1.DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z rešitvami

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z rešitvami"

Transcript

1 1.DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z ršitvami 1.nalga: V spdnji tabli s pdan pvprčn msčn tmpratur zraka (T v ) in msčn kličin padavin (RR v mm) za pstaj Murska Sbta za bdbj Izračunaj kficinta vlažnsti Ivanva za Mursk Sbt za msca april in avgust, č znaša pvprčna rlativna zračna vlaga za april 75% in za avgust % rzultata kratk kmntiraj! jan fb mar apr maj jun jul avg sp kt nv dc RR T( ) K v RR m 1 Em Em a ( b + T ) ( c f ) m a.18mm m b 5 c1 E m za april:.18mm ( ) ( 1 75) E m E m za avgust:.18mm ( ) ( 1 ) E m mm 1mm v Kv avg mm 135mm K apr E m 54mm E m 135mm Kmntar: Vrdnsti nad 1 pmnij mkrbdbj, vrdnsti indksa 5-1 pa bdbj zmrn vlag.

2 .nalga: Na višini 1m nad tlmi j dlni parni tlak 17 mb in tmpratura zraka 5, na višini 1.5m pa znaša dlni parni tlak 1. mb in tmpratura zraka 4.8. Izračunaj gstti tkv zaznavn in latntn tplt, č znaša nt svanj 3 Wm -, gstta tpltnga tka v tlh pa -3 Wm -. Vs nrgijsk tkv prikaži grafičn. T B.5mb / K.K B.5mb / K B.1.8mb j B A ja B jle ja. 1 jle jle j j + j + j j j +.1 j + j j RN + G A LE ( 3W ) RN + G LE LE jrn LE 1.1 3W j LE j LE - 33 W/m ja.1 jle 37W 1.1 grafičn prikaz nrgijskih tkv: jg j RN j LE TLA j A j G 3.nalga: Na snvi pdatkv pri prvi nalgi izračunaj, kdaj j v Murski Sbti v pvprčju prsžn spmladanski in kdaj jsnski tmpraturni prag 5. T ds T prag nad T T pd pd D Prag 5 spmladi: ds 3dni 1 dan 15.marc + 1 dan 1.marc Prag 5 jsni: ds 3dni 5 dni 15.nvmbr - 5 dni 1.nvmbr V pvprčju s tmpratur s dvignj nad tmpraturni prag 5 v Murski Sbti 1.marca, jsni s spustij pd tmpraturni prag 5 1.nvmbra.

3 4.nalga: Klik nrgij izgubi žival s kndukcij v ni minuti zat, kr lži na 5 cm dblih btnskih tlh s tpltn prvdnstj 4.5 Wm -1 K -1? Tmpratura kž živali j 3, tmpratura tal pa. Žival s dtika tal s pvršin.75 m. Klik nrgij izgubi v istm času s svanjm (pvršina dla tlsa, s katr sva, j prav tak.75 m ), č j misivnst kž.9? a) TOPLOTNE IZGUBE S KONDUKIJO T 1K QG jg t S k t S QG jg t S 4.5W K s.75m Z.5m Žival izgubi s kndukcij 48 J nrgij. b) TOPLOTNE IZGUBE S SEVANJEM QSEV 4 jsv t S ε σ T t S Q SEV W K K s.75m Žival izgubi s svanjm 989 J nrgij. ( ) 5.nalga: Dlni parni tlak v zračju j 1.5 mb, tmpratura mkrga trmmtra pa 13. Izračunaj rlativn zračn vlag in dlči tmpratur rsišča. Paramtr γ v psihrmtrski načni znaša. mbk tmpratur rsišča prbrm iz tabl pri dlnm parnm tlaku 1.5 mb T d 7.7 Tmpratura rsišča znaša rlativn zračn vlag izračunam kt f 1% E prbrm iz tabl pri tmpraturi E zraka (T), ki j mram izračunati iz psihrmtrsk načb E γ ( T T ) ( E ) T + T γ E ' prbrm iz tabl pri tmpraturi mkrga trmmtra T ' 13 : 15.1mb ( E ) T + T γ 1.5mb 15.1mb + + T.5.mb / K T ( ) (73. 13) K 93. 7K E prbrm iz tabl pri tmpraturi zraka T.5 : 4.35 mb 1.5mb f 1% f 1% f43% E 4.35mb Rlativna zračna vlaga znaša 43%.

4 .DELNI KOLOKVIJ IZ AGROMETEOROLOGIJE Z OSNOVAMI FIZIKE OKOLJA z ršitvami 1.nalga: Kakšn j indks listn pvršin pri jčmnu, č sm nad rastlinskdj izmrili gstt nrgijskga tka svanja 5 Wm -, d tal pa prdr gstta nrgijskga tka glbalnga bsvanja 45 Wm -? Kficint slabitv za glbaln snčn svanj znaša.. k LAI iz načb ( ) S z 5W ln LAI 45W 4.. LAI znaša 4.. S izrazim indks listn pvršin LAI S ln S( z) k.nalga: Izračunaj, klik O dda jčmnv list z dihanjm v tmi v ni uri, č s paramtri rastlin: - q, º -1 - D, mg O /dm h - T L 1 º. Izračunaj š, klik znaša dihanj pri nasldnjih tmpraturah lista: º, 3º in 4º? Grafičn prikaži dvisnst nt ftsintz d tmpratur lista! T list 1 [ ] D D xp q D T list T list [ ] D D xp q D T list T list 3 [ ] D D xp q D T list T list 4 [ ] D D xp q D T list 1. 1 D.mgO / dm h mg O /dm h 1. D.mgO / dm h.718. mg O /dm h 1. 3 D.mgO / dm h mg O /dm h 1. 4 D.mgO / dm h.718. mg O /dm h

5 Grafičn prikaz dvisnsti dihanja d tmpratur lista gr za kspnntn pvčvanj dihanja z naraščajč tmpratur lista: 5 D(x1-3 ) mg O /dm h T list 3. nalga: Imam pdatk za splšn cvtnj španskga bzga v Maribru v bdbju Najzgdnjš cvtnj s j pjavil 1.aprila, pvprčn.maja in najkasnjš.maja. Kakšn j variacijski razpn za t fnfaz? V katrm bdbju s j pjavil splšn cvtnj španskga bzga v Maribru v ltu 4, č j vrdnst standardn dviacij 9. dni, datum cvtnja za lt 4 pa 5. april? Najprj datum cvtnja prtvrim v zaprdn dnv v ltu (julijansk dnv): 1.april 1 (f min ).maj 1 ( f ).maj 14 (f max ) Variabilnst (variacijski razpn) cnim kt razlik md najzgdnjšim (f min ) in najkasnjšim pjavm fnfaz: VR f max f min KV14-14 variacijski razpn znaša 4 dni. vtnj šp. bzga s j v Maribru v ltu 4 s j pjavil 5.aprila ali 115.dan v ltu. vtnj j znatn zgdnjš, č s pjavi prj kt t j prj kt 1 1,5,745 9, 117.dan f 1, 5 r r, 745 s s9. dni - v našm primru j cvtnj nastpil 115.dan, t pmni, da j fnfaza v ltu 4 nastpila znatn zgdnjš kt navadn.

6 4. nalga: Izračunaj, kakšn gstt nrgijskga tka latntn tplt ddaja list v klj, č j njgva tmpratura 17. in stmatalna uprnst 4 sm -1. Pgji v klju s: rlativna zračna vlaga 75%, tmpratura zraka 13. in ardinamična uprnst 1 sm -1. List ddaja v klic gstt tka latntn tplt LE (b strani lista!) LE L ρv r + r a s ρ v E( Tlist ) Rv Tlist ( T ) Rv T r a 1 s/m r s 4 s/m L.5 1 J / kg.35 1 L.5 1 L.49 1 J / kg J / kg.35 1 J / kg T J / kg 13 (T zraka v ) E(T lista ) nasičn parni pritisk pri tmpraturi lista (T list ) 17. prbrm iz tabl nasičnga parnga pritiska E(T lista ) mb (T) dlni parni pritisk pri tmpraturi zraka (T) izračunam s pmčj pdan rlativn zračn vlag in tmpratur zraka E prbrm iz tabl nasičnga parnga pritiska pri tmp. zraka 13 E 15.1 mb f 1% E 75% 15.1mb 11. mb 1% 1949Pa 11Pa ρ v. kg/m 3 41J / kgk ( ) 41J / kgk ( )K LE L ρv ra + rs J / kg.kg (1 + 4) s 9. W/m List ddaja v klic tk latntn tplt 9.W 59.W.

7 5.nalga: Ob 17 h sm izmrili tmpratur zraka 5 in 85% rlativn vlag. Ali p mtdi rsišča bstaja nvarnst slan? P tj mtdi bstaja nvarnst slan, č j tmpratura rsišča b 17 h manjša d.5 iz tabl nasičnga parnga pritiska prbrm tmpratur rsišča (T d ) na snvi izračunanga dlnga parnga pritiska (). E prbrm iz tabl nasičnga parnga pritiska pri T5 E8.71mb f E 85% 8.71mb f 1% 7.4mb E 1% 1% T d prbrm iz tabl pri 7.4mb T d.7 Kr vlja, da j T d b 17 h včja d.5, p tj mtdi ni nvarnsti slan.

8 KOLOKVIJ IZ AGROKLIMATOLOGIJE z ršitvami 1.nalga: V spdnji tabli s pdan pvprčn msčn tmpratur zraka (v ) za pstaj Ratč (RAT) za bdbj Na snvi pdatkv računsk utmlji, ali s Ratč primrn kraj za gjnj rastlinsk vrst, ki ptrbuj vsaj 18 dni na lt s pvprčn tmpratur zraka nad 7. jan fb mar apr maj jun jul avg sp kt nv dc RAT T ds T prag nad T T pd pd D pmlad ds 3dni 1 dni 15.april + 1 dni 5.april jsn: dj 3dni dni 15.ktbr- dni 13.ktbr Tmpratur padj pd ktbra (8.dan v ltu) in s spmladi dvignj nad 7 5.aprila (115.dan v ltu). Razlika: dni tlik dni s pvprčn tmpratur v Ratčah višj d 7, t pmni, da kraj ni primrn za gjnj rastlinsk vrst, ki ptrbuj vsaj 18 dni na lt s pvprčn tmpratur zraka nad 7..nalga: Klikšn j zračni tlak na Krdarici (h55 m), č s v Ljubljani (h99 m) izmrili zračni tlak 99 mb. Prdpstavim, da gr za iztrmn atmsfr, tmpratura vmsn plasti zraka znaša 1, hrizntaln razlik zračnga tlaka pa s zanmarljiv. p ( z z ) g p xp R T ( 55m 99m) 9.81m / s p 99mb J / kgk ( ) K p755 mb Zračni tlak na Krdarici znaša 755 mb.

9 3.nalga: Tmpratura zraka v zaprtm stklnjaku s prstrnin m 3 j 3., rlativna zračna vlaga pa 5%. Klik vd bi š lahk izhlapl v ta zrak, prdn bi prišl d kndnzacij? m ρ V ρ ρmax ρtrnutna ρ E R T R T E prbrm iz tabl pri T3 in znaša 8.45 mb izračunam s pmčj E in f f E 5% 8.45mb f 1% 14. 3mb E 1% 1% 845Pa 143Pa ρ 41J / kgk ( ) K 41J / kgk ( ) K m ρ V m kg m m.8 kg ρ.14kg 3 V zrak bi lahk izhlapl š.8 kg vd. 4.nalga: Tmpratura zraka znaša, tmpratura rsišča pa 9. Izračunaj abslutn in rlativn zračn vlag. E iz tabl pri znaša 3.59 mb iz tabl pri T d 9 znaša mb f E % 1% f49% 3.59 Rlativna zračna vlaga znaša 49%. 1148Pa ρ v R T 41J / kgk ( )K v Abslutna zračna vlaga znaša 8.5g/m 3. ρ v.85kg 3

10 5.nalga: V spdni tabli s pdatki za dlgltn pvprčj msčnih tmpratur zraka (T v ) in msčnih kličin padavin (RR v mm) za pstaj Prtrž ( ). Nariši Waltr- Gaussnv klimadiagram za t pstaj v razmrju skal 1: in na njm znači mrbitn bdbj suš. jan fb mar apr maj jun jul avg sp kt nv dc RR T( ) Prtrž ( ) padavin (mm) 1: ** bdbj zmrn suš msc tmpratura ( ) Obdbj, k j tmpraturna krivulja nad padavinsk, nam pri razmrju skal 1: prikazuj bdbj zmrn suš, na sliki značn s puščicama (d aprila d sptmbra).

Επιτραπέζια μίξερ C LINE 10 C LINE 20

Επιτραπέζια μίξερ C LINE 10 C LINE 20 Επιτραπέζια μίξερ C LINE 10 Χωρητικότητα κάδου : 10 lt Ναί Βάρος: 100 Kg Ισχύς: 0,5 Kw C LINE 20 Χωρητικότητα κάδου : 20 lt Βάρος: 105 Kg Ισχύς: 0,7 Kw Ναί Επιδαπέδια μίξερ σειρά C LINE C LINE 10 Χωρητικότητα

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Φυσικές και χημικές ιδιότητες

Φυσικές και χημικές ιδιότητες Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές

Διαβάστε περισσότερα

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =

Διαβάστε περισσότερα

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2 Snov v lktričnm polju lktrično polj ipola (prvi način) P P - Prvi način: z r = r Δr r = r Δr Δr Δ r - r r r r r r Δr rδr =, = 4πε r r 4πε r r r r = r cos, r r r = r cos. r Vlja: = cos, r r r r r = cos,

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

FIZIKALNE LASTNOSTI ZEMLJIN IN HRIBIN

FIZIKALNE LASTNOSTI ZEMLJIN IN HRIBIN FIZIKALNE LASTNOSTI ZEMLJIN IN HRIBIN I. ZEMLJINE W g g W W Dfazni ali trfazni itm. Prznt: g g g... kličnik pr (raln d 4 d 0.4) g g g n n n n n n n... dlž pr (trtičn d d 0 raln d 0.8 d 0.) n n n .0 Zaičnt

Διαβάστε περισσότερα

Περιεχόµενα. 1. Γενικό πλαίσιο. 2. Η ΚΑΠ σήµερα. 3. Γιατί χρειαζόµαστε τη µεταρρύθµιση; 4. Νέοι στόχοι, µελλοντικά εργαλεία και πολιτικές επιλογές

Περιεχόµενα. 1. Γενικό πλαίσιο. 2. Η ΚΑΠ σήµερα. 3. Γιατί χρειαζόµαστε τη µεταρρύθµιση; 4. Νέοι στόχοι, µελλοντικά εργαλεία και πολιτικές επιλογές Ανακοίνωση για το µέλλον της ΚAΠ «Η ΚΑΠπροςτο2020: αντιµετωπίζοντας τις προκλήσεις στον τοµέα των τροφίµων, στους φυσικούς πόρους και στις περιφέρειες» Γ Γεωργίας και Αγροτικής Ανάπτυξης Ευρωπαϊκή Επιτροπή

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 η. Με το πείραµα αυτό προσδιορίζονται δύο βασικές παραµέτρους που χαρακτηρίζουν ένα σύστηµα αερισµού δηλαδή:

ΑΣΚΗΣΗ 2 η. Με το πείραµα αυτό προσδιορίζονται δύο βασικές παραµέτρους που χαρακτηρίζουν ένα σύστηµα αερισµού δηλαδή: ΑΣΚΗΣΗ 2 η Αερισµός του νερού Θεωρητικό υπόβαθρο Με το πείραµα αυτό προσδιορίζονται δύο βασικές παραµέτρους που χαρακτηρίζουν ένα σύστηµα αερισµού δηλαδή: Η ικανότητα οξυγόνωσης του συστήµατος που αντιπροσωπεύει

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC.

5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC. 5ppm/ SOT-23 12/14/16nanoDAC AD562/AD564/AD566 nanodac AD566 16 AD564 14 AD562 12 12 1.25V/2.5V 5ppm/ 8SOT-23/MSOP 48nA 5V 2nA 3V 3V/5V 16 DAC 3 to SYNC 1. 1212/14/16nanoDAC 2. 1.25V/2.5V 5ppm/ 3. 8SOT-23

Διαβάστε περισσότερα

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί

Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΙΘΜΗΤΙΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική τους ιδιότητα; Οι αριθμοί

Διαβάστε περισσότερα

Συγκρότημα λέβητα pellet. Pelletsave-Unit ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΚΑΙ ΕΓΚΑΤΑΣΤΑΣΗΣ ΕΚΔΟΣΗ: 1.0

Συγκρότημα λέβητα pellet. Pelletsave-Unit ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΚΑΙ ΕΓΚΑΤΑΣΤΑΣΗΣ ΕΚΔΟΣΗ: 1.0 Συγκρότημα λέβητα pellet Pelletsave-Unit ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΚΑΙ ΕΓΚΑΤΑΣΤΑΣΗΣ ΕΚΔΟΣΗ: 1.0 Περιεχόμενα ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΚΑΙ ΕΓΚΑΤΑΣΤΑΣΗΣ... 1 1 ΓΕΝΙΚΕΣ ΥΠΟΔΕΙΞΕΙΣ ΑΣΦΑΛΕΙΑΣ... 3 2 ΠΛΗΡΟΦΟΡΙΕΣ ΕΓΓΡΑΦΟΥ...

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max

Διαβάστε περισσότερα

ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. Εκθεση χώρας - Κύπρος 2015. {COM(2015) 85 final}

ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. Εκθεση χώρας - Κύπρος 2015. {COM(2015) 85 final} ΕΥΡΩΠΑΪΚΗ ΕΠΙΤΡΟΠΗ Βρυξέλλες, 26.2.2015 SWD(2015) 32 final ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ Εκθεση χώρας - Κύπρος 2015 {COM(2015) 85 final} Το παρόν έγγραφο δεν συνιστά επίσημη θέση της Ευρωπαϊκής

Διαβάστε περισσότερα

Αναλογικά Συστήματα Ενδοεπικοινωνίας. Τιμή σε ΕΥΡΩ τύπος περιγραφή χωρίς ΦΠΑ με ΦΠΑ 23% Μεγαφωνικά συστήματα μικρής ισχύος Σειρές LEM & LEF

Αναλογικά Συστήματα Ενδοεπικοινωνίας. Τιμή σε ΕΥΡΩ τύπος περιγραφή χωρίς ΦΠΑ με ΦΠΑ 23% Μεγαφωνικά συστήματα μικρής ισχύος Σειρές LEM & LEF Μεγαφωνικά συστήματα μικρής ισχύος Σειρές LEM & LEF Συσκευές επιτραπέζιες ή επίτοιχες LEM-1 Κέντρο 1 γραμμής. 73,00 89,79 LEM-1DL Το ίδιο αλλά με button για αυτόματο άνοιγμα πόρτας. 100,00 123,00 LEM-3

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 2011. Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 2011. Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Θερμικοί αισθητήρες 1. Αισθητήρας Μέτρησης Ροής Θερ ικοί Αισθητήρες Α. Πετρόπουλος - Τεχνολογία των αισθητήρων. 011 Συγκεντρωτικά Εφαρμογές

Διαβάστε περισσότερα

1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)

МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ/ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ

Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ/ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ Β ΥΚΕΙΟΥ ΘΕΤΙΚΗ/ΤΕΧΝΟΟΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ο ΔΙΑΩΝΙΣΜΑ ΘΕΜΑ ο Επιλέξτε την ή τις σωστές απαντήσεις.. Ο πρώτος θερμοδυναμικός νόμος: α) Αποτελεί μια έκφραση της αρχής διατήρησης της ενέργειας. β) Αναφέρεται

Διαβάστε περισσότερα

Ηλεκτρικά Χορτοκοπτικά

Ηλεκτρικά Χορτοκοπτικά Ηλεκτρικά Χορτοκοπτικά 65404 RLT-3025 F 65405 RLT-4025 65402 RLT-5030 S 65403 RLT-6038 EX Πτυσσόμενο Τηλεσκοπικό Τηλεσκοπικό Με δéáéñïýìåíï άîïíá για εύκολη μεταφορά 29 39 59 300 Watt κοπή i250 mm μεσινέζα

Διαβάστε περισσότερα

ΑΞΙΟΠΟΙΗΣΗ ΒΙΟΜΑΖΑΣ ΓΙΑ ΤΗΝ ΠΑΡΑΓΩΓΗ ΒΙΟΝΤΙΖΕΛ

ΑΞΙΟΠΟΙΗΣΗ ΒΙΟΜΑΖΑΣ ΓΙΑ ΤΗΝ ΠΑΡΑΓΩΓΗ ΒΙΟΝΤΙΖΕΛ S.A. ΑΝΑΝΕΩΣΙΜΕΣ ΚΑΙ ΕΝΑΛΛΑΚΤΙΚΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Λεωφ. Βουλιαγμένης 409 163 46 Ηλιούπολη - Αττική Τηλ.: 210 9915300 Fax : 210 9939100 E-mail: agroenergy@agroenergy.gr www.agroenergy.gr ΚΑΘΕΤΗ ΑΞΙΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

MODERIRANA RAZLIČICA

MODERIRANA RAZLIČICA Dr`avni izpitni center *N07143132* REDNI ROK KEMIJA PREIZKUS ZNANJA Maj 2007 NAVODILA ZA VREDNOTENJE NACIONALNO PREVERJANJE ZNANJA b kncu 3. bdbja MODERIRANA RAZLIČICA RIC 2007 2 N071-431-3-2 NAVODILA

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP)

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP) Υ F21 LCI - Σειρά 1 3θυρη 1W11 120i ΧΚ 1.998 184 131 21.941,48 33.000 1W31 125i ΑΚ 1.998 224 130 26.407,03 42.040 1W91 M140i ΧΚ 2.998 340 179 31.878,02 52.790 1P91 M140i xdrive ΑΚ 2.998 340 169 35.428,74

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

ITU-R P ITU-R P (ITU-R 204/3 ( )

ITU-R P ITU-R P (ITU-R 204/3 ( ) 1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

1ος Θερμοδυναμικός Νόμος

1ος Θερμοδυναμικός Νόμος ος Θερμοδυναμικός Νόμος Έργο-Έργο ογκομεταβολής Αδιαβατικό Έργο Εσωτερική ενέργεια, U Πρώτος Θερμοδυναμικός Νόμος Θερμότητα Ολική Ενέργεια Ενθαλπία Θερμοχωρητικότητα Διεργασίες Ιδανικών Αερίων ΕΡΓΟ Κεφάλαιο3,

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji

UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ

ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΕΠΙΜΟΡΦΩΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: Βασικές γνώσεις πολιτικής προστασίας 3η ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ (Έντονα καιρικά φαινόµενα- Πληµµύρες) Παρουσίαση 3: Πληµµύρες Νίκος Μαµάσης Λέκτορας Σχολής Πολιτικών

Διαβάστε περισσότερα

ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 ( " " .ITU-R SF.

ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 (   .ITU-R SF. 1 (008-003) * (ITU-R 54/4 ITU-R 6/9 ). 1. 4. 3. GHz 14,5-14,0 1,.90 (WRC-03) ( 4.4 ( - ) MHz 6 45-5 95 GHz 14,5-14 ( 4.4 " " ( ( ( ( ITU-R SF.1585 ( ( (ATPC) ( (.ITU-R SF.1650-1 " " * ITU-R SM.1448 / (

Διαβάστε περισσότερα

,

, ... 7 1.,... 8 1.1... 8 1.2... 10 1.3-4... 12 1.4,... 13 1.5,... 14 1.6... 14 2... 16 2.1... 16 2.2... 18 2.3... 23 2.4... 24 2.5... 24 2.6... 27 2.7... 29 2.8... 32 2.9... 34 2.10... 40 2.11... 40 2.12...

Διαβάστε περισσότερα

Η ιπταμένη τέφρα ως υλικό υποβάσεων οδοστρωμάτων

Η ιπταμένη τέφρα ως υλικό υποβάσεων οδοστρωμάτων Πρακτικά 2ου Πανελληνίου Συνεδρίου για την Αξιοποίηση των Βιομηχανικών Παραπροϊόντων στη Δόμηση, ΕΒΙΠΑΡ, Αιανή Κοζάνης, 1-3 Ιουνίου 2009 Η ιπταμένη τέφρα ως υλικό υποβάσεων οδοστρωμάτων Ι. Παπαγιάννη,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012

ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012 ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΟ Ο ΗΓΙΩΝ ΧΡΗΣΕΩΣ

ΦΥΛΛΑ ΙΟ Ο ΗΓΙΩΝ ΧΡΗΣΕΩΣ ΣΥΣΚΕΥΗ ΦΑΙΝΟΜΕΝΩΝ ΠΟΛΩΣΗΣ POA01 ΦΥΛΛΑ ΙΟ Ο ΗΓΙΩΝ ΧΡΗΣΕΩΣ 1 ΣΚΟΠΟΣ Η παρατήρηση του φαινοµένου της πόλωσης και η µέτρηση της γωνίας στροφής του πολωµένου φωτός διαλυµάτων οπτικά ενεργών ουσιών π.χ. σάκχαρα.

Διαβάστε περισσότερα

Τσιμεντοειδής κόλλα πλακιδίων υψηλής απόδοσης για διάστρωση κεραμικών πλακιδίων μεγάλου μεγέθους, κατηγορίας C2TE βάσει ΕΝ 12004

Τσιμεντοειδής κόλλα πλακιδίων υψηλής απόδοσης για διάστρωση κεραμικών πλακιδίων μεγάλου μεγέθους, κατηγορίας C2TE βάσει ΕΝ 12004 Φύλλο Ιδιοτήτων Προϊόντος Έκδοση 15/11/2013 (v1) Κωδικός: 10.04.060 Αριθμός Ταυτοποίησης: 01 03 06 02 001 0 000122 SikaCeram -205 Large EN 12004 13 SikaCeram -205 Large Τσιμεντοειδής κόλλα πλακιδίων υψηλής

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ

Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Α Ρ Ι Θ Μ Ο Σ : 6.587 Π Ρ Α Ξ Η Κ Α Τ Α Θ Ε Σ Η Σ Ο Ρ Ω Ν Δ Ι Α Γ Ω Ν Ι Σ Μ Ο Υ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς έ ν τ ε κ α ( 1 1 ) τ ο υ μ ή ν α Α π ρ ι λ ί ο υ η μ έ ρ α Π α ρ α σ κ ε υ ή, τ ο

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

!  #! $ %&! '( #)!' * +#,  -! %&! !! !  #$ % #  &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**. ! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;

Διαβάστε περισσότερα

Σετ τροχών σύσφιξης B

Σετ τροχών σύσφιξης B 01/2011 Πρωτότυπο οδηγιών χειρισμού 999285509 gr Πρέπει να φυλάσσονται για μελλοντική χρήση Σετ τροχών σύσφιξης B Αρ. προϊόντος 586168000 από έτος κατασκευής 2008 Περιγραφή προϊόντος Περιγραφή προϊόντος

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Αποτίμηση Ενεργειακής Απόδοσης Οικιακής Φωτοβολταϊκής Εγκατάστασης

Αποτίμηση Ενεργειακής Απόδοσης Οικιακής Φωτοβολταϊκής Εγκατάστασης 16 o Εθνικό Συνέδριο Ενέργειας «Ενέργεια & Ανάπτυξη 2011», Αθήνα, 22-23 Νοεμβρίου 2011 Αποτίμηση Ενεργειακής Απόδοσης Οικιακής Φωτοβολταϊκής Εγκατάστασης Ε. Αλούκος 1, Θ. Γιαννακόπουλος 1, Ε. Αμοιραλής

Διαβάστε περισσότερα

(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Διάφορες Περιπτώσεις Προφόρτισης

(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Διάφορες Περιπτώσεις Προφόρτισης 6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΠΕΡΙΕΧΟΜΕΝΑ 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6.2 Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

Simon et al. Supplemental Data Page 1

Simon et al. Supplemental Data Page 1 Simon et al. Supplemental Data Page 1 Supplemental Data Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction Short

Διαβάστε περισσότερα

ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 2000-10 V1.4

ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 2000-10 V1.4 3 ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 000-0 V.4 4 Περιεχόμενα 5 Ειαγωγή...9 Ανοχή χαλύβων...9 3 Φόριη... 4 Υπολογιμός ε δυναμική θραύη... 4. Ονομαικές άεις (ημιεύρος δυναμικής

Διαβάστε περισσότερα

W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

Παλάγκα- Μπετονιέρες Παλετοφόρα - Σκάλες

Παλάγκα- Μπετονιέρες Παλετοφόρα - Σκάλες Παλάγκα- Μπετονιέρες Παλετοφόρα - Σκάλες ΗΛΕΚΤΡΙΚΑ ΠΑΛΑΓΚΑ EXPRESS ΠΡΟΑΙΡΕΤΙΚΟΣ ΕΞΟΠΛΙΣΜΟΣ (ΟPTIONAL) ΦΟΡΕΙΟ ΠΑΛΑΓΚΩΝ Συνοδεύονται με την τροχαλία ÊÙÄÉÊOÓ: 63017 ÔÉÌÇ: 150 ÉÊÁÍÏÔÇÔÁ ÉÊÁÍÏÔÇÔÁ ÔÁ ÕÔÇÔÁ

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή

Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή Κεφάλαιο 9 Περιστροφική κίνηση Ροπή Αδράνειας-Ροπή-Στροφορμή 1rad = 360o 2π Γωνιακή ταχύτητα (μέτρο). ω μεση = θ 1 θ 2 = θ t 2 t 1 t θ ω = lim t 0 t = dθ dt Μονάδες: περιστροφές/λεπτό (rev/min)=(rpm)=

Διαβάστε περισσότερα

Microscopie photothermique et endommagement laser

Microscopie photothermique et endommagement laser Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université

Διαβάστε περισσότερα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick

Διαβάστε περισσότερα

/ ΣΥΡΡΙΚΝΩΣΗ / ΣΥΡΡΙΚΝΩΣΗΣ ΔΙΑΣΤΑΣΕΙΣ ΠΑΛΕΤΑΣ. Πράσινα Πιπεράκια (Πελοποννήσου) 8,25kg 22, ,

/ ΣΥΡΡΙΚΝΩΣΗ / ΣΥΡΡΙΚΝΩΣΗΣ ΔΙΑΣΤΑΣΕΙΣ ΠΑΛΕΤΑΣ. Πράσινα Πιπεράκια (Πελοποννήσου) 8,25kg 22, , σελίδα 1 / ΜΙΚΤΟ / ΣΥΡΡΙΚΝΩΣΗ / ΣΥΡΡΙΚΝΩΣΗΣ ΔΙΑΣΤΑΣΕΙΣ Σ ΣΕΙΡΑ Σ Πράσινα Πιπεράκια (Πελοποννήσου).001.010 Σακούλα 1,x2,cm 0gr 0gr 2,2kg 1,20m x 0,0m x 1,m 2kg 7.001.01 Σακούλα 1x2,cm 00gr 00gr 2,1kg 1,20m

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 2: Θερμική Αγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Doc.dr. Matevž Dular N-4 01/

Doc.dr. Matevž Dular N-4 01/ soba telefon e-ošta reavatelja: Ir.rof.r. Anrej Seneačnik 33 0/477-303 anrej.seneacnik@fs.uni-lj.si Doc.r. Matevž Dular N-4 0/477-453 atev.ular@fs.uni-lj.si asistenta: Dr. Boštjan Drobnič S-I/67 0/477-75

Διαβάστε περισσότερα

Termodinamika vlažnega zraka. stanja in spremembe

Termodinamika vlažnega zraka. stanja in spremembe Termodinamika vlažnega zraka stanja in spremembe Termodinamika vlažnega zraka Najpogostejši medij v sušilnih procesih konvektivnega sušenja je VLAŽEN ZRAK Obravnavamo ga kot dvokomponentno zmes Suhi zrak

Διαβάστε περισσότερα

Εύκολο στην εφαρμογή με ρολό, βούρτσα ή εξοπλισμό ψεκασμού. Εξαιρετικές φυσικές αντιστάσεις: σε εφελκυσμό, διάτμηση, έλξη και χημικά χαρακτηριστικά.

Εύκολο στην εφαρμογή με ρολό, βούρτσα ή εξοπλισμό ψεκασμού. Εξαιρετικές φυσικές αντιστάσεις: σε εφελκυσμό, διάτμηση, έλξη και χημικά χαρακτηριστικά. Τεχνικά στοιχεία 04/2010 STARFLEX 250 SECTOR 2 Χαρακτηριστικά Εύκολο στην εφαρμογή με ρολό, βούρτσα ή εξοπλισμό ψεκασμού. Αδιάβροχο. Υψηλή ελαστικότητα Εξαιρετική πρόσφυση Εξαιρετικές φυσικές αντιστάσεις:

Διαβάστε περισσότερα

New LIFE in AgroEnvironment

New LIFE in AgroEnvironment New LIFE in AgroEnvironment ΓΔΤΣΔΡΗ ΤΝΔΓΡΙΑ: ΟΡΘΟΛΟΓΙΚΗ ΓΙΑΥΔΙΡΙΗ ΦΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΔΙΡΟΩΝ ΑΠΟΣΔΛΔΜΑΣΑ ΔΡΓΟΤ LIFE ENV/GR/000278 SOIL SUSTAINABILITY (Sο.S.) - ΔΤΡΩΠΑΪΚΗ ΘΔΜΑΣΙΚΗ ΣΡΑΣΗΓΙΚΗ ΔΓΑΦΟΤ Γρ. Δσάγγελος

Διαβάστε περισσότερα

FERROLI SFL 3 22KW 19.000Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ PELLET ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ

FERROLI SFL 3 22KW 19.000Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ PELLET ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ FERROLI SFL 3 22KW 19.000Kcal/h FERROLI SFL 3 22KW 19.000Kcal/h ΛΕΒΗΤΑΣ PELLET ΠΕΛΕΤ ΧΥΤΟΣΙΔΗΡΟΣ ΜΑΝΤΕΜΙ ΜΕ ΚΑΥΣΤΗΡΑ PELLET FERROLI + ΔΕΞΑΜΕΝΗPELLET ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ ΚΟΜΠΛΕ Θερμική παροχή: Ξύλο/Ανθρακας/Pellet

Διαβάστε περισσότερα

Primat - Μηχανισμοί Φεγγιτών. PRIMAT- FL 190 και περιφερειακά

Primat - Μηχανισμοί Φεγγιτών. PRIMAT- FL 190 και περιφερειακά PRIMAT- FL 190 και περιφερειακά PRIMAT- FL 190 και περιφερειακά Πεδία εφαρμογής Βάρος φύλλου max. 80 kg Βάρος τζαμιού max. 40 kg / m 2 Πλάτος φύλλου 400 1200 mm 1 Ψαλίδι 1000 2400 mm 2 Ψαλίδια 1500 3600

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

FERROLI SFL 3 19KW 16.500Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ

FERROLI SFL 3 19KW 16.500Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ FERROLI SFL 3 19KW 16.500Kcal/h ΧΥΤΟΣΙΔΗΡΟΣ ΛΕΒΗΤΑΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ FERROLI SFL 3 19KW 16.500Kcal/h ΛΕΒΗΤΑΣ ΧΥΤΟΣΙΔΗΡΟΣ ΣΤΕΡΕΩΝ ΚΑΥΣΙΜΩΝ Θερμική παροχή: Ξύλο/Ανθρακας/Pellet (Kw) 19/22,5/22 Συμβατότητα

Διαβάστε περισσότερα

3. Γραμμικά Συστήματα

3. Γραμμικά Συστήματα 3. Γραμμικά Συστήματα Ασκήσεις 3. Αποδείξτε ότι το γινόμενο δύο άνω τριγωνικών πινάκων είναι άνω τριγωνικός πίνακας. Επίσης, στην περίπτωση που ένας άνω τριγωνικός πίνακας U 2 R n;n είναι αντιστρέψιμος,

Διαβάστε περισσότερα

... )*RM G ^ S NA 08MG =.1 )*RM G ^ S NA.

... )*RM G ^ S NA 08MG =.1 )*RM G ^ S NA. 35... 3 2 * $#% 0 ) *+, -./ 0 $#% &"#!" (203).2 3 4../ ) ; < / "= > 8.:& / 8/ / 8.89 E " 392 # 382 8. C :& / 238 @*=A 8"* 0? 3 9= N=MO*. 8"H=& IJ$ E. + KH= L*=M 4>G F +"* 9% S. @$ ",R 8 IJ$ 3./ P=Q ) +

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ ΙΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι. ΡΙΖΟΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΦΕΒΡΟΥΑΡΙΟΥ 9 ΘΕΜΑ.4 μονάδες)

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση

Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση Διάλεξη 7: Αλληλεπιδράσεις νετρονίων & πυρηνική σχάση Αλληλεπιδράσεις νετρονίων Το νετρόνιο ως αφόρτιστο νουκλεόνιο παίζει σημαντικό ρόλο στην πυρηνική φυσική και στην κατανόηση των πυρηνικών αλληλεπιδράσεων.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα