σωστό Έχει μόνο ένα ελάχιστο συνδετικό δένδρο διότι όλα τα βάρη στις ακμές είναι διαφορετικά.. Λάθος Ο αλγόριθμος του Pr με αρχική κορυφή την Α θα προσθέσει στο δένδρο με την σειρά τις ακμές ΑΒ, ΒΔ, ΒΕ, ΔΓ, ΓΖ, ΖΗ. Μετά την προσθήκη των ακμών ΒΔ, ΒΕ και επομένως των κορυφών Δ,Ε στο δένδρο, ο αλγόριθμος δεν λαμβάνει υπόψη την ΔΕ αφού συνδέει κορυφές που ήδη είναι στο δένδρο και επομένως θα δημιουργούσε κύκλο. Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Λάθος Ο αλγόριθμος του Djkstra για την εύρεση των συντομότερων μονοπατιών από την κορυφή Α προς όλες τις άλλες θα κατασκευάσει το παρακάτω δένδρο ελάχιστων μονοπατιών από την Α προς όλες τις άλλες κορυφές.

Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η ΑΣΚΗΣΗ Στα δένδρα, διακρίνουμε τις κορυφές σε εσωτερικές και φύλλα που επίσης ονομάζονται και μενταγιόν, τόμος Β, σελ.. Έστω -αδικό δένδρο του οποίου κάθε εσωτερική κορυφή έχει ακριβώς παιδιά στη βιβλιογραφία αναφέρεται συνήθως ως πλήρες. Το δένδρο έχει n κορυφές, εκ των οποίων n k είναι φύλλα και n εσωτερικές. Να αποδείξετε ότι ισχύουν οι εξής εξισώσεις n n nk n n k n Με χρήση του, να αποφανθείτε αν υπάρχει >0, τέτοιο ώστε να υπάρχει πλήρες -αδικό δένδρο όπως το ορίσαμε παραπάνω με n k = 8 φύλλα και ύψος. Απάντηση: a Γνωρίζουμε ότι n = n + n k. Εφόσον κάθε κορυφή είναι παιδί κάποιας εσωτερικής κορυφής, εκτός της ρίζας αφού δεν έχει πατέρα, και κάθε εσωτερική κορυφή έχει παιδιά έχουμε n = n +. b Από τις. και. έχουμε n + = n + n k => - n = n k => n = n k -/-.

c Από την. έχουμε ότι n = n-/, και αντικαταστώντας στην. θα έχουμε n = n-/ + n k => n k = [ n- + ] / Έστω πως υπάρχει τέτοιο δένδρο. Από τον δεύτερο τύπο του θα έπρεπε να έχει 8/- εσωτερικούς κόμβους. Γιά να είναι ο αριθμός αυτός ακέραιος, πρέπει ο - να διαιρεί τον 8 ο οποίος είναι πρώτος. Άρα = ή =8. Στην πρώτη περίπτωση μπορούμε να έχουμε το πολύ 5 κορυφές με ύψος, άρα αδύνατο. Στη δεύτερη περίπτωση, ο αριθμός των εσωτερικών κορυφών πάλι από τον δεύτερο τύπο του θα είναι, άρα μόνο η ρίζα είναι εσωτερικός κόμβος, άρα το ύψος είναι έλεγξε, αδύνατον. ΑΣΚΗΣΗ Για το γράφημα του διπλανού σχήματος, ποιες από τις παρακάτω προτάσεις είναι αληθείς και ποιες όχι; Για τις προτάσεις και, να θεωρήσετε ότι ο αλγόριθμος του Pr ξεκινά από την κορυφή s. s 9 6 5 7 6 7 6 7 5 7 7 5 8 8 6 9 9 0. Σ/Λ Υπάρχει Ελάχιστο Συνδετικό Δέντρο που περιέχει όλες τις ακμές βάρους.. Σ/Λ Υπάρχει Ελάχιστο Συνδετικό Δέντρο που περιέχει όλες τις ακμές βάρους.. Σ/Λ Η δεύτερη ακμή που θα προστεθεί στο Ελάχιστο Συνδετικό Δέντρο από τον αλγόριθμο του Pr είναι η ακμή s,.. Σ/Λ Η ακμή, θα προστεθεί στο Ελάχιστο Συνδετικό Δέντρο από τον αλγόριθμο του Pr πριν από την ακμή 6,. ΑΠΑΝΤΗΣΗ.. Λάθος Υπάρχει Ελάχιστο Συνδετικό Δέντρο που περιέχει όλες τις ακμές βάρους. [λάθος διότι σχηματίζεται κύκλος]. Σωστό Υπάρχει Ελάχιστο Συνδετικό Δέντρο που περιέχει όλες τις ακμές βάρους.

. Λάθος Η δεύτερη ακμή που θα προστεθεί στο Ελάχιστο Συνδετικό Δέντρο από τον αλγόριθμο του Pr είναι η ακμή s,. [λάθος διότι η δεύτερη θα είναι μία από τις γειτονικές της 8 με βάρος ]. Λάθος Η ακμή, θα προστεθεί στο Ελάχιστο Συνδετικό Δέντρο από τον αλγόριθμο του Pr πριν από την ακμή 6,.[λάθος διότι την 6 ο αλγόριθμος θα την βρει επεξεργαστεί πριν από την ή την ] ΑΣΚΗΣΗ Έστω Τ γεννητορικό δένδρο ενός συνδεδεμένου γράφου, που έχει παραχθεί με τον αλγόριθμο DFS κατά βάθος διάσχισης και κορυφή r η ρίζα του. Να αποδειχθεί ότι η κορυφή r είναι κορυφή κοπής για τον γράφο εάνν έχει τουλάχιστον δύο παιδιά στο. έστω ότι η κορυφή r είναι κορυφή κοπής στο γράφο, και άς υποθέσουμε ότι έχει μόνο ένα παιδί στο δένδρο, την κορυφή t. Τότε το δένδρο με κορυφή t είναι γεννητορικό για τον γράφο \r άρα και ο γράφος \r θα είναι συνδεόμενος, άτοπο. έστω ότι η κορυφή r έχει δύο παιδιά στο, τις κορυφές t και s όπου ο αλγόριθμος DFS επισκέφτηκε πρώτα την t άρα είναι και το αριστερό παιδί της r, και, τα αντίστοιχα υποδένδρα με αυτές τις κορυφές ώς ρίζες. t s Θέλουμε να δείξουμε ότι δεν υπάρχει ακμή e, w E τέτοια ώστε t, w s. Εάν υπήρχε τότε ο αλγόριθμος DFS θα είχε επισκεφτεί την w πρίν την s και θα είχαμε ότι w, άτοπο. Άρα κάθε μονοπάτι μεταξύ δύο κορυφών από το και πρέπει να περάσει από την κορυφή r, πράγμα που σημαίνει ότι είναι κορυφή κοπής. t t s ΑΣΚΗΣΗ 5. Έστω δένδρο όπου, E q και έστω ότι θέτουμε με αριθμός κορυφών βαθμού για,,...,. όπου ο μέγιστος βαθμός του δένδρου. Δείξτε ότι ισχύει 5

ΑΠΑΝΤΗΣΗ. Από τον ορισμό των μπορούμε να συμπεράνουμε ότι Γνωρίζουμε από το ο θεώρημα της θεωρίας γράφων ότι E d για κάθε γράφο, ενώ παρατηρούμε ότι στην περίπτωση του δένδρου λόγω του ορισμού των θα μπορούσαμε να γράψουμε d Συνδυάζοντας τώρα τις σχέσεις και έχουμε q E Αλλά εφόσον το είναι δένδρο θα έχουμε ότι E q οπότε η σχέση καταλήγει να είναι χρησιμοποιώντας και την για την δεύτερη ισότητα. Αναπτύσοντας και απλοποιώντας θα έχουμε λοιπόν 5 ΑΣΚΗΣΗ 6 Αποδείξτε το αληθές ή το ψευδές των παρακάτω προτάσεων: Εάν το, E γράφος με κύκλους συνολικά, τότε E. Εάν το δένδρο με κορυφές βαθμού, 7 κορυφές βαθμού, κορυφές βαθμού και τότε το έχει κορυφές βαθμού. Ένα δένδρο με έχει περισσότερα σημεία κοπής από ότι γέφυρες. Υπάρχουν δένδρα όπου όλες οι κορυφές τους είναι σημεία κοπής. 5 Υπάρχουν ακριβώς δύο r κανονικά δένδρα για οποιοδήποτε ακέραιο r.

ΑΠΑΝΤΗΣΗ. Ψευδές Το γράφημα Είναι ένα αντιπαράδειγμα εφόσον έχει κύκλους και 5 E 6 Αληθές εδώ πρόκειται για μία άμεση εφαρμογή του ερωτήματος, με, 7, όπου και θα έχουμε Ψευδές Τα δένδρα της μορφής αποτελούνε αντιπαράδειγμα. Ψευδές Σημεία κοπής είναι εκείνες οι κορυφές, των οποίων η διαγραφή αυξάνει τον αριθμό των συνεκτικών συνιστώσων του γράφου. Δηλαδή η κορυφή είναι σημείο κοπής εάν k { } k, όπου με {} αναφερόμαστε στο γράφο που διαγράψαμε την κορυφή και όλες τις ακμές που την περιέχουν. Καταρχήν θα δείξουμε ότι Κάθε δένδρο περιέχει κορυφές βαθμού Έστω ότι P μέγιστο μονοπάτι σε κάποιο δένδρο μεταξύ των κορυφών 0 και, και έστω ότι d 0 ή αντίστοιχα d. Προκύπτει ότι θα υπάρχει κορυφή τέτοια ώστε 0, E και έχουμε δύο πιθανές περιπτώσεις: Α είτε P όπου τότε θα έχουμε κύκλο 0 άρα άτοπο Β είτε P όπου τότε το μονοπάτι P δεν θα είναι μέγιστο, εφόσον υπάρχει μεγαλύτερο σε μήκος μονοπάτι, 0,...,, δηλαδή άτοπο. Τα παραπάνω επίσης ισχύουν και για d, οπότε συμπεράνουμε ότι d 0 d εφόσον το είναι δένδρο, δηλαδή συνδεόμενο γράφημα. Αλλά τότε θα έχουμε

k { 0} k { } k και βρήκαμε δύο τουλάχιστον κορυφές που δεν είναι σημεία κοπής σε οποιοδήποτε δένδρο. 5 Αληθές r -κανονικός γράφος είναι εκείνος ο γράφος όπου όλες του οι κορυφές έχουμε βαθμό r. Γνωρίζουμε ότι για r-κανονικό δένδρο θα έχουμε Α E d r Β E Οπότε για q E, από το Α και Β έχουμε r r r Η παραπάνω σχέση ικανοποιείται για r 0, και r,, ενώ για r το δεν ορίζεται εφόσον πρέπει να είναι θετικός ακέραιος. Αλλά τα μόνα δένδρα με, είναι