1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

Σχετικά έγγραφα
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

website:

Υδροδυναμική. Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

Ροη αέρα σε Επίπεδη Πλάκα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΑΕΡΟΤΟΜΗ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

v = 1 ρ. (2) website:

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ II

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ

6 Εξαναγκασμένη ροή αέρα

Εργαστήριο Μηχανικής Ρευστών

ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

Ανάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών» u x. x x x. x y y

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

2 ΚΑΤΑΝΟΜΕΣ ΤΑΧΥΤΗΤΑΣ ΡΟΗΣ ΚΟΝΤΑ ΣΕ ΣΤΕΡΕΟ ΟΡΙΟ Γενικά Εξισώσεις τυρβώδους ροής-τυρβώδεις τάσεις Κατανοµή στρωτών και τυρβωδών

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017

Υπολογισμός Παροχής Μάζας σε Αγωγό Τετραγωνικής Διατομής

Μακροσκοπική ανάλυση ροής

2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D

ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I. Εργαστηριακή Άσκηση

Ονοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

11 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διατήρηση της Ύλης - Εξίσωση Συνέχειας

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

I.2. ΜΕΤΡΗΣΕΙΣ ΣΤΗΝ ΑΕΡΟΣΗΡΑΓΚΑ. I.2.a Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΣΕ ΣΩΛΗΝΩΣΕΙΣ ΚΑΙ ΣΕ ΕΞΑΡΤΗΜΑΤΑ ΡΟΗΣ

Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.

Ρευστομηχανική Εισαγωγικές έννοιες

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

Καβάλα, Οκτώβριος 2013

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton):

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

ΑΕΡΟ ΥΝΑΜΙΚΗ ΕΡΓ Νο2 ΡΟΗ ΑΕΡΑ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝ ΡΟ

ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.

Εργαστηριακή άσκηση: Σωλήνας Venturi

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΝΤΛΗΤΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ

Χειμερινό εξάμηνο

Εφαρμοσμένη Υδραυλική. ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η

h 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2

ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1, N / m 2 (ή Ρα).

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σελίδα 1 από 6

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ

Ανάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών»

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα

ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2

Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη.

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΡΕΥΣΤΑ -ΣΤΕΡΕΟ 24/02/2019

Σημειώσεις Εγγειοβελτιωτικά Έργα

Χειμερινό εξάμηνο

p = p n, (2) website:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΥΠΟΛΟΓΙΟ ΘΕΜΕΛΙΩΔΕΙΣ ΝΟΜΟΙ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΟ ΤΟΙΧΩΜΑ

Transcript:

η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού Στρώματος (Laminar Boundary Layer), το οποίο δημιουργείται κατά τη διέλευση ομοιόμορφης ροής αέρα, με ταχύτητα ελεύθερου ρεύματος (free stream),, επάνω από μια επίπεδη και οριζόντια επιφάνεια, με μηδενική γωνία προσβολής (angle of attack). Σκοπός αυτής της εργαστηριακής άσκησης είναι η εξοικείωση των φοιτητών με τις έννοιες που διέπουν τη μελέτη του Στρωτού Οριακού Στρώματος και η ανάπτυξη δεξιοτήτων στη μελέτη του οριακού στρώματος, γενικότερα. Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Το οριακό στρώμα επινοήθηκε για πρώτη φορά από τον Prandtl το 904. Με την επινόηση αυτή, ο Prandtl κατάφερε να συνδέσει την άτριβη ροή με τη ροή πραγματικών ρευστών. Συγκεκριμένα, κατά τον Prandtl, στην περίπτωση κίνησης ρευστών μικρού σχετικά ιξώδους, πάνω από στερεά, η επίδραση της εσωτερικής τριβής περιορίζεται μόνο σε ένα πολύ λεπτό στρώμα ρευστού, που βρίσκεται κοντά στην επιφάνεια του στερεού, το οποίο είναι γνωστό ως Οριακό Στρώμα (Ο.Σ.). Έτσι, το πεδίο ροής μπορεί να χωριστεί σε δύο διακριτές περιοχές, το οριακό στρώμα και την εκτός του Ο.Σ., στην οποία το ιξώδες παύει να αποτελεί σημαντικό παράγοντα στη διαμόρφωση της ροής. Η του πεδίου ροής, η γειτονική προς την πλάκα, στην οποία παρατηρείται κατακόρυφη μεταβολή της ταχύτητας του ρευστού, ονομάζεται Ο.Σ. Στο Σχήμα παρουσιάζεται η εικόνα της ανάπτυξης του Ο.Σ. πάνω από μια οριζόντια επίπεδη επιφάνεια. y,v u u x,u u Τυρβώδης δ Μεταβατική Στρωτό υπόστρωμα x e x Στρωτό Μεταβατική Τυρβώδες οριακό στρώμα Σχήμα. Δημιουργία οριακού στρώματος πάνω από οριζόντια στερεή επίπεδη επιφάνεια. Σημαντικό ρόλο στη μελέτη ροών γύρω από στερεά σώματα παίζουν και τα χαρακτηριστικά μεγέθη του οριακού στρώματος. Αυτά είναι το πάχος του οριακού στρώματος (boundary layer thickness) που συνήθως συμβολίζεται με δ, το πάχος μετάθεσης ή μετατόπισης (displacement thickness) που συμβολίζεται με δ και το πάχος απώλειας ορμής (momentum thickness) που συμβολίζεται με δ. Το πάχος (δ) του Ο.Σ. που περιγράφει τη γειτονική στην πλάκα, στην οποία παρατηρείται κατακόρυφη μεταβολή της ταχύτητας του ρευστού, δεν είναι σταθερό κατά την αξονική ως προς την πλάκα διεύθυνση, αλλά γενικά αυξάνεται καθώς μεγαλύτερες ποσότητες ρευστού επιβραδύνονται υπό την επίδραση των διατμητικών τάσεων, που αναπτύσσονται εντός του Ο.Σ. Για πρακτικές όμως εφαρμογές, το

δ(x) ορίζεται, σε μια θέση-απόσταση x από την έναρξη του Ο.Σ., ως η κάθετη απόσταση από την επιφάνεια του τοιχώματος όπου η ταχύτητα του αέρα γίνεται ίση με u=0.99.. Το πάχος του Ο.Σ., δ(x), αυξάνεται, με: α) αύξηση της απόστασης x από το χείλος προσβολής (σημείο x=0) β) αύξηση του ιξώδους, μ, του ρευστού γ) ελάττωση της πυκνότητας, ρ, του ρευστού δ) ελάττωση της ταχύτητας του ελεύθερου ρεύματος,. Ως πάχος μετατόπισης ή μετάθεσης, δ, ορίζεται ως το πάχος ενός ιδεατού στρώματος ρευστού, ομοιόμορφης ταχύτητας ίσης με του ελεύθερου ρεύματος (ατριβής ροή), μέσα στο οποίο η παροχή του ρευστού είναι ίση με τη μείωση της παροχής μέσα στο οριακό στρώμα, λόγω επιβράδυνσης της ροής. Ή διαφορετικά, η απόσταση κατά την οποία μετατίθεται η εξωτερική ροή (επειδή η ταχύτητα στο οριακό στρώμα ελαττώνεται) για να διατηρηθεί η συνέχεια της μάζας στο οριακό στρώμα, πάχους δ. Η επιβράδυνση του ρευστού μέσα στο οριακό στρώμα έχει σαν συνέπεια τη μείωση της παροχής σε σχέση με την παροχή, που θα υπήρχε εάν η πλάκα δεν βρισκόταν στην πορεία του ελεύθερου ρεύματος. Η αρχή διατήρησης της μάζας επιβάλει μία προς τα άνω μετατόπιση των ροϊκών γραμμών, ώστε να αυξάνονται οι διατομές και να διατηρείται σταθερή η παροχή. Το πάχος μετατόπισης δ του Ο.Σ., όπως και το πάχος δ, δίνεται ως συνάρτηση της απόστασης x από την αρχική ακμή. Ροϊκή Γραμμή δ Οριακό Στρώμα Σχήμα. Πάχος μετατόπισης οριακού στρώματος με βάση τη μετατόπιση των ροϊκών γραμμών Η ανάγκη ικανοποίησης της αρχής διατήρησης της ορμής οδηγεί στον ορισμό του πάχους ορμής κατ αναλογία με τον ορισμό του πάχους μετατόπισης. Ως πάχος απώλειας ορμής, δ, ορίζεται το πάχος ενός ιδεατού στρώματος ρευστού, ταχύτητας ίσης με του ελεύθερου ρεύματος, για το οποίο η εισροή ορμής είναι ίση με την αντίστοιχη μείωση αυτής δια μέσου του οριακού στρώματος, λόγω επιβράδυνσης της ροής. Το πάχος ορμής δ δίνεται και πάλι ως συνάρτηση της απόστασης x από την αρχική ακμή. Σε μόνιμη ροή, αντί των δ και δ παρουσιάζεται το πάχος απώλειας κινητικής ενέργειας, δ 3, το οποίο ορίζεται ως το πάχος του ιδεατού στρώματος ενέργειας ίσης με την απώλεια ενέργειας στο πραγματικό οριακό στρώμα πάχους δ. Η μέσα στην οποία για μικρή απόσταση από την αρχική ακμή της πλάκας (x=0) (χείλος προσβολής - leading edge), όλα τα στοιχεία του ρευστού κινούνται παράλληλα προς την επιφάνεια και μεταξύ τους, ονομάζεται στρωτό Ο.Σ. (Σχήμα ), ενώ στην, όπου η ροή παρουσιάζει κάποια σημάδια αστάθειας με την άτακτη και ακανόνιστη γένεση και απόσβεση δινών με αύξουσα συχνότητα ονομάζεται μεταβατική (Σχήμα ). Τέλος, μετά από κάποια απόσταση, η ροή καταλήγει να είναι πλήρως τυρβώδης (Σχήμα ). Στο τυρβώδες Ο.Σ., όλη η χαρακτηρίζεται από υψηλά επίπεδα τύρβης εκτός μιας πολύ λεπτής ζώνης, γνωστής ως στρωτό υπόστρωμα (laminar sublayer), η οποία βρίσκεται πολύ κοντά και σε επαφή με το στερεό τοίχωμα. Το αριθμητικό κριτήριο, που καθορίζει το είδος της ροής είναι ο τοπικός αριθμός Reynolds (), ο οποίος είναι και αυτός συνάρτηση της απόστασης x κατά μήκος της πλάκας ή του αγωγού από την αρχική θέση x=0. Ο τοπικός αριθμός Reynolds ορίζεται με βάση τη σχετική ταχύτητα του ελεύθερου ρεύματος και της ταχύτητας της πλάκας, = u σχ ν, u σχ = u πλάκα () Στην περίπτωση ροής, επάνω από επίπεδη οριζόντια επιφάνεια, η κρίσιμη τιμή του Re (Re cr) για τη μετάβαση από τη στρωτή στη μεταβατική είναι 0 5, ενώ για τη μετάβαση από τη μεταβατική στην πλήρως τυρβώδη είναι 5 0 5. Δηλαδή, αν 0 5 έχουμε στρωτό Ο.Σ., ενώ αν 5 0 5 έχουμε τυρβώδες Ο.Σ.

Λύση BLASIUS: Στρωτό Ο.Σ. Για τον υπολογισμό των χαρακτηριστικών μεγεθών του στρωτού Ο.Σ., ο Blasius πρότεινε μια σειρά από εξισώσεις, που ουσιαστικά είναι η επίλυση μιας σειράς διαφορικών εξισώσεων, οι οποίες προκύπτουν με τη σειρά τους από τις εξισώσεις κίνησης Navier-Stokes. Πίνακας. Χαρακτηριστικά στρωτού ΟΣ. κατά Blasius 5x Πάχος Στρωτού Οριακού Στρώματος x () Πάχος Μετατόπισης ή Μετάθεσης Στρωτού Οριακού Στρώματος x.73 x (3) Πάχος Ορμής Στρωτού Οριακού Στρώματος Πάχος Απώλειας Κινητικής Ενέργειας Στρωτού Οριακού Στρώματος x 0.664x (4) x 3 x 0.996 (5) u Διατμητική τάση στα τοιχώματα (6) 0 x 0.33u Διατμητική Δύναμη (Αντίστασης) F 0.664wu Lu (7) FD.38 CD Συντελεστής Τριβής (Αντίστασης) Re (8) wlu L D Η λύση της ροής του BLASIUS, εκφράζεται με τη μορφή σειράς άπειρων όρων, ενώ έχουν αναπτυχθεί και προσεγγιστικές μέθοδοι, όπως η μέθοδος ολοκλήρωσης της Ορμής ή μέθοδος VON KARMAN. Β. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ Η πειραματική μελέτη του στρωτού οριακού στρώματος σε επίπεδη πλάκα πραγματοποιείται στο θάλαμο δοκιμών της υποηχητικής αεροσήραγγας του Εργαστηρίου Ρευστομηχανικής. Η αεροσήραγγα και το διάγραμμα της μετρητικής διάταξης απεικονίζονται στα Σχήματα 3 και 4, αντίστοιχα. Ρ t Ρ t Ρ s Ρ s Pitot-Static Tube y x x Σχήμα 3. Yποηχητική αεροσήραγγα. Σχήμα 4. Σκαρίφημα επίπεδης πλάκας στο θάλαμο μετρήσεων. 3

Η αεροσήραγγα είναι εξοπλισμένη με ένα σωλήνα Pitot-Static. Η τομή ενός απλού σωλήνα Pitot παριστάνεται στο Σχήμα 5. Ο σωλήνας περιλαμβάνει ένα κάθετο κυλινδρικό στέλεχος και ένα οριζόντιο, το άκρο του οποίου φέρει μικρή εμπρόσθια οπή. Ο άξονας του σωλήνα Pitot, τοποθετείται παράλληλα προς την τοπική διεύθυνση ροής, κι επομένως, η ταχύτητα του ρευστού στο στόμιό του είναι μηδέν. Σε αυτό το σημείο, η πίεση λαμβάνει τη μέγιστη τιμή, ίση με την ολική πίεση του ρευστού. Σχήμα 5. Σκαρίφημα σωλήνα Pitot Η μορφή του σωλήνα Pitot-static (σχήμα 6) είναι παρόμοια αυτής του Pitot, με τη διαφορά, ότι το οριζόντιο στέλεχος φέρει επιπλέον οπές πλευρικά, για τη μέτρηση της στατικής πίεσης του ρευστού (πέραν της ολικής), εντός του πεδίου ροής. Στατική είναι η πίεση, την οποία έχει το ρευστό, όταν βρίσκεται σε στατική ισορροπία. Το άλλο άκρο του σωλήνα Pitot-static συνδέεται σε ένα μικρομανόμετρο. Σχήμα 6. Σκαρίφημα σωλήνα Pitot-static Σχετικά με την ακρίβεια των μετρήσεων, αυτή επηρεάζεται από: α) την παρουσία των σωλήνων Pitot, η οποία προκαλεί πύκνωση των ροϊκών γραμμών, οπότε η μετρούμενη ταχύτητα είναι λίγο μεγαλύτερη από την πραγματική του ρευστού β) τις θέσεις λήψης στατικής και ολικής πίεσης, οι οποίες δεν συμπίπτουν, όπως θα έπρεπε γ) πιθανή μη ευθυγράμμιση του άξονα του σωλήνα με την τοπική διεύθυνση της ροής δ) ταλαντώσεις του σωλήνα Pitot στο ρεύμα του ρευστού Γ. ΥΠΟΛΟΓΙΣΤΙΚΟ ΜΕΡΟΣ Με τη βοήθεια της αεροσήραγγας και του σωλήνα Pitot-Static (Prandtl), που μετατοπίζεται στις θέσεις x =0.84m και x =.03m αντίστοιχα από το χείλος προσβολής της οριζόντιας επίπεδης επιφάνειας της αεροσήραγγας, λαμβάνουμε μετρήσεις στατικής και ολικής πίεσης και συμπληρώνουμε τον Πίνακα.. Να καταγραφεί η θερμοκρασία (θ) σε C και η ατμοσφαιρική πίεση (Η) σε mmhg από το βαρόμετρο του εργαστηριακού χώρου. Στη συνέχεια, να διορθωθεί η ένδειξη της ατμοσφαιρικής πίεσης λόγω θερμικής συστολής-διαστολής του Hg και του υάλινου σωλήνα του βαρόμετρου, σύμφωνα με την έκφραση (9), όπου Τ (Κ) = θ ( C) + 73.5: Η = Η 0.(Τ 73.5) (9) 4

. Να υπολογιστεί η πυκνότητα του αέρα (ρ α) σε kg/m 3 με βάση την εμπειρική σχέση (0): 73.5 Η ρ α =.93 760 Τ 3. Με βάση τις παρακάτω πειραματικές τιμές και την εξίσωση () να υπολογιστεί η ταχύτητα του αέρα σε κάθε ύψος (y), για κάθε θέση x και x και να συμπληρωθούν κατάλληλα οι αντίστοιχες στήλες του Πίνακα. (0) = ΔP ρ α () Πίνακας. Πειραματικές τιμές στατικής και ολικής πίεσης του σωλήνα Pitot στις θέσεις x και x A/A x = 0.84m x =.03m y (mm) h s (Pa) h t (Pa) u (m/s) y (mm) h s (Pa) h t (Pa) u (m/s) 3 4 5 6 7 8 9 0 4. Να υπολογιστεί το μοριακό ιξώδες του ρευστού, με τη βοήθεια της σχέσης Sutherland, η οποία για αέρα, δίνεται από τη σχέση (): μ = 7.7 0 6 ( 383.5 0 + Τ ) ( Τ 73.5 ).5 5. Να υπολογιστεί ο αριθμός Re στις θέσεις x και x. Τι είδος ροής παρατηρείται στις θέσεις x και x ; 6. Με βάση τα δεδομένα του Πίνακα, και με διάνυσμα κλίμακας cm να αντιστοιχεί σε ταχύτητα αέρα ίση με 0.5m/s, να γίνει το διάγραμμα κατανομής ταχυτήτων για τις δύο θέσεις x και x του σωλήνα Pitot-static. 7. Nα υπολογιστεί το θεωρητικό πάχος δ(x) του Στρωτού Ο.Σ. στις δύο θέσεις x και x. Να γίνει το διάγραμμα δ(x) = f(x) τόσο για τις θεωρητικές όσο και για τις πειραματικές τιμές του πάχους δ(x) του Στρωτού Ο.Σ., και να σχολιασθούν τυχόν αποκλίσεις. () Δεδομένα Διάμετρος του σωλήνα Pitot-static: 3mm 5