Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Σχετικά έγγραφα
Solutions - Chapter 4

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Dispersive estimates for rotating fluids and stably stratified fluids

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Metastable states in a model of spin dependent point interactions. claudio cacciapuoti, raffaele carlone, rodolfo figari

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Prey-Taxis Holling-Tanner

On the Galois Group of Linear Difference-Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Heisenberg Uniqueness pairs

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Markov chains model reduction

A General Note on δ-quasi Monotone and Increasing Sequence

Single-value extension property for anti-diagonal operator matrices and their square

D Alembert s Solution to the Wave Equation

Homomorphism in Intuitionistic Fuzzy Automata

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Geodesic paths for quantum many-body systems

Homework 8 Model Solution Section

Differential equations

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Lecture 21: Scattering and FGR

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SPECIAL FUNCTIONS and POLYNOMIALS

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Lifting Entry (continued)

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Higher spin gauge theories and their CFT duals

Durbin-Levinson recursive method

Dynamics of cold molecules in external electromagnetic fields. Roman Krems University of British Columbia

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Derivation of Optical-Bloch Equations

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Inflation and Reheating in Spontaneously Generated Gravity

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Uniform Convergence of Fourier Series Michael Taylor

The k-α-exponential Function

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Reminders: linear functions

Κβαντομηχανική Ι Λύσεις προόδου. Άσκηση 1

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions


Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Forced Pendulum Numerical approach

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

LTI Systems (1A) Young Won Lim 3/21/15

Α Ρ Ι Θ Μ Ο Σ : 6.913

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

x xn w(x) = 0 ( n N)

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Spherical Coordinates

Graded Refractive-Index

d 2 y dt 2 xdy dt + d2 x

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM


Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο


On Numerical Radius of Some Matrices

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Inverse trigonometric functions & General Solution of Trigonometric Equations

Hartree-Fock Theory. Solving electronic structure problem on computers

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

100x W=0.1 W=

Matrices and Determinants

Quantum Systems: Dynamics and Control 1

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Dark matter from Dark Energy-Baryonic Matter Couplings

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Μοντέρνα Θεωρία Ελέγχου

Εισαγωγή στην Ανάλυση και Προσοµοίωση Δυναµικών Συστηµάτων

Transcript:

207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba [9] [0] Adachi-Tamura [4] [5] Gérard- Laba Adachi [] Skibsted [2] 0 2 Møller [8] Adachi [2] 0 2 Yajima [23] 3 Nakamura [20] Møller-Skibsted [9] (Mourre ) Nakamura Korotyaev [5] 3 2 2000 Mathematics Subject Classification: 8Q05. Keywords: Magnetic fields, scattering theory, time-periodic quantum system. e-mail: mkawa@rs.tus.ac.jp

2. R 2 B(t) = (0, 0, B(t)) x = (x, x 2 ) R 2, p = i = ( i, i 2 ) m > 0, q R\{0} H 0 (t) H 0 (t) = 2m (p qa(t, x))2, A(t, x) = B(t) 2 ( x 2, x ). L 2 (R 2 ) A(t, x) V H(t) = H 0 (t) + V V V (x) V (x) (V) : (V) V C(R 2 ) σ > 0 C > 0 V (x) C( + x ) σ H 0 (t) propagator U 0 (t, 0), H(t) propagator U(t, 0) U(t, 0) U 0 (t, 0) B(t) B(t) { B t I B, B(t) = I B := [nt, nt + T B ), I 0 := + T B, (n + )T ), 0 t I 0, n Z n Z[nT B > 0, 0 < T B < T t I B B = (0, 0, B) ( on ) t I 0 ( off ) B(t + T ) = B(t), t on, off H B, Schrödinger H 0 H B := 2m (p qa(x))2, A(x) = B 2 ( x 2, x ), H 0 := p2 2m H 0 (t) H 0 (t) = { H B t I B, H 0 t I 0

U 0 (t, 0) { e i(t nt )H B U 0 (nt, 0) t [nt, nt + T B ), U 0 (t, 0) = e i(t nt T B)H 0 e it BH B U 0 (nt, 0) t [nt + T B, (n + )T ). off T 0 := T T B U 0 (T, 0) = e it 0H 0 e it BH B, U 0 (nt, 0) = (U 0 (T, 0)) n U 0 (t, 0) U 0 (T, 0) ω = qb m, ω = ω 2, ω = ω 2 = ω 4. ω Larmor Lemma 2.. t 0 S 0 0(t; x) S B 0 (t; x, y) S0(t; 0 x) := /(2t) 2πit eix2, S0 B m ω (t; x, y) := eim ω cot( ω t)x2 /2 e im ω ( ˆR( ωt)x) y/ sin( ω t) e im ω cot( ω t)y2 /2 2πi sin( ω t) e ith 0 ψ = S0(t; 0 x y)ψ(y)dy, R 2 e ith B ψ = S0 B (t; x, y)ψ(y)dy R 2 ( cos θ sin θ ˆR(θ) = sin θ cos θ H B Avron-Herbst-Simon [6], Adachi-Kawamoto [3] U 0 (T, 0) S 0 (T ; x, y) S 0 (T ; x, y) = 2πic θ e ix2 /(2θ ) e i( ˆR(ϕ )x) y/(c θ ) e iσ y2 /(2θ ), c, σ, θ, ϕ (2) L, L 2, L 2, L 22 θ = L 2 L 22, c = L 22, σ = L L 22, ϕ = ωt B. )

U 0 (nt, 0) = (U 0 (T, 0)) n S 0 (nt ; x, y) S 0 (nt ; x, y) = 2πic n θ n e ix2 /(2θ n) e i( ˆR(ϕ n)x) y/(c nθ n) e iσny2 /(2θ n). () c n, σ n θ n, ϕ n ( = θ n+ c 2 σ = c n+ θ n+ ( σ n+ = σ n θ n+ c 2 n ϕ n+ = ϕ + ϕ n. ) θ + c σ c n (θ /σ + θ n ), ) + θ n (c σ ) 2 (θ /σ + θ n ), c 2 n(θ /σ + θ n ), ϕ n, θ n ϕ n = n ωt B θ n θ n θ n+ = L 2θ n + L 22 L θ n + L 2, L = cos( ω T B ) ω T 0 sin( ω T B ), L 2 = m ω ( ω T 0 cos( ω T B ) + sin( ω T B )), (2) L 2 = m ω sin( ω T B ), L 22 = cos( ω T B ) α ± α = L α + L 2 L 2 α + L 22 D D = λ 2 0, λ 0 := L + L 22 2 = cos( ω T B ) 2 ω T 0 sin( ω T B ), λ ± := λ 0 ± λ 2 0, D > 0 µ n := λn + λ n λ + λ = λn + λ n 2 λ 2 0 (3) L 2 µ n θ n = L 22 µ n µ n

D off : T 0,cr := cos( ωt B ) ω sin( ωt B ), T 0 T 0,cr λ 0 + 0, i.e. D = λ 2 0 0, 0 < T 0 < T 0,cr (λ 0 + )(λ 0 ) < 0, i.e. D = λ 2 0 < 0. T 0,cr Theorem 2.2 (Adachi- K). propagator U 0 (nt, 0) () T 0 T 0,cr θ n = L 2 µ n L 22 µ n µ n, c n = L 22 µ n µ n, σ n = L µ n µ n L 22 µ n µ n, ϕ n = n ωt B T 0 = T 0,cr θ n = nl 2 nl 22 (n )λ 0, σ n = nl (n )λ 0 nl 22 (n )λ 0, c n = λ n 0 {nl 22 (n )λ 0 }, ϕ n = n ωt B Remark 2.3. [3] t R U 0 (t, 0) t nt L L U 0 (nt, 0)ψ L (R 2 ) 2πc nθ n ψ L (R 2 ) (4) c n θ n = { L 2 µ n T 0 T 0,cr, L 2 nλ n 0 T 0 = T 0,cr T 0 < T 0,cr λ 2 0 < (3) λ ± C λ ± < (4) nt e i(nt )H B L L U 0 (T, 0) ([3]) T 0 = T 0,cr L L (4) n e i(nt )H 0 off T 0,cr off T 0,cr

T 0 > T 0,cr λ 0 < λ > λ + < L 2 0 n T 0 T 0,res := sin( ω T B) ω cos( ω T B ) U 0 (nt, 0)ψ L (R 2 ) 2π µ n L 2 ψ L (R 2 ) Ce νn ψ L (R 2 ), ν > 0 Proposition 2.4. T 0 > T 0,cr T 0 T 0,res θ > 0, ψ L 2 (R 2 ) C > 0 ( + x ) θ U 0 (t, 0)( + x ) θ ψ dt C ψ L 2 (R 2 ) L 2 (R 2 ) R Remark 2.3 t R t t n = nt ( + x ) θ U 0 (nt, 0)( + x ) θ ψ C ψ L 2 (R 2 ) L 2 (R 2 ) (5) n Z Riesz-Thorin p 2, q = p/(p ) U 0 (nt, 0)ψ L p (R 2 ) Ce 2νn(/2 /p) ψ L q (R 2 ). Kato [4] ( + x ) θ U 0 (nt, 0)( + x ) θ ψ L 2 (R 2 ) Ce 2νn/p ( + x ) θ 2 L p (R 2 ) ψ L 2 (R 2 ) p 2 θ > 0 pθ > 2 p (5) T 0 > T 0,cr [8], [], [2], [7], [23] K := L 2 (T; L 2 (R 2 )), T = R/T Z ψ K, ψ(t) = ψ(t; ) L σ 0, L σ (L σ 0 ψ)(t) = U 0 (t, t σ) ψ(t σ), (L σ ψ)(t) = U(t, t σ) ψ(t σ).

L σ 0, L σ K Stone K Ĥ0, Ĥ e iσĥ0 ψ = L σ 0 ψ, e iσĥ ψ = L σ ψ Ĥ0 U 0 (t, 0) Floquet Floquet : Lemma 2.5. [ Yajima [24]] f K Ĥf = λf f(t) L 2 (R 2 )- f(t) = e iλt U(t, 0)f(0), U(T, 0)f(0) = e iλt f(0) U(T, 0)φ = e it λ φ f(t) := e itλ U(t, 0)φ D(Ĥ) Ĥf = λf. Lemma 2.6 (Kitada-Yajima [7], Enss-Veselić [8]). L 2 (R 2 ) = L 2 c(u(t, 0)) L 2 p(u(t, 0)) L 2 c(u(t, 0)) L 2 p(u(t, 0)) U(T, 0) Lemma 2.5 Floquet Ĥ Floquet Howland-Yajima method (Howland [] [2], Yajima [23]) Lemma 2.7 (Howland [] [2], Yajima [23]). W ± iσĥ0 := s lim eiσĥe σ ± Ran(W ± ) = K ac (Ĥ) Kac(Ĥ) K Ĥ W ± := s lim t ± U(t, 0) U 0 (t, 0) Ran(W ± ) = L 2 ac(u(t, 0)) L 2 ac(u(t, 0)) L 2 (R 2 ) U(T, 0) Theorem 2.8 (Adachi- K [3]). V (V) on, off T B, T 0 (T 0) 0 < ω T B < π, (T ) T 0 > T 0,cr, (T 2) T 0 T 0,res, if π/2 < ω T B < π Ran ( W ±) = L 2 ac(u(t, 0))

3. Howland-Yajima method Kato s smooth perturbation method (Kato [4])., i.e., V (Ĥ + i) K 2., i.e., ρ = V /2 sign(v ), ρ 2 = V /2, ψ K Γ R, sup λ Γ, ±µ>0 ρ (Ĥ λ iµ) ρ 2 ψ K C ψ K 3. W ± 3 Cook-Kuroda method W ± ψ C 0 (R 2 ) 0 V U 0 (t, 0)ψ L 2 (R 2 ) dt C 2.4 θ = σ 0 C C V U 0 (t, 0)ψ L 2 (R 2 ) dt 0 ( + x ) σ U 0 (t, 0)( + x ) σ ( + B(L 2 (R 2 )) x )σ ψ L 2 (R 2 ) dt σ > 0 2. Ĥ0 Kato-Kuroda [6] Ĥ H 0 Imz > 0 Floquet ( Imz < 0 ) ρ (Ĥ0 z) ρ 2 ψ = i { T n= 0 t + 0 e i(t+nt s)z ρ U 0 (t + nt, s)(ρ 2 ψ)(s)ds e i(t s)z ρ U 0 (t, s)(ρ 2 ψ)(s)ds } 2.4. U 0 (t, 0)

4. Remarks Remark 4.. Hill f (t) + ( ) 2 qb(t) f(t) = 0 2m Remark 4.2. Bony-Carles-Häfner-Michel [7] V (x) C(log( + x )) ε Ishida [3] log Remark 4.3. T 0 = T 0,cr 3 [5] 2 [5], [3] References [] Adachi, T.: On spectral and scattering theory for N-body Schrödinger operators in a constant magnetic field, Rev. in Math. Phys., 2, 99-240 (2002) [2] Adachi, T.: Asymptotic completeness for N-body quantum systems with longrange interactions in a time-periodic electric field, Comm. Math. Phys., 275, 443-477 (2007) [3] Adachi, T., Kawamoto, M.: Quantum scattering in a periodically pulsed magnetic field, A. H. P., 7, 2409-2438, (206) [4] Adachi, T., Tamura, H.: Asymptotic completeness for long-range many particle systems with Stark effect, J. Math. Sci. Univ. Tokyo, 2, 77-6 (995) [5] Adachi, T., Tamura, H.: Asymptotic completeness for long-range many particle systems with Stark effect, II, Comm. Math. Phys. 74, 537-559 (996) [6] Avron, J.E., Herbst, I.W., Simon, B.: Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45, 847 883 (978) [7] Bony, J. F., Carles, R., Häfner, D., Michel, L.: Scattering theory for the Schrödinger equation with repulsive potential, J. Math. Pures Appl. 84, 509-579 (2005) [8] Enss, V., Veselić, K.: Bound states and propagtiong states for time-dependent hamiltonians, Ann. de l I. H. P., sect. A 39, 59-9 (983) [9] Gérard, C., Laba, I.: Scattering theory for N-particle systems in constant magnetic fields, Duke Math. J., 76, 433-465 (994) [0] Gérard, C., Laba, I.: Scattering theory for N-particle systems in constant magnetic fields, II, Comm. in P.D.E., 20, 79-830 (996) [] Howland, J.S.: Scattering theory for time-dependent Hamiltonians. Math. Ann. 207, 35-335 (974)

[2] Howland, J.S.: Scattering theory for Hamiltonians periodic in time. Indiana Univ. Math. J. 28, 47-494 (979) [3] Ishida, A.: The borderline of the short-range condition for the repulsive Hamiltonian, J. Math. Anal. and Appl., 438, 267-273 (206) [4] Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 62, 258-279 (966) [5] Korotyaev, E. L.: On scattering in an external, homogeneous, time-periodic magnetic field, Math. USSR-Sb. 66, 499-522 (990) [6] Kato, T., Kuroda, S. T.: The abstract theory of scattering. Rocky Mt. J. Math., 27-7 (97) [7] Kitada, H., Yajima, K.: Bound states and scattering states for time periodic hamiltonians, Ann. de l I. H. P., sect. A 39, 45-57 (983) [8] Møller, J. S.: Two-body short-range systems in a time-periodic electric field, Duke Math. J., 05, (2000) [9] Møller, J. S., Skibsted, E.: Spectral theory of time-periodic many-body systems, Adv. in Math., 88, 37-22 (2004) [20] Nakamura, S.: Asymptotic completeness for three-body Schrödinger equations with time-periodic potentials, J. Fac. Sci. Univ. Tokyo. Sect. IA, Math., 33, 379-402 (986) [2] Skibsted, E.: Asymptotic completeness for particles in combined constant electric and magnetic fields, II, Duke Math. J., 89, (997) [22] Sigal, I. M., Soffer, A.: The N-particle scattering problem: asymptotic completeness for short-range quantum system, Ann. of Math. 25, 35-08 (987) [23] Yajima, K.: Schrödinger equations with potentials periodic in time. J. Math. Soc. Jpn. 87, 729-743 (977) [24] Yajima, K.: Resonances for the AC-Stark effect, Comm. Math. Phys., 87, 33-352 (982)