Spectrum Representation (5A) Young Won Lim 11/3/16

Σχετικά έγγραφα
Sampling Basics (1B) Young Won Lim 9/21/13

Digital Signal Octave Codes (0B)

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

CORDIC Background (4A)

CORDIC Background (2A)

BandPass (4A) Young Won Lim 1/11/14

Trigonometry Functions (5B) Young Won Lim 7/24/14

CT Correlation (2B) Young Won Lim 8/15/14

LTI Systems (1A) Young Won Lim 3/21/15

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

Ψηφιακή Επεξεργασία Φωνής

Σήματα και Συστήματα ΙΙ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Σήματα διακριτού χρόνου

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Assignment 1 Solutions Complex Sinusoids

Fundamentals of Signals, Systems and Filtering

Σήματα και Συστήματα ΙΙ

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Second Order RLC Filters

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Εγχειρίδιο Ψαριού i. Εγχειρίδιο Ψαριού

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

6.003: Signals and Systems. Modulation

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

MathCity.org Merging man and maths

ΣΤΗΑ ΨΕΣ /5/2013 2:27 µµ. Θυµηθείτε τον ορισµό του Περιοδικού Σήµατος ιακριτού Χρόνου: την ακολουθία σηµάτων: jk n N ( ) sagri@di.uoa.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation


ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1 / 55

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι

Παρουσίαση 5 η : Εισαγωγή στα σήματα

HMY 220: Σήματα και Συστήματα Ι

Chapter 6 BLM Answers

Ψηφιακή Επεξεργασία Φωνής

Probability and Random Processes (Part II)

derivation of the Laplacian from rectangular to spherical coordinates

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

Tables in Signals and Systems

Review of Single-Phase AC Circuits

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Γεράσιµος Ποταµιάνος. Αναπλ. Καθηγητής, Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Πανεπιστήµιο Θεσσαλίας

Note: Please use the actual date you accessed this material in your citation.

3 Frequency Domain Representation of Continuous Signals and Systems

ΑΝΑΛΥΣΗ ΑΠΟΚΡΙΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΕ FOURIER

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

HMY 220: Σήματα και Συστήματα Ι

Math221: HW# 1 solutions

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT. Σ.

Ψηφιακή Επεξεργασία Σημάτων

Lecture 12 Modulation and Sampling

1 String with massive end-points

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. Διακριτός Μετασχηματισμός Fourier DFT

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ΚΕΦΑΛΑΙΟ 3 ο. Μετασχηματισμός FOURIER Διακριτού Χρόνου DTFT. (Discrete Time Fourier Transform) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ Σ. ΦΩΤΟΠΟΥΛΟΣ ΔΠΜΣ 1/ 45

Δειγματοληψία και ανακατασκευή αναλογικών σημάτων

Magnetically Coupled Circuits

ECE 468: Digital Image Processing. Lecture 8

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 6

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Επεξερασία εικόνας. Μιχάλης ρακόπουλος. Υπολογιστική Επιστήµη & Τεχνολογία, #09

14.5mm 14.5mm

Μετασχημ/μός Fourier Διακριτών Σημάτων - Διακριτός Μετασχημ/μός Fourier. Στην απόκριση συχνότητας ενός ΓΧΑ συστήματος ο μετασχηματισμός :

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

HMY 799 1: Αναγνώριση Συστημάτων

ΠΛΗ 22: Βασικά Ζητήματα Δίκτυα Η/Υ

ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Εισαγωγή. Διάλεξη 1. Εισαγωγή Σήματα και Συστήματα Διακριτού Χρόνου. Τι είναι σήμα; Παραδείγματα

x[n] = x[n] = e j(k+rn)ωon = cos(k 2π N n + r2πn) + jsin(k 2π N n + r2πn) = cos(k 2π N n) + jsin( 2π N x[n] e j 2π N n = e j(k r) 2π N n = (2.

Buried Markov Model Pairwise

Example Sheet 3 Solutions

Ψηφιακή Επεξεργασία Σημάτων

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Εξεταστική Ιανουαρίου 2007 Μάθηµα: «Σήµατα και Συστήµατα»

Approximation of distance between locations on earth given by latitude and longitude

Fourier Analysis of Waves

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ FOURIER ΔΙΑΚΡΙΤΩΝ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ. DTFT και Περιοδική/Κυκλική Συνέλιξη

Lifting Entry (continued)

What happens when two or more waves overlap in a certain region of space at the same time?

Section 8.3 Trigonometric Equations

Σήματα και Συστήματα. Διάλεξη 6: Ανάλυση Σημάτων σε Ανάπτυγμα Σειράς Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Kεφάλαιο 5 DFT- FFT ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER DISCRETE FOURIER TRANSFORM 1/ 80. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ DFT-FFT Σ.

Κεφάλαιο 6 Μετασχηματισμός Fourier συνεχούς χρόνου και Απόκριση συχνοτήτων

Signal Processing. Magnus Danielsen. An Introduction. NVDRit 2007:

Σ.Δ.ΦΩΤΟΠΟΥΛΟΣ ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 3

Transcript:

Spectrum (5A)

Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

Fourier Series with real coefficients 1 x(t ) = a 0 + ( a k cos(k ω 0 t) + b k sin(k ω 0 t )) k =1 a x(t ) = g 0 + k =1 g k cos(k ω 0 t + ϕ k ) b x(t ) = X 0 + R {X k e + j k ω 0 t } X k = g k e + jϕ k 3

Phasor X k via g k, ϕ k x(t ) = g 0 x(t ) = g 0 + + g k cos(k ω 0 t + ϕ k ) g k R {e + j(k ω 0t + ϕ k ) } x(t ) = g 0 + R {g k e + j ϕ k e + j k ω 0 t } X k = g k e + jϕ k 4

Fourier Series with complex coefficients 4 x(t ) = + C k e + j k ω 0t k= a x(t ) = g 0 + k =1 g k cos(k ω 0 t + ϕ k ) b x(t ) = X 0 + R {X k e + j k ω 0 t } C k = 1 2 g +k e + j ϕ k (k > 0) C k = 1 2 g k e j ϕ k (k < 0) 5

Complex Coefficient C k via g k, ϕ k 4 x(t ) = + C k e + j k ω 0t k=, C 1, C 0, C +1, x (t) = g 0 + = g 0 + = g 0 + g k cos(k ω 0 t + ϕ k ) g k 1 2 (e+ j(k ω 0t + ϕ k ) + e j(k ω 0t + ϕ k) ) ([ 1 k] 2 g k e+ j ϕ e+ j k ω0t [ + 1 k] 0t) 2 g k e j ϕ e j k ω = g 0 + ( [ C k ] e + j k ω t 0 + [C k ] e j k ω t 0 ) C k = 1 2 g +k e + j ϕ k (k > 0) C k = 1 2 g k e j ϕ k (k < 0) g 0, g 1, g 2, 6

Fourier Coefficients Relationship 1 k = 1, 2,... a a 0 = 1 T T 0 x(t) dt a k = 2 T T 0 x(t) cos (k ω0 t) dt b k = 2 T T 0 x(t) sin (k ω0 t) dt k = 1, 2,... g 0 = a 0 g k = a k 2 + b k 2 ϕ k = tan 1 ( b k a k ) 4 k = 0, ±1, ±2,... b k = 1, 2,... C k = 1 2 g +k e + j ϕ k (k > 0) X 0 = g 0 C k = 1 2 g k e jϕ k (k < 0) X k = g k e + j ϕ k 7

Single-Sided Spectrum x(t) = a 0 + ( a k cos(k ω 0 t) + b k sin(k ω 0 t)) x(t) = g 0 + g k cos(k ω 0 t + ϕ k ) a 0 = 1 T 0 a k = 2 T 0 b k = 2 T 0 T x(t) dt T x(t) cos (k ω0 t) dt T x(t ) sin (k ω0 t) dt a 0, a 1, a 2,... b 0, b 1, b 2,... g 0 = a 0 g k = a k 2 + b k 2 ϕ k = tan 1 ( b k a k ) g 0, g 1, g 2,... ϕ 0, ϕ 1, ϕ 2,... 8

Single-Sided Spectrum x(t) = a 0 + ( a k cos(k ω 0 t) + b k sin(k ω 0 t)) x(t) = g 0 + g k cos(k ω 0 t + ϕ k ) cos(α +β) = cos(α) cos(β) sin(α) sin(β) g k cos(k ω 0 t + ϕ k ) = g k cos (ϕ k ) cos(k ω 0 t) g k sin(ϕ k ) sin (k ω 0 t) a k cos(k ω 0 t ) + b k sin(k ω 0 t ) a k 2 + b k 2 = g k 2 b k a k = tan (ϕ k ) a 0 = g 0 a k = g k cos(ϕ k ) b k = g k sin(ϕ k ) g 0 = a 0 g k = a k 2 + b k 2 ϕ k = tan 1 ( b k a k ) 9

Periodogram a x(t ) = g 0 + k =1 g k cos(k ω 0 t + ϕ k ) Periodogram One-Sided g k = a k 2 + b k 2 g 0, g 1, g 2, 10

Power Spectrum 4 x(t ) = + C k e + j k ω 0t k= Power Spectrum Two-Sided C k 2 = 1 (a 2 4 k + b 2 k ), C 1, C 0, C +1, 11

Power Spectrum 4 x(t ) = + C k e + j k ω 0t k= Power Spectrum P = 1 T T x (t ) 2 dt C k 2 = 1 (a 2 4 k + b 2 k ) = 1 T T x(t)x (t )dt T C k = 1 T 0 T C k = 1 T 0 x(t) e j k ω 0 t dt x (t) e + j k ω 0 t dt = 1 T T x + (t) C k e + j k ω 0t dt k= = 1 + C T k x (t) e + j k ω 0t dt k= T = 1 + C T k T C k k= = C k 2 12

Two-Sided Spectrum x(t) = a 0 + ( a k cos(k ω 0 t) + b k sin(k ω 0 t )) x(t) = g 0 + gk cos(k ω 0 t + ϕ k ) x(t) = + C k e + j k ω 0 t k= x(t) = + C k e + j k ω 0 t k= C k = a 0 (k = 0) 1 2 k j b k ) (k > 0) 1 2 k + j b k ) (k < 0) C k = g 0 (k = 0) 1 2 +k e + jϕ k (k > 0) 1 2 k e j ϕ k (k < 0) C k = a 0 (k = 0) 1 2 a k 2 + b k 2 (k 0) C k = g 0 (k = 0) 1 2 g k (k 0) Arg(C k ) = tan 1 ( b k /a k ) (k > 0) tan 1 (+b k / a k ) (k < 0) Arg(C k ) = +ϕ k (k > 0) ϕ k (k < 0) Power Spectrum Two-Sided Periodogram One-Sided C k 2 = C k 2 = 1 4 g k 2 = 1 (a 2 4 k + b 2 k ) g k = 2 C k = a 2 2 k + b k 13

Spectrum Real Single-tone Sinusoidal Signal x(t) = A cos(ω 0 t + ϕ) = R{X e j ω 0 t } = { X 2 e+ j ω 0t + X 2 e j ω 0t } A cos(ω 0 t + ϕ) = A 2 (e+ j(ω 0t + ϕ) + e j(ω 0 t + ϕ) ) = A 2 (e+ j ϕ e + j ω 0t + e j ϕ e j ω 0t ) = {A e+ j ϕ } 2 e + j ω 0 t + {A e+ j ϕ } e j ω 0 t 2 X = A e j ϕ 14

Spectrum Real Single-tone Sinusoidal Signal x(t) = A cos(ω 0 t + ϕ) = R{X e j ω 0 t } Real Multi-tone Sinusoidal Signal N x(t) = A 0 + k =1 N = X 0 + R{ A k cos(ω k t + ϕ k ) X k e j ω k t } = { X 2 e+ j ω 0t + X 2 e j ω 0t } N = X 0 + { X k 2 e+ j ω t k + X k 2 e jω k t} X = A e j ϕ X k = A k e j ϕ k the phasor of angular frequency ω k X 0 = A 0 15

Spectrum X k 2 e j ω k t X k 2 ω k X k 2 e+ j ω kt X k 2 +ω k Real Multi-tone Sinusoidal Signal N x(t) = A 0 + = X 0 + R{ N = X 0 + N A k cos(ω k t + ϕ k ) X k e j ω k t } { X k 2 e+ j ω t k + X k 2 e jω k t} only magnitude is display X k = A k e j ϕ k the phasor of angular frequency ω k X 0 = A 0 16

Frequency Resolution ω 0, ^ω 0 CTFS 0 T 0 + Continuous Time period : T 0 seconds DTFS / DFT 0 + ω 0 = 2π Discrete Frequency ω 0 ω 0 T 0 0 T s T s Discrete Time period : N 0 samples π 0 ^ω 0 ^ω 0 +π Normalized Discrete Frequency ^ω 0 = 2π N 0 17

T 0 period and N 0 samples x(t ) Continuous Time T 0 period frequency resolution ω 0 = 2 π T 0 T 0 = N 0 T s ω 0 = 2 π N 0 T s T s ω 0 1/T s = 2 π N 0 T s T s f s x[n] T s Discrete Time N 0 samples ^ω 0 = 2 π N 0 normalized frequency resolution 18

Replication Frequencies and Frequency Resolutions ω = 2 π T Continuous Time ω s = 2 π T s replication frequency ω 0 = 2 π T 0 frequency resolution ω = ^ω T s Discrete Time ^ω s = 2 π 1 replication frequency T 0 = N 0 T s ^ω 0 = 2 π N 0 frequency resolution 19

Different Sampling Periods x(t ) T 0 period ω s = 2 π T s ω = ^ω T s ω T s = ^ω T 1 N 1 = T 2 N 2 x 1 [n] T s = T 1 N 1 samples replication frequency ω s1 = 2 π T 1 ^ω s1 = 2π x 2 [n] N 2 samples replication frequency ω s2 = 2π T 2 ^ω s2 = 2 π T s = T 2 frequency resolutions T 1 > T 2 coarse ^ω 0 1 = ω 0 T 1 > ω 0 T 2 = ^ω 02 fine N 1 < N 2 ω 1 < ω 2 20

Different Sampling Periods ω s = 2 π T s ω = ^ω T s ω T s = ^ω ω s1 = 2π T 1 ^ω s1 = 2π ω 0 = 2π N 1 T 1 ^ω 01 = ω 0 T 1 ω s2 = 2 π T 2 ^ω s2 = 2 π ω 0 = 2π N 2 T 2 ^ω 0 2 = ω 0 T 2 frequency resolutions T 1 > T 2 coarse ^ω 0 1 = ω 0 T 1 > ω 0 T 2 = ^ω 02 fine N 1 < N 2 ω 1 < ω 2 21

Normalized Frequency Resolution ω 0 = 2π N 1 T 1 ω s1 = 2 π T 1 replication frequency ^ω 0 1 = ω 0 T 1 coarse frequency resolution ^ω 02 = ω 0 T 2 fine frequency resolution ω 0 = 2π N 2 T 2 ω s2 = 2 π T 2 replication frequency 22

Frequency and Digital Frequency Continuous Time x (t) = cos(ω 0 t ) ω 0 = 2π T 0 T 0 t T s x [n] = x(nt s ) = cos(n ω 0 T s ) = cos(n ^ω 0 ) Discrete Time ^ω 0 = 2π N 0 ^ω = ω T s = ω f s ω 0 = 2 π N 0 T s 23

Frequency and Digital Frequency Frequency ω (rad /sec) ω s ω s 2 + ω s 2 +ω s ω = ^ω T s ω 0 ω s ω 0 +ω 0 +ω 0 +ω s e j(ω 0+ω s )t e j ω 0 t e + jω 0 t e + j(ω 0+ω s )t Digital Frequency ^ω (rad / sample) 2 π π +π +2π ^ω = ω T s ^ω 0 2 π ^ω 0 + ^ω 0 + ^ω 0 +2π e j( ^ω 0+2 π)n e j ^ω 0 n e + j ^ω 0 n e + j( ^ω 0+2 π )n 24

Fourier Transform Types Continuous Time Fourier Series C k = 1 T 0 N 1 γ[k ] = 1 N n = 0 T x(t ) e j k ω 0 t Discrete Time Fourier Series dt x[n] e j k ^ω 0 n Continuous Time Fourier Transform X ( j ω) = Discrete Time Fourier Transform X ( j ^ω) = + x(t) e j ωt dt + n = x[n] e j ^ω n x(t ) = + k= N 1 x[n] = k = 0 C k e + j k ω 0 t γ[k] e + j k ^ω 0 n x(t ) = 1 + + j 2 π X ( j ω) e ωt d ω x[n] = 1 +π 2π π X ( j ^ω) e + j ^ω n d ^ω 25

Continuous Time Continuous Time Fourier Series C k = 1 T 0 T x(t ) e j k ω 0 t + dt x(t ) = k= C k e + j k ω 0 t Continuous Time Fourier Transform X ( j ω) = + x(t) e j ωt dt x(t ) = 1 + + j 2 π X ( j ω) e ωt d ω 26

Discrete Time Discrete Time Fourier Series N 1 γ[k ] = 1 N n = 0 x[n] e j k ^ω 0 n N 1 x[n] = k = 0 γ[k] e + j k ^ω 0 n Discrete Time Fourier Transform X ( j ^ω) = + n = x[n] e j ^ω n x[n] = 1 +π 2π π X ( j ^ω) e + j ^ω n d ^ω 27

Continuous Time Signal Spectrum CTFS CTFT C k = 1 T 0 T x(t ) e j k ω 0 t dt X ( j ω) = + x(t) e j ωt dt C k e jk ω 0t C k e + j k ω 0t X ( j ω) e j ωt X (+ j ω)e + jω t C k C k X ( j ω) X (+ j ω) k ω 0 + k ω 0 ω + ω only magnitude is display only magnitude is display 28

Discrete Time Signal Spectrum DTFS N 1 γ[k ] = 1 N n = 0 DTFT + x[n] e j k ^ω n 0 X ( j ^ω) = n = x[n] e j ^ω n γ [ k ]e j k ^ω 0n γ [+k] e + jk ^ω 0n X (e j ω )e j ω n X (e + j ω )e + j ω n γ [ k ] γ [+k] X ( j ^ω) X (+ j ^ω) π k ^ω 0 +k ^ω 0 + π π ω + ω + π only magnitude is display only mag is display 29

30

References [1] http://en.wikipedia.org/ [2] J.H. McClellan, et al., Signal Processing First, Pearson Prentice Hall, 2003 [3] M.J. Roberts, Fundamentals of Signals and Systems [4] S.J. Orfanidis, Introduction to Signal Processing [5] K. Shin, et al., Fundamentals of Signal Processing for Sound and Vibration Engineerings [6] A graphical interpretation of the DFT and FFT, by Steve Mann