ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

Σχετικά έγγραφα
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗΣ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (ΟΕΦΕ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Β4 Έστω η συνάρτηση f ( ) = A( ) B( ) Βρείτε τη µέγιστη

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 10 Μαΐου 2015 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ορισµοί. Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ (κεφ. 2 )

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Άλγεβρα Γενικής Παιδείας Β Λυκείου 2001

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Παρατηρήσεις 1 Για α ααζητήσουµε το όριο της f στο, πρέπει η f α ορίζεται όσο θέλουµε κοτά στο, δηλαδή η f α είαι ορισµέη σ έα σύολο της µορφής ( α, )

( ) x 3 + ( λ 3 1) x 2 + λ 1

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να βρεθεί ο γεωμετρικός τόπος των εικόνων των μιγαδικών z για τους οποίους ισχύει:

2.2 ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ R ΤΩΝ ΜΙΓΑΔΙΚΩΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 2000

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

3 η δεκάδα θεµάτων επανάληψης

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 17 Απριλίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

ΑΛΓΕΒΡΑ ΤΗΣ Β ΤΑΞΗΣ. ηµχ = ηµθ χ=2κπ+θ ή χ=2κπ+π-θ, κ Z συνχ = συνθ χ=2κπ+θ ή χ=2κπ-θ, κ Z εφχ = εφθ χ=κπ+θ, κ Z σφχ = σφθ χ=κπ+θ, κ Z

4.2 ΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 23/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μαθηματικά B Λυκείου

ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

2 η δεκάδα θεµάτων επανάληψης

Η παραπάνω ιδιότητα γενικεύεται και για περισσότερους από δύο πραγµατικούς αριθµούς. Έτσι έχουµε: αβγ α β γ = β β. d a β = α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ( ) Να αποδείξετε ότι για κάθε θετικό ακέραιο ν ισχύει : ! + 2 2! + 3 3! + +ν ν! = (ν + 1)!

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

ΛΥΚΕΙΟ ΜΕΤΑΜΟΡΦΩΣΗΣ 2014 ΒΑΣΙΚΗ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

Προσομοίωση προαγωγικών εξετασεων Άλγεβρας Β Λυκείου Σχ. έτος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Επαναληπτικές Ασκήσεις

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

1. * Η ακολουθία είναι µια συνάρτηση µε πεδίο ορισµού το σύνολο Α. Q Β. Ζ* Γ. Ν. Ν* Ε. R

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για

2.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ R

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

5.5 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΟ C

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

Επαναληπτικές Ασκήσεις Φάκελος : Άλγεβρα Β-Λυκείου Επιµέλεια : Φωτεινή Καλδή

Θέµατα Άλγεβρας Γενικής Παιδείας Β Λυκείου 1999 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

(πολλδ β) = πολλδ + ( 1) ν β ΕΥΣΤΡΑΤΙΟΣ ΚΩΣΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΘΟ ΙΚΟ ΙΑΙΡΕΤΟΤΗΤΑ

Θέµατα Εξετάσεων Άλγεβρας Β Λυκείου

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Β 2016

Εκφωνήσεις Λύσεις των θεμάτων

4.4 ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ

ΚΕΦΑΛΑΙΟ 5ο: ΕΚΘΕΤΙΚΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

1. Το σύνολο των μιγαδικών αριθμών

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

x 1 δίνει υπόλοιπο 24

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

25 Λυμένα 2 α θέματα Άλγεβρας από την Τράπεζα Θεμάτων. 1 ο GI_A_ALG_2_999

ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΗΡΑΚΛΕΙΟΥ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

1ο Κεφάλαιο: Συστήματα

4.3 ΔΙΑΙΡΕΤΟΤΗΤΑ. Εισαγωγή

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

Μάθηµα 5. Κεφάλαιο: ιαφορικός Λογισµός. Θεµατικές ενότητες: 1. Συνέχεια συνάρτησης

1 η δεκάδα θεµάτων επανάληψης

ΕΚΦΩΝΗΣΕΙΣ. οι f, g είναι συνεχείς στο και f (x) = g (x) για κάθε εσωτερικό σηµείο του, ÏÅÖÅ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

5 η δεκάδα θεµάτων επανάληψης

Transcript:

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηία: Κυριακή Απριλίου ΘΕΜΑ A ΑΠΑΝΤΗΣΕΙΣ Α.. Θεωρία Σχολικό Βιλίο (έκδοση ) σελίδα 9. Α.. Θεωρία Σχολικό Βιλίο (έκδοση ) σελίδα 95. Α.. α) Σωστό ) Λάθος γ) Λάθος δ) Λάθος ε) Λάθος A.. Αριθµός Με µορφή λογαρίθµου Με µορφή δύαµης log 7 log 7 log log log ln e ΘΕΜΑ Β Β.. Έχουµε f (x) = x x + = (). Επειδή όλοι οι συτελεστές είαι ακέραιοι, οι πιθαές ακέραιες ρίζες της εξίσωσης f (x) =, είαι το - ή το. Το - δε είαι ρίζα, γιατί f ( ) = ( ) ( ) + =. Εώ το είαι ρίζα, γιατί f () = () () + =. Με εφαρµογή του σχήµατος Horner έχουµε: - ρ= - - - - ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 5

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ(α) Η εξίσωση () είαι τώρα ισοδύαµη µε τη Έτσι, x = x = ή x x = µε ρίζες x= ή x= - αφού =9. (x )(x x ) =. Οι ρίζες λοιπό της εξίσωσης () είαι x= ή x= (διπλή). Β.. Επειδή το α = είαι η διπλή ρίζα τότε: π π ηµ x = ηµ x = ηµ x = κπ + ( κ Z ) ή π π x = κπ + π = κπ + ( κ Z ). Όµοια, το = είαι η άλλη ρίζα οπότε: π π π συ x = συ x = συ( π ) x = κπ + ή x = κπ ( κ Z ). Β.. Επειδή η γραφική παράσταση της f δε είαι πάω από το άξοα x x πρέπει: f (x) (x )(x x ).Το πρόσηµο της f (x) φαίεται στο παρακάτω πίακα: x - -/ + x- - - + x -x- + - + f(x) - + + Έτσι, οι τιµές τω x R για τις οποίες η γραφική παράσταση της f δε ρίσκεται πάω από το άξοα x x είαι: x ή x=. Β.. Έχουµε f ( x) = ( x) ( x) + = x x +. Εκτελούµε τη ευκλείδεια διαίρεση, όπως φαίεται παρακάτω: -x - x +x+ x + x +x -x- - x +x + + x + x+ Το πηλίκο είαι: π (x) = x και το υπόλοιπο: υ (x) = x +. Εποµέως, f ( x) = (x + )( x ) + (x+ ). ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 5

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ(α) ΘΕΜΑ Γ Γ.. Αφού ln α,ln,ln γ διαδοχικοί όροι αριθµητικής προόδου ισχύει: ln ln ln ln ln () = α + γ = αγ = αγ. Για τη συάρτηση f µε f (x) = α x + x + γ, x R έχουµε: = αγ = = <, αφού >. Επειδή α > και < είαι f (x) >, για κάθε πραγµατικό αριθµό x. Έτσι το πεδίο ορισµού της συάρτησης h είαι το R. Γ. α) Είαι Επειδή έχουµε ln log γ α = α = ln e =, α = e =, α = = γ. α 5 = α λ. Έχουµε 5 56 α = α λ, όπου λ ο λόγος της προόδου, τότε για = 5 α = και α =, 56 = λ λ = λ = ή λ =. α Επειδή λ = = > τότε η τιµή λ = απορρίπτεται. α Για λ = έχουµε = α λ = και γ = λ = = 6. Έτσι, λοιπό α =, = και γ = 6. εποµέως ) Για α =, =, γ = 6 είαι f (x) = x + x+ 6 και g(x) = ηµ x +. Η εξίσωση f ( συ x) = g(x) είαι ισοδύαµη µε τη συ + συ + = ηµ + Επειδή x x 6 x συ x + συx ηµ x 5 = (). ηµ x = συ x τότε από τη () έχουµε: συ x + συx + συ x 5 = συ x + συx 6 = συ x + συx = (). Θέτουµε συ x = y όπου y οπότε η () γίεται µε ρίζες y= ή y=. Η y= απορρίπτεται. y + y = Για y= έχουµε: συ x = συ x = συ x = κπ, κ Z. Όµως, x (, π] < x π < κπ π < κ. Ο κ είαι ακέραιος, οπότε κ = ή κ =. Για κ = : x = π και για κ = : x = π. Γ.. Αφού ω > τότε = π και = π. Η διαφορά είαι: ω = = π. Ο ιοστός όρος της αριθµητικής προόδου ( ) είαι: = + ( ) ω = π + ( )π = π. Το άθροισµα τω πρώτω δίεται από το τύπο S = ( + ). ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 5

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ(α) Επειδή Sv = 55π έχουµε: 55 π = (π + π) 55 π = π( + ) + = 55 + 55 =. Η διακρίουσα είαι = ( 55) = =. + Έτσι, = = 5 ή = = 5. Επειδή ο είαι θετικός ακέραιος, τότε = 5. ΘΕΜΑ.. Για α ορίζεται η g πρέπει α ισχύει x>. Έτσι, Α g = (, + ) (είαι ln γιατί ) Για α συγκρίουµε g και ρίσκουµε το πρόσηµο της διαφοράς Είαι ln ln ln ln ln ln ln ln g = = = = =. ln ln ln ln ln Όµως < άρα ln < και >, οπότε ln >. g < g <. Είαι Εαλλακτικά λύουµε τη ln g < < ln αληθεύει, γιατί <. επί ln> g. ln < ln ln < ln ln < ln η οποία.. x x > και ln( ). ln > x x x ln Για α ορίζεται η f πρέπει Έχουµε > > ln > ln x ln > ln x > ln και x ln x ln x x ln x x. ln Από το είαι ln <, οπότε ln Α f = (,), +. ln.. Είαι f( log ) κ = = ln log κ ( ) ln( κ ) log, αφού κ = κ. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: ΑΠΟ 5

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΓΑ(α) κ < <. ln Έχουµε f( log ) ( κ ) Επειδή κ > ισχύει Οπότε Τελικά ln κ >. ln κ > ln κ > ln e κ > e κ > + e. κ ( + e, + )... Το υπόλοιπο της διαίρεσης ( x 7x + 6 ) :( x+ ) υ (x) = 7 + 6 = 7 + 6 =. είαι Έχουµε υ (x) = (f ) x + g( α ) + g( α ) + g( α ) +... + g( α ). ln Από τη ισότητα τω δύο πολυωύµω έχουµε : f = και g( α ) + g( α ) + g( α ) +... + g( α ) =. ln ιαδοχικά έχουµε: f = f( ) = = ln ( ) ln = ln e = e = e + () και g( α ) + g( α ) + g( α ) +... + g( α ) = ln lnα ln α ln α ln α + + +... + = ln ln ln ln ln l ( ln α + ln α + ln α +... + ln α ) = ln ln ln α ( + + +... + ) = (). ln ln Το S= + + +... + είαι άθροισµα τω πρώτω όρω της αριθµητικής προόδου µε α =, ω =.Έτσι, S = ( α + α ) = ( + ) =. Από τη () προκύπτει ln α = ln α = α = e () ln ln Έτσι, έχουµε () () ln ln e = (e ) = = e + = α +. ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΜΟΝΑ ΑΣ ΣΕΛΙ Α: 5 ΑΠΟ 5