KATEDRA ZA KEMIJSKO, BIOKEMIJSKO IN EKOLOŠKO INŽENIRSTVO

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KATEDRA ZA KEMIJSKO, BIOKEMIJSKO IN EKOLOŠKO INŽENIRSTVO"

Transcript

1 KATEDRA ZA KEMIJSKO, BIOKEMIJSKO IN EKOLOŠKO INŽENIRSTVO Pdrčja diplmskih del: Kemijsk prcesn inženirstv Biprcesn inženirstv in bitehnlgija Okljsk inženirstv Nan in mikrprcesn inženirstv

2 KATEDRA ZA KEMIJSKO, BIOKEMIJSKO IN EKOLOŠKO INŽENIRSTVO Mentrji: Prf. dr. Bervič Marin Prf. dr. Pavk Aleksander Prf. dr. Plazl Igr Dc. dr. Zupančič Valant Andreja Dc. dr. Žgajnar Gtvajn Andreja Prf. dr. Žnidaršič Plazl Plna

3 Mentr: Prf. dr. Marin Bervič Kntaktni naslv: Pdrčje: Biprcesn inženirstv in bitehnlgija Pdpdrčje:Bireaktrsk inženirstv Upraba različnih mikrrganizmv in prcesn vdenje tehnlškega pstpka v aerbnih prcesih zahtevaj blikvanje bireaktrjev z zirm na snvni prens kisika Oxygen transfer cefficient k L a (s -1 ) 0,35 0,30 0,25 0,20 0,15 0,10 0,05 klabch1 klabch2 klael klaelr klastr klaeffi Oblikvanje bireaktrjev z zirm na zahteve biprcesa Karakterizacija delvanja bireaktrjev Transprtni prcesi v bireaktrjih Snvni prens kisika v biprcesnih medijih Instrumentacija biprcesv Prcesn integriranje 0, Bimass x (g/l) Diplmska tematika: Vpliv blike bireaktrja na način snvnega prensa kisika Senzrji in mdeli snvnega prensa kisika v biprcesih Tematika lahk pleg teretskega dela bsega tudi eksperimentalni del submerzn gjenje glive, n-line dlčevanje keficientv specifične respiracije in keficijentv vlumetričnega prensa kisika v različnih vrstah bireaktrjev Merjenja in izračunavanja vlumetričnega prensa kisika za različne vrste senzrjev, plargrafske in ptične senzrje

4 Mentr: Prf. dr. Marin Bervič Kntaktni naslv: Pdrčje: Biprcesn inženirstv in bitehnlgija Pdpdrčje:Biprcesiranje na trdnih gjiščih Biprcesiranje na trdnih in tekčih gjiščih b uprabi Basidimicet in prdukcija farmacevtsk aktivnih učinkvin z imunstimulativnim in antitumrnim delvanjem. Načini izlacij in purifikacij učinkvin in njihv testiranje in-vitr na člveških celičnih linijah. Mehanizmi rasti mikrrganizmv na trdnih gjiščih Bireaktrji za biprcesiranje na trdnih gjiščih Instrumentacija in kntrla biprcesv Izlacije in čiščenje biprduktv Farmacevtske lastnsti učinkvin Testiranje učinkvin in- vitr na člveških celičnih linijah Diplmske teme s pdrčja Prdukcija farmacevtsk aktivnih učinkvin gliv Crdiceps in Lentinus z imunstimulativnim in antitumrnim delvanjem Tematika lahk pleg teretskega dela bsega tudi eksperimentalni del prdukcija glivine bimase in farmacevtskih učinkvin v submerzinih gjiščih v bireaktrjih z mešali in v hrizntalnem mešalnem reaktrju za biprcesiranje na trdnih gjiščih, meritve, izlacije in purifikacije učinkvin in njihv in- vitr testiranje. J. Habijanic & M. Berv

5 Mentr: Prf. dr. Marin Bervič Kntaktni naslv: Pdrčje: Biprcesn inženirstv in bitehnlgija Pdpdrčje:Bireaktrsk inženirstv in nantehnlgija Nanbitehnlgija mgča knstrukcij in aplikacij selektivnih nan delcev za dstranjevanje neželjenih plulantv in infektantv iz bilških suspenzij. Nan delci, knstrukcija in upraba v bilških medijih Vpliv zeta ptencijala bilških materijalv na lastnsti vezave nan delcev Snvni prcesi b uprabi nan delcev v bireaktrjih Načini separacije in dvajanja izlatv Prcesn integriranje Diplmska tematika : Mžnsti uprabe nan delcev v bitehnlgiji za selektivn dstranjevanje neželenih učinkvin Tematika lahk pleg teretskega dela bsega tudi eksperimentalni del eksperimentalni del: priprav nandelcev, vezava na neželene plulante in infektante iz bilških suspenzij. Testiranje v submerznih prcesih v bireaktrjih.

6 Mentr: Prf. dr. Aleksander Pavk Kntaktni naslv: Pdrčje: Okljsk inženirstv Pdpdrčje: Biremediacija Biremediacija je zanimiva tehnlgija, ki izkrišča metablni ptencial mikrrganizmv pri prcesih čiščenja kljskih plutantv kt s: naftni gljikvdiki pliklrirani bifenili (PCB) pesticidi fenli pliciklični armatski gljikvdiki belilna sredstva iz industrije celulze in papirja barvila iz tekstilne in srdnih industrij Pri tem igraj pmembn vlg glive bele trhnbe s svjimi encimi. Tema diplmske nalge: Mžnsti uprabe gliv bele trhnbe v biremediaciji Nalga pleg teretskega dela lahk bsega tudi eksperimentalni del: submerzn gjenje glive, spektrftmetričn analiz encimskih aktivnsti ter zasledvanje razgradnje izbranega plutanta

7 Mentr: Prf. dr. Aleksander Pavk Kntaktni naslv: Pdrčje: Biprcesn inženirstv in bitehnlgija Pdpdrčje: Izlacijski prcesi v bitehnlgiji Bitehnlški prces fermentacije se na pti d survine d prdukta deli v psamezne prcese: priprava (priprava medija, sterilizacija medija in preme, nacepitev bireaktrja), bikemijska pretvrba v bireaktrju, izlacija prdukta iz fermentacijske brzge. Izlacij delim na pstpke ali peracije: mehanske: razbijanje celic, sedimentacija,centrifugiranje, klasična filtracija, btčna filtracija. termdifuzijske: uparjanje, kristalizacija, destilacija, ekstrakcija, adsrpcija, sušenje. krmatgrafske: adsrpcijska, insk izmenjevalna, tekčinska krmatgrafija viske lčljivsti (HPLC), Tipičen vrstni red prcesa izlacije: priprava fermentacijske brzge (hlajenje, flkulacija, regulacija ph, razbijanje celic), lčevanje bimase d tekče faze (filtracija, sedimentiranje, centrifugiranje), primarna izlacija prdukta (ultrafiltracija, ekstrakcija, barjanje), čiščenje in kncentriranje (barjanje, kristalizacija, uparjanje, krmatgrafija, adsrpcija), zaključna izlacija in ddelava (centrifugiranje, sušenje, kemijska sinteza). Tema diplmske nalge: Izbran pstpek v prcesu izlacije bitehnlškega prdukta Nalga pleg teretskega dela lahk bsega tudi eksperimentalni del, na primer filtracij, adsrpcij, sušenje

8 Mentr: Dc. dr. Andreja Zupančič Valant Kntaktni naslv: lj.si Pdrčje: Kemijsk prcesn inženirstv Pdpdrčje: Relgija Relgija je pmembn rdje pri karakterizaciji bitumnv, saj mgča vpgled v struktur bitumenskega veziva in napved mehanskih lastns: asfaltnih zmesi. Naslv diplmske nalge: Relške lastnsd mdificiranih bitumenskih zmesi z dpadnimi materiali Bitumensk veziv je viskelas:čen material s primernimi mehanskimi in relškimi lastnstmi za uprab v cestgradnji Cilj mdifikacije cestgradbenega bitumna je izbljša: lastns: veziva pri viskih in nizkih temperaturah uprabe. Tak veziv v asfaltni zmesi zviša dprnst pr: trajnim defrmacijam (klesnice) in nastajanju razpk pri nizkih temperaturah uprabe na asfaltni plas:. Materiali za mdifikacij bitumna: plimeri, sredstva pr: luščenju,.... dpadni materiali (guma- zmlete pnevma:ke, plas:ke, industrijski dpadki) Predns: mdifikacije z dpadnimi materiali: O varvanje klja - trajnstni razvj O izbljšava viskznih, elas:čnih lastns:, termične bčutljivs: bitumna, bčutljivs: na vd

9 Mentr: Dc. dr. Andreja Zupančič Valant Kntaktni naslv: lj.si Pdrčje: Kemijsk prcesn inženirstv Pdpdrčje: Relgija Naslv diplmske nalge: Vpliv relških ddatkv na lastnsti suspenzij Suspenzije izkazujej nelinearn bnašanje pd vplivm striga ð urejanje ntranje strukture pd vplivm striga. ð lastns: snvnih elementv strukture ð stpnja strukturirans: Viskznst suspenzij se lahk spreminja glede na ð jakst in smer delvanja strižne sile, ð lahk pa je dvisna tudi d časa delvanja striga τ Dlčanje merilnega prtkla η= = ð Strižna dvisnst viskzns: γ ð Kine:ka vzpstavljanja ntranje strukture ð Dlčanje viskelas:čnih lastns: Pručevanje relških lastnsd z namenm: ð Vpliv veliks: delcev na relške lastns: ð Vpliv prazdelitve veliks: delcev na relške lastns: ð Vpliv kncentracije delcev na relške lastns: ð Načini stabilizacije delcev v suspenziji ð Izbira primernega relškega ddatka za dseg želenega tkvnega bnašanja f (τ, t )

10 Mentrica: dc. dr. Andreja Žgajnar Gtvajn Kntaktni naslv: Pdrčje: Okljsk inženirstv Pdpdrčje: Trdni dpadki - biglje Ravnanje z različnimi vrstami dpadkv predpisuje zakndaja. Bimas lahk predelam na različne načine (kmpstiranje, aerbna in anerbna predelava), ena izmed mžnsti je tudi pirliza lesnih stankv nizke kvalitete, da dbim upraben prdukt biglje. Uprabim ga lahk kt: q ddatek zemlji/kpstu, ki pliva na kvalitet zemlje (kapaciteta zadrževanja vde, insk izmenjav, dvigne ph...) in dstpnst hranil (erzija...) q remediacijsk sredstv. Tema diplmske nalge: Upraba biglja v kmetijstvu Nalga pleg teretskega dela lahk bsega tudi eksperimentalni del: izbira lesne bimase, priprava biglja, njegva karakterizacija, upraba v kmetijstvu...

11 Mentrica: dc. dr. Andreja Žgajnar Gtvajn Kntaktni naslv: Pdrčje: Okljsk inženirstv Pdpdrčje: Vredntenje vplivv na klje LCA ali Life Cycle Assessment (cena življenjskega cikla) je metda za celvit dlčanje vplivv na klje za izdelek, prces ali stritev, d zasnve, izdelave, prek celtnega življenjskega prcesa, d bdelave p knčani življenjski dbi. V preteklsti s j z drugimi besedami pimenvali kt metda d zibelke d grba. Pri LCA ceni mram upštevati: izbir in kličin survin za izdelav tehnlgij izdelave in vpliv prcesa na klja vrst in kličin prabljene energije (bnvljiva, knvencinalna) vrsta in kličina nastalih dpadkv (trdni, tekči, plinasti) kak izdelek vpliva na klje med uprab (emisije CO2...) kaj z izdelkm lahk strim p knčani življenjski dbi (uničenje, energetska izraba, recikliranje...) Tema diplmske nalge: LCA: cena življenjskega cikla izdelka ali prcesa Nalga bsega teretski pregled literature, različnih metd LCA, predstavitev knkretnega primera: izdelek, stritev ali prces.

12 Mentrica: prf. dr. Plna Žnidaršič Plazl Kntaktni naslv: Pdrčje: Bikemijsk in mikrprcesn inženirstv Pdpdrčje: Bitransfrmacije, mikrreaktrji, nantehnlgija Bitransfrmacije v mikrreaktrjih nudij številne prednsti pred knvencinalnimi reaktrji, zaradi česar se vedn blj uveljavljaj v razvjnih fazah biprcesv: izjemn učinkvit prens snvi in tplte, majhna praba reagentv, dlčanje aktivnsti in stabilnsti katalizatrjev, mžnst hitre ptimizacije prcesnih parametrv, nadzirani prcesni pgji,... Razvj kntinuirnih prcesv pgst vključuje imbilizacij bikatalizatrja. Nedavne raziskave kažej, da je upraba nandelcev v te namene zel perspektivna. Steklen mikrkanal za izvedb bitransfrmacij Naslv diplmske nalge: Upraba nandelcev za imbilizacij bikatalizatrjev v mikrreaktrjih Nalga bsega pregled literature s pdrčja bitransfrmacij v mikrreaktrjih in uprabe nandelcev za imbilizacij encimv in celic. Predstavitev različnih vrst nandelcev kt nsilcev bikatalizatrjev. Kvasvke S. cerevisiae z adsrbiranimi magnetnimi nandelci, ki fluresciraj

13 Mentrica: prf. dr. Plna Žnidaršič Plazl Kntaktni naslv: Pdrčje: Bikemijsk in mikrreaktrsk inženirstv Pdpdrčje: Bitransfrmacije, mikrreaktrji Inske tekčine s zanimiva alternativa klasičnim rganskim tpilm zaradi specifičnih lastnsti: visk vrelišče, nizek parni tlak, dlična tpila za večin substratv bitransfrmacij, pgst hranjaj ali cel stabiliziraj encimsk aktivnst. Nedavne raziskave kažej, da s številne inske tekčine za klje nesprejemljive, zat s zel aktualne študije netksičnih in bidegradabilnih analgv. Upraba mikrreaktrjev za njihv testiranje in izbr za psamezne reakcije pnuja nadaljnje prednsti. Mikrreaktr s strnjenim sljem imbiliziranega encima za izvedb bitransfrmacij v različnih tpilih Naslv diplmske nalge: Netksične inske tekčine kt tpila za bitransfrmacije Nalga bsega pregled literature s pdrčja bitransfrmacij v inskih tekčinah in njihve izvedbe v mikrreaktrjih. Predstavitev različnih vrst inskih tekčin s pudarkm na netksičnih in bidegradabilnih primerih.

KONKURENČNE PREDNOSTI UVAJANJA TRIGONIRJA V UČNI PROCES MATEMATIKE IN FIZIKE

KONKURENČNE PREDNOSTI UVAJANJA TRIGONIRJA V UČNI PROCES MATEMATIKE IN FIZIKE KONKURENČNE PREDNOSTI UVAJANJA TRIGONIRJA V UČNI PROCES MATEMATIKE IN FIZIKE. Trignir prinaša nv, kreativen, zanimiv in učinkvit pristp pri analiziranju in uprabi ktnih funkcij, s katerim ktne funkcije

Διαβάστε περισσότερα

MODERIRANA RAZLIČICA

MODERIRANA RAZLIČICA Dr`avni izpitni center *N07143132* REDNI ROK KEMIJA PREIZKUS ZNANJA Maj 2007 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA b kncu 3. bdbja MODERIRANA RAZLIČICA RIC 2007 2 N071-431-3-2 NAVODILA

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

Načini vodenja bioprocesov Bioreaktorji Zaključni procesi

Načini vodenja bioprocesov Bioreaktorji Zaključni procesi Načini vodenja bioprocesov Bioreaktorji Zaključni procesi Načini obratovanja Šaržni Šaržni z napajanjem substrata ali gojenje z dohranjevanjem.. Kontinuirno gojenje. V Načini vodenja bioprocesov Šaržni

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

NN ENERGETSKI KABLI 1 kv

NN ENERGETSKI KABLI 1 kv GOSPODARSKO INTERESNO ZDRUŽENJE GIZ TS-2 Slvenska cesta 58, 1516 Ljubljana 9/2013 NN ENERGETSKI KABLI 1 kv Tehnična smernica za material in dbav Za intern uprab v GIZ DEE September 2013 - 1 - GIZ TS-2

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

ZAKLJUČNI PROCESI V BIOTEHNOLOGIJI. Membranski separacijski procesi koncentriranje ali čiščenje

ZAKLJUČNI PROCESI V BIOTEHNOLOGIJI. Membranski separacijski procesi koncentriranje ali čiščenje ZAKLJUČNI PROCESI V BIOTEHNOLOGIJI Membranski separacijski procesi koncentriranje ali čiščenje 5 glavnih stopenj pri izolaciji bioproduktov Predobdelava razbitje celic stabilizacija sterilizacija flokulacija

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

ZAKLJUČNI PROCESI V BIOTEHNOLOGIJI. Membranski separacijski procesi koncentriranje ali čiščenje

ZAKLJUČNI PROCESI V BIOTEHNOLOGIJI. Membranski separacijski procesi koncentriranje ali čiščenje ZAKLJUČNI PROCESI V BIOTEHNOLOGIJI Membranski separacijski procesi koncentriranje ali čiščenje 5 glavnih stopenj pri izolaciji bioproduktov Predobdelava razbitje celic stabilizacija sterilizacija flokulacija

Διαβάστε περισσότερα

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

PREDMET IN RAZVOJ PSIHOLOGIJE

PREDMET IN RAZVOJ PSIHOLOGIJE PREDMET IN RAZVOJ PSIHOLOGIJE Predmet psihlgije psih lgija psyché = gr. duša Definicija (predelitev): lgs = veda Ψ je znanst, ki pručuje psihične prcese, vedenje in sebnst. ZNANOST, ker zadšča nekim dlčenim

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper

The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper 24 The Thermal Comfort Properties of Surgical Gown Fabrics 1 1 2 1 2 Termofiziološke lastnosti udobnosti kirurških oblačil za enkratno in večkratno uporabo december 2008 marec 2009 Izvleček Kirurška oblačila

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Termodinamika vlažnega zraka. stanja in spremembe

Termodinamika vlažnega zraka. stanja in spremembe Termodinamika vlažnega zraka stanja in spremembe Termodinamika vlažnega zraka Najpogostejši medij v sušilnih procesih konvektivnega sušenja je VLAŽEN ZRAK Obravnavamo ga kot dvokomponentno zmes Suhi zrak

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Effect of Fibre Fineness on Colour and Reflectance Value of Dyed Filament Polyester Fabrics after Abrasion Process Izvirni znanstveni članek

Effect of Fibre Fineness on Colour and Reflectance Value of Dyed Filament Polyester Fabrics after Abrasion Process Izvirni znanstveni članek Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe 8 Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe barvanih poliestrskih filamentnih tkanin po drgnjenju July November

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje

EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje EuroCons Group Karika koja povezuje Filtracija vazduha Obrok vazduha 24kg DNEVNO Većina ljudi ima razvijenu svest šta jede i pije, ali jesmo li svesni šta udišemo? Obrok hrane 1kg DNEVNO Obrok tečnosti

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Katedra za farmacevtsko kemijo Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Sinteza kompleksa [Mn 3+ (salen)oac] Zakaj uporabljamo brezvodni

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Katedra za farmacevtsko kemijo. Pregled sinteznega postopka

Katedra za farmacevtsko kemijo. Pregled sinteznega postopka Katedra za farmacevtsko kemijo Propranolol Vaje iz Farmacevtske kemije 3 1 Pregled sinteznega postopka Potek reakcije 1. Za kakšen tip reakcije gre? 2. Kako lahko dokažemo da gre reakcija po zgoraj opisanem

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Doc.dr. Matevž Dular N-4 01/

Doc.dr. Matevž Dular N-4 01/ soba telefon e-ošta reavatelja: Ir.rof.r. Anrej Seneačnik 33 0/477-303 anrej.seneacnik@fs.uni-lj.si Doc.r. Matevž Dular N-4 0/477-453 atev.ular@fs.uni-lj.si asistenta: Dr. Boštjan Drobnič S-I/67 0/477-75

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

PRAŠIČEREJA POMEN PRAŠIČEREJE POMEN PRAŠIČEREJE KOT GOSPODARSKE PANOGE. RAZŠIRJENOST PRAŠIČEREJE PO SVETU IN PRI NAS o o

PRAŠIČEREJA POMEN PRAŠIČEREJE POMEN PRAŠIČEREJE KOT GOSPODARSKE PANOGE. RAZŠIRJENOST PRAŠIČEREJE PO SVETU IN PRI NAS o o PRAŠIČEREJA PRAŠIČ: sus scrfa ferus Evrpski divji prašič: sus scrfa Azijski divji prašič: sus vittatus POMEN PRAŠIČEREJE Števil svetvnega prebivalstva hitr narašča, zat je treba pridelati vse več hrane

Διαβάστε περισσότερα

Trigonometrijski oblik kompleksnog broja

Trigonometrijski oblik kompleksnog broja Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

POPIS DEL IN PREDIZMERE

POPIS DEL IN PREDIZMERE POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.

Διαβάστε περισσότερα

IMOBILIZACIJA AKTIVNIH TVARI ZA BIOLOŠKO PREPOZNAVANJE

IMOBILIZACIJA AKTIVNIH TVARI ZA BIOLOŠKO PREPOZNAVANJE IMBILIZACIJA AKTIVI TVARI ZA BILŠK PREPZAVAJE EZIMI ATITIJELA RECEPTRI MIKRRGAIZMI ŽIVTIJSKE ILI BILJE STAICE ŽIVTIJSKA I BILJA VLAKA KLJUČI PRCES PRI IZRADI BISEZRA IMBILIZACIJA BILŠKE TVARI - AJČEŠĆE

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

1.DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z rešitvami

1.DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z rešitvami 1.DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z ršitvami 1.nalga: V spdnji tabli s pdan pvprčn msčn tmpratur zraka (T v ) in msčn kličin padavin (RR v mm) za pstaj Murska Sbta za bdbj

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Sestava topil Topila s šibkimi vodikovimi vezmi:

Sestava topil Topila s šibkimi vodikovimi vezmi: TOPILA Večina premazov vsebuje hlapne komponente, ki izhlapijo tekom aplikacije (nanosa) in nastanka filma. Hlapne komponente premaza s skupnim imenom imenujemo topila, kljub temu, da se smola v določenih

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Vprašanja in odgovori ter izbrane teme iz prehrane

Vprašanja in odgovori ter izbrane teme iz prehrane Vprašanja in dgvri ter izbrane teme iz prehrane (ali Sedaj vem, da se nezdrav prehranjujem ) Zbral in uredil: Hubert Terseglav E-naslv: hubert.terseglav@yah.cm Študij: zdravstvena nega, 1. letnik, izredn

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Za 20 kv stikališče določite ustrezno enopolno shemo z upoštevanjem naslednjih zahtev:

Za 20 kv stikališče določite ustrezno enopolno shemo z upoštevanjem naslednjih zahtev: Falteta za eletroteio i račalištvo Uiverze v Ljbljai Katedra za eletroeergetse sistee i aprave - Laboratorij za eletriča orežja Eletrifiacija - vaje VAJA 8 Za 0 V stiališče določite strezo eopolo seo z

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna hitrost

Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna hitrost FFA: Laboratorijska medicina, Molekularna encimologija, 2010/2011 3.predavanje Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava

Opća bilanca tvari - = akumulacija u dif. vremenu u dif. volumenu promatranog sustava. masa unijeta u dif. vremenu u dif. volumen promatranog sustava Opća bilana tvari masa unijeta u dif. vremenu u dif. volumen promatranog sustava masa iznijeta u dif. vremenu iz dif. volumena promatranog sustava - akumulaija u dif. vremenu u dif. volumenu promatranog

Διαβάστε περισσότερα

AGRARNA EKONOMIKA. AGRARNA EKONOMIKA o. NALOGE oz. FUNKCIJE KMETIJSTVA V GOSPODARSTVU o

AGRARNA EKONOMIKA. AGRARNA EKONOMIKA o. NALOGE oz. FUNKCIJE KMETIJSTVA V GOSPODARSTVU o AGRARNA EKONOMIKA AGRARNA EKONOMIKA je znanstvena disciplina, ki se ukvarja s pručevanjem terije eknmskih znansti in empiričnih mdelv v kmetijstvu Pange, ki j sestavljaj s: MIKROEKONOMIJA je pmembna (združuje

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Varjenje polimerov s polprevodniškim laserjem

Varjenje polimerov s polprevodniškim laserjem Laboratorijska vaja št. 5: Varjenje polimerov s polprevodniškim laserjem Laserski sistemi - Laboratorijske vaje 1 Namen vaje Spoznati polprevodniške laserje visokih moči Osvojiti osnove laserskega varjenja

Διαβάστε περισσότερα

Polimerni nanokompoziti z glinenimi delci

Polimerni nanokompoziti z glinenimi delci Polimerni nanokompoziti z glinenimi delci M. Huskić Kemijski inštitut Laboratorij za polimerno kemijo in tehnologijo Glineni materiali Gline: Alumosilikati, ki vsebujejo še Na, Ca, Mg, Fe, Zn Naravni glineni

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

U N I V E R Z A V L J U B L J A N I Naravoslovnotehniška fakulteta 100 REŠENIH PROBLEMOV IZ FIZIKALNE KEMIJE ZA ŠTUDENTE GEOLOGIJE

U N I V E R Z A V L J U B L J A N I Naravoslovnotehniška fakulteta 100 REŠENIH PROBLEMOV IZ FIZIKALNE KEMIJE ZA ŠTUDENTE GEOLOGIJE U N I E R Z A L J U B L J A N I Naravslvntehniška fakulteta Oddelek za gelgij 00 REŠENIH PROBLEMO IZ FIZIKALNE KEMIJE ZA ŠUDENE GEOLOGIJE Marija Bešter Rgač Ljubljana, 999 I. PLINI, PRI IN DRUGI SAEK ERMODINAMIKE.

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

Iterativne metode - vježbe

Iterativne metode - vježbe Iterativne metode - vježbe 5. Numeričke metode za ODJ Zvonimir Bujanović Prirodoslovno-matematički fakultet - Matematički odjel 21. studenog 2010. Sadržaj 1 Eulerove metode (forward i backward). Trapezna

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Παραδοτέο 1-4ES(+): Δράση 1: Προπαρασκευαστικές Δράσεις

Παραδοτέο 1-4ES(+): Δράση 1: Προπαρασκευαστικές Δράσεις Παραδοτέο 1-4ES(+): Εφαρμογές ΑΚΖ για την αξιολόγηση μονάδων επεξεργασίας στερεών αποβλήτων με την τεχνολογία ISWM-TINOS: Ανάπτυξη και εφαρμογή πιλοτικού συστήματος για την ολοκληρωμένη διαχείριση των

Διαβάστε περισσότερα

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA

IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Univerza v Ljubljani Fakulteta za elektrotehniko IZRAČUN MEHANSKIH LASTNOSTI IN DEFORMACIJ ENOSTRANSKO IN DVOSTRANSKO VPETEGA NOSILCA Seminarska naloga pri predmetu Razdelilna in industrijska omrežja Maks

Διαβάστε περισσότερα

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija

PRERADA GROŽðA. Sveučilište u Splitu Kemijsko-tehnološki fakultet. Zavod za prehrambenu tehnologiju i biotehnologiju. Referati za vježbe iz kolegija Sveučilište u Splitu Kemijsko-tehnološki fakultet Zavod za prehrambenu tehnologiju i biotehnologiju Referati za vježbe iz kolegija PRERADA GROŽðA Stručni studij kemijske tehnologije Smjer: Prehrambena

Διαβάστε περισσότερα

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 1. deo - linearni regulatori

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 1. deo - linearni regulatori vri jednmerng napajanja Sadržaj vri jednmerng napna (nasvak) - Sbiliatri - regulatri napna 1. de - linearni regulatri 1. Uvd 2. Usmerači napna 2.1 Jedntran usmeravanje 2.2 Dvtran usmeravanje 2.3 Umnžavažavači

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα