5. Partial Autocorrelation Function of MA(1) Process:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5. Partial Autocorrelation Function of MA(1) Process:"

Transcript

1 54 5. Partial Autocorrelation Function of MA() Process: φ, = ρ() = θ + θ 2 0 ( ρ() ) ( φ2, ) ( φ() ) = ρ() φ 2,2 φ(2) ρ() ρ() ρ(2) = φ 2,2 = ρ() = ρ() ρ() ρ() 0 ρ() ρ() = ρ()2 ρ() 2 = θ 2 + θ 2 + θ4 0

2 55 ρ() ρ(2) φ 3, ρ() ρ() φ 3,2 = φ(2) ρ(2) ρ() φ 3,3 φ(3) ρ() ρ() ρ() ρ(2) ρ(2) ρ() ρ(3) = φ 3,3 = ρ() ρ(2) = ρ() ρ() ρ(2) ρ() φ() ρ() ρ() ρ() 0 0 ρ() 0 ρ() 0 ρ() ρ() 0 ρ() = ρ() 3 2ρ() 2 0

3 56 ρ() ρ(2) ρ(3) φ 4, ρ() ρ() ρ(2) φ 4,2 φ(2) = ρ(2) ρ() ρ() φ 4,3 φ(3) ρ(3) ρ(2) ρ() φ 4,4 φ(4) ρ() ρ(2) ρ() ρ() ρ() ρ(2) ρ(2) ρ() ρ(3) ρ(3) ρ(2) ρ() ρ(4) = φ 4,4 = ρ() ρ(2) ρ(3) = ρ() ρ() ρ(2) ρ(2) ρ() ρ() ρ(3) ρ(2) ρ() As a result, φ k,k 0 for all k =, 2, φ() ρ() 0 ρ() ρ() ρ() 0 0 ρ() ρ() 0 ρ() 0 0 ρ() ρ() 0 0 ρ() ρ() 0 0 ρ() 0

4 57 6. Likelihood Function of MA() Process: The autocovariance functions are: γ(0) = (+θ 2 )σ2 ɛ, γ() = θ σ 2 ɛ, and γ(τ) = 0 for τ = 2, 3,. The joint distribution of y, y 2,, y T is: ( f (y, y 2,, y T ) = (2π) T/2 V /2 exp ) 2 Y V Y where Y = y y 2. y T, V = σ 2 ɛ + θ 2 θ 0 0 θ + θ 2 θ θ θ 2 θ 0 0 θ + θ 2.

5 58 7. MA() +drift: y t = µ + ɛ t + θ ɛ t Mean of MA() Process: y t = µ + θ(l)ɛ t, where θ(l) = + θ L. Taking the expectation, E(y t ) = µ + θ(l)e(ɛ t ) = µ.

6 59 Example: MA(2) Model: y t = ɛ t + θ ɛ t + θ 2 ɛ t 2. Autocovariance Function of MA(2) Process: ( + θ 2 + θ2 2 )σ2 ɛ, for τ = 0, (θ + θ θ 2 )σ 2 ɛ, for τ =, γ(τ) = θ 2 σ 2 ɛ, for τ = 2, 0, otherwise. 2. let /β and /β 2 be two solutions of x from θ(x) = 0. For invertibility condition, both β and β 2 should be less than one in absolute value. Then, the MA(2) model is represented as: y t = ɛ t + θ ɛ t + θ 2 ɛ t 2

7 60 = ( + θ L + θ 2 L 2 )ɛ t = ( + β L)( + β 2 L)ɛ t AR( ) representation of the MA(2) model is given by: ɛ t = ( + β L)( + β 2 L) y t ( β /(β β 2 ) = + β L + β 2/(β β 2 ) + β 2 L ) y t

8 6 Y = 3. Likelihood Function: y y 2. y T where, V = σ 2 ɛ f (y, y 2,, y T ) = ( (2π) T/2 V /2 exp ) 2 Y V Y + θ 2 + θ2 2 θ + θ θ 2 θ 2 0 θ + θ θ 2 + θ 2 + θ2 2 θ + θ θ 2... θ 2 θ + θ θ θ θ 2 + θ2 2 θ + θ θ 2 0 θ 2 θ + θ θ 2 + θ 2 + θ2 2

9 62 4. MA(2) +drift: y t = µ + ɛ t + θ ɛ t + θ 2 ɛ t 2 Mean: y t = µ + θ(l)ɛ t, where θ(l) = + θ L + θ 2 L 2. Therefore, E(y t ) = µ + θ(l)e(ɛ t ) = µ

10 63 Example: MA(q) Model: y t = ɛ t + θ ɛ t + θ 2 ɛ t θ q ɛ t q. Mean of MA(q) Process: E(y t ) = E(ɛ t + θ ɛ t + θ 2 ɛ t θ q ɛ t q ) = 0 2. Autocovariance Function of MA(q) Process: q τ σ 2 ɛ(θ 0 θ τ + θ θ τ+ + + θ q τ θ q ) = σ 2 ɛ θ i θ τ+i, τ =, 2,, q, γ(τ) = i=0 0, τ = q +, q + 2,, where θ 0 =. 3. MA( q) process is stationary. 4. MA(q) +drift: y t = µ + ɛ t + θ ɛ t + θ 2 ɛ t θ q ɛ t q

11 64 Mean: y t = µ + θ(l)ɛ t, where θ(l) = + θ L + θ 2 L θ q L q. Therefore, we have: E(y t ) = µ + θ(l)e(ɛ t ) = µ.

12 ARMA Model ARMA (Autoregressive Moving Average ) Process. ARMA(p, q) y t = φ y t + φ 2 y t φ p y t p + ɛ t + θ ɛ t + θ 2 ɛ t θ q ɛ t q, which is rewritten as: φ(l)y t = θ(l)ɛ t, where φ(l) = φ L φ 2 L 2 φ p L p and θ(l) = +θ L+θ 2 L 2 + +θ q L q. 2. Likelihood Function: The variance-covariance matrix of Y, denoted by V, has to be computed.

13 66 Example: ARMA(,) Process: y t = φ y t + ɛ t + θ ɛ t Obtain the autocorrelation coefficient. The mean of y t is to take the expectation on both sides. E(y t ) = φ E(y t ) + E(ɛ t ) + θ E(ɛ t ), where the second and third terms are zeros. Therefore, we obtain: E(y t ) = 0. The autocovariance of y t is to take the expectation, multiplying y t τ on both sides. E(y t y t τ ) = φ E(y t y t τ ) + E(ɛ t y t τ ) + θ E(ɛ t y t τ ). Each term is given by: E(y t y t τ ) = γ(τ), E(y t y t τ ) = γ(τ ),

14 67 σ 2 ɛ, τ = 0, E(ɛ t y t τ ) = 0, τ =, 2,, Therefore, we obtain; (φ + θ )σ 2 ɛ, τ = 0, E(ɛ t y t τ ) = σ 2 ɛ, τ =, 0, τ = 2, 3,. γ(0) = φ γ() + ( + φ θ + θ 2 )σ2 ɛ, γ() = φ γ(0) + θ σ 2 ɛ, γ(τ) = φ γ(τ ), τ = 2, 3,. From the first two equations, γ(0) and γ() are computed by: ( φ ) ( γ(0) ) ( + φ θ + θ 2 ) φ γ() = σ 2 ɛ θ ( γ(0) ) ( ) φ ( + φ θ + θ 2 ) γ() = σ 2 ɛ φ θ

15 68 = σ2 ɛ φ 2 ( φ ) ( + φ θ + θ 2 ) φ θ ( = σ2 ɛ φ 2 + 2φ θ + θ 2 ( + φ θ )(φ + θ ) ). Thus, the initial value of the autocorrelation coefficient is given by: ρ() = ( + φ θ )(φ + θ ). + 2φ θ + θ 2 We have: ρ(τ) = φ ρ(τ ).

16 69 ARMA(p, q) +drift: y t = µ + φ y t + φ 2 y t 2 + φ p y t p + ɛ t + θ ɛ t + θ 2 ɛ t θ q ɛ t q. Mean of ARMA(p, q) Process: φ(l)y t = µ + θ(l)ɛ t, where φ(l) = φ L φ 2 L 2 φ p L p and θ(l) = + θ L + θ 2 L θ q L q. y t = φ(l) µ + φ(l) θ(l)ɛ t. Therefore, E(y t ) = φ(l) µ + φ(l) θ(l)e(ɛ t ) = φ() µ = µ φ φ 2 φ p.

17 ARIMA Model Autoregressive Integrated Moving Average (ARIMA ) Model ARIMA(p, d, q) Process φ(l) d y t = θ(l)ɛ t, where d y t = d ( L)y t = d y t d y t = ( L) d y t for d =, 2,, and 0 y t = y t.

18 7 5.6 SARIMA Model Seasonal ARIMA (SARIMA) Process:. SARIMA(p, d, q) φ(l) d s y t = θ(l)ɛ t, where s y t = ( L s )y t = y t y t s. s = 4 when y t denotes quarterly date and s = 2 when y t represents monthly data. 5.7 Optimal Prediction. AR(p) Process: y t = φ y t + + φ p y t p + ɛ t

19 72 (a) Define: E(y t+k Y t ) = y t+k t, where Y t denotes all the information available at time t. Taking the conditional expectation of y t+k = φ y t+k + +φ p y t+k p +ɛ t+k on both sides, y t+k t = φ y t+k t + + φ p y t+k p t, where y s t = y s for s t. (b) Optimal prediction is given by solving the above differential equation. 2. MA(q) Process: y t = ɛ t + θ ɛ t + + θ q ɛ t q (a) Let ˆɛ T, ˆɛ T,, ˆɛ be the estimated errors. (b) y t+k = ɛ t+k + θ ɛ t+k + + θ q ɛ t+k q

20 73 (c) Therefore, y t+k t = ɛ t+k t + θ ɛ t+k t + + θ q ɛ t+k q t, where ɛ s t = 0 for s > t and ɛ s t = ˆɛ s for s t. 3. ARMA(p, q) Process: y t = φ y t + + φ p y t p + ɛ t + θ ɛ t + + θ q ɛ t q (a) y t+k = φ y t+k + + φ p y t+k p + ɛ t+k + θ ɛ t+k + + θ q ɛ t+k q (b) Optimal prediction is: y t+k t = φ y t+k t + + φ p y t+k p t + ɛ t+k t + θ ɛ t+k t + + θ q ɛ t+k q t, where y s t = y s and ɛ s t = ˆɛ s for s t, and ɛ s t = 0 for s > t.

21 Identification. Based on AIC or SBIC given d, s, we obtain p, q. We choose p and q, where AIC or SBIC is minimized. (a) AIC (Akaike s Information Criterion) AIC = 2 log(likelihood) + 2k, where k = p + q, which is the number of parameters estimated. (b) SBIC (Shwarz s Bayesian Information Criterion) SBIC = 2 log(likelihood) + k log T, where T denotes the number of observations. 2. From the sample autocorrelation coefficient function ˆρ(k) and the partial autocorrelation coefficient function ˆφ k,k for k =, 2,, we obtain p, d, q, s.

22 75 AR(p) Process MA(q) Process Autocorrelation Function Gradually decreasing ρ(k) = 0, k = q +, q + 2, Partial Autocorrelation Function φ(k, k) = 0, Gradually decreasing k = p +, p + 2, (a) Compute s y t to remove seasonality. Compute the autocovariance functions of s y t. If the autocovariance functions have period s, we take ( L s ), again. (b) Determine the order of difference. Compute the partial autocovariance functions every time. If the autocovariance functions decrease as τ is large, go to the next step. (c) Determine the order of AR terms (i.e., p).

23 76 Compute the partial autocovariance functions every time. The partial autocovariance functions are close to zero after some τ, go to the next step. (d) Determine the order of MA terms (i.e., q). Compute the autocovariance functions every time. If the autocovariance functions are randomly around zero, end of the procedure.

24 Example of SARIMA using Consumption Data Construct SARIMA model using monthly and seasonally unadjusted consumption expenditure data and STATA2. Estimation Period: Jan., 970 Dec., 202 (T = 56). gen time=_n. tsset time time variable: time, to 56 delta: unit. corrgram expend LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]

25 gen dexp=expend-l.expend ( missing value generated). corrgram dexp LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]

26 79. gen sdex=dexp-l2.dexp (3 missing values generated). corrgram sdex LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor] arima sdex, ar(,2) ma() (setting optimization to BHHH) Iteration 0: log likelihood = Iteration : log likelihood =

27 80 Iteration 2: log likelihood = Iteration 3: log likelihood = Iteration 4: log likelihood = (switching optimization to BFGS) Iteration 5: log likelihood = Iteration 6: log likelihood = Iteration 7: log likelihood = Iteration 8: log likelihood = ARIMA regression Sample: 4-56 Number of obs = 503 Wald chi2(3) = Log likelihood = Prob > chi2 = OPG sdex Coef. Std. Err. z P> z [95% Conf. Interval] sdex _cons ARMA ar L L ma L /sigma

28 8 Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.. estat ic Model Obs ll(null) ll(model) df AIC BIC Note: N=Obs used in calculating BIC; see [R] BIC note

29 82 6 Unit Root ( ) and Cointegration ( ) 6. Unit Root ( ) Test (Dickey-Fuller (DF) Test). Why is a unit root problem important? (a) Economic variables increase over time in general. One of the assumptions of OLS is stationarity on y t and x t. This assumption implies that T X X converges to a fixed matrix as T is large. That is, asymptotic normality of OLS estimator does not hold. (b) In nonstationary time series, the unit root is the most important. In the case of unit root, OLSE of the first-order autoregressive coefficient is consistent.

30 83 OLSE is T-consistent in the case of stationary AR() process, but OLSE is T-consistent in the case of nonstationay AR() process. (c) A lot of economic variables increase over time. It is important to check an economic variable is trend stationary (i.e., y t = a 0 + a t + ɛ t ) or difference stationary (i.e., y t = b 0 + y t + ɛ t ). Consider k-step ahead prediction for both cases. (Trend Stationarity) y t+k t = a 0 + a (t + k) (Difference Stationarity) y t+k t = b 0 k + y t 2. The Case of φ < : y t = φ y t + ɛ t, ɛ t i.i.d. N(0, σ 2 ɛ), y 0 = 0, t =,, T

31 84 Then, OLSE of φ is: ˆφ = y t y t. y 2 t In the case of φ <, ˆφ = φ + T T y t ɛ t y 2 t φ + E(y t ɛ t ) E(y 2 t ) = φ. Note as follows: T y t ɛ t E(y t ɛ t ) = 0.

32 85 By the central limit theorem, yɛ E(yɛ) V(yɛ) N(0, ) where yɛ = T y t ɛ t.

33 86 Therefore, E(yɛ) = 0, V(yɛ) = V( T y t ɛ t ) = E ( ( T = T 2 E( T y t ɛ t ) 2) ) T y t y s ɛ t ɛ s = T E( 2 s= y 2 t ɛ2 t ) = T σ2 ɛγ(0). yɛ σ 2 ɛ γ(0)/t = T σ ɛ γ(0) y t ɛ t N(0, ), which is rewritten as: T y t ɛ t N(0, σ 2 ɛγ(0)).

34 87 E(y2 t ) = γ(0), we have the following asymptotic distri- Using T bution: y 2 t T( ˆφ φ ) = T T y t ɛ t y 2 t N ( ) σ 2 ɛ 0, = N ( 0, φ 2 γ(0) ). Note that γ(0) = σ2 ɛ. φ 2 3. In the case of φ =, as expected, we have: T( ˆφ ) 0. That is, ˆφ has the distribution which converges in probability to φ = (i.e., degenerated distribution).

35 88 Is this true? 4. The Case of φ = : = Random Walk Process y t = y t + ɛ t with y 0 = 0 is written as: y t = ɛ t + ɛ t + ɛ t ɛ. Therefore, we can obtain: y t N(0, σ 2 ɛt). The variance of y t depends on time t. = y t is nonstationary. yt ɛ t 5. Remember that ˆφ = φ +. y 2 t (a) First, consider the numerator y t ɛ t. We have y 2 t = (y t + ɛ t ) 2 = y 2 t + 2y t ɛ t + ɛ 2 t.

36 89 Therefore, we obtain: y t ɛ t = 2 (y2 t y 2 t ɛ2 t ). Taking into account y 0 = 0, we have: y t ɛ t = 2 y2 T 2 ɛt 2. Divided by σ 2 ɛt on both sides, we have the following: σ 2 ɛt y t ɛ t = ( ) 2 y T 2 σ ɛ T 2σ 2 ɛ From y t N(0, σ 2 ɛt), we obtain the following result: ( y T σ ɛ T ) 2 χ 2 (). T ɛt 2.

37 90 Moreover, the second term is derived from: T ɛt 2 E(ɛt 2 ) = σ 2 ɛ. Therefore, σ 2 ɛt y t ɛ t = ( ) 2 y T 2 σ ɛ T 2σ 2 ɛ T ɛt 2 2 (χ2 () ). (b) Next, consider y 2 t. E y 2 t = E(y 2 t ) = σ 2 ɛ(t ) = σ 2 ɛ Thus, we obtain the following result: T E 2 y 2 t a fixed value, i.e., σ2 ɛ 2. T(T ). 2

38 9 Therefore, T 2 y 2 t a distribution. 6. Summarizing the results up to now, T( ˆφ φ ), not T( ˆφ φ ), has limiting distribution in the case of φ =. T( ˆφ φ ) = (/T) y t ɛ t (/T 2 ) y 2 t a distribution. 7. Basic Concepts of Random Walk Process: (a) Model: y t = y t + ɛ t, y 0 = 0, ɛ t N(0, ). Then, y t = ɛ t + ɛ t + + ɛ. Therefore, y t N(0, t).

39 92 = Nonstationary Process (i.e., variance depends on time t.) Difference between y s and y t (s > t) is: y s y t = ɛ s + ɛ s + + ɛ t+2 + ɛ t+. The distribution of y s y t is: y s y t N(0, s t). (b) Rewrite as follows: y t = y t + ɛ t = y t + e,t + e 2,t + + e N,t, where ɛ t = e,t + e 2,t + + e N,t. e,t, e 2,t,, e N,t are iid with e i,t N(0, /N). That is, suppose that there are N subperiods between time t and time t+.

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Stationary ARMA Processes

Stationary ARMA Processes Stationary ARMA Processes Eduardo Rossi University of Pavia October 2013 Rossi Stationary ARMA Financial Econometrics - 2013 1 / 45 Moving Average of order 1 (MA(1)) Y t = µ + ɛ t + θɛ t 1 t = 1,..., T

Διαβάστε περισσότερα

2. ARMA 1. 1 This part is based on H and BD.

2. ARMA 1. 1 This part is based on H and BD. 2. ARMA 1 1 This part is based on H and BD. 1 1 MA 1.1 MA(1) Let ε t be WN with variance σ 2 and consider the zero mean 2 process Y t = ε t + θε t 1 (1) where θ is a constant. MA(1). This time series is

Διαβάστε περισσότερα

Module 5. February 14, h 0min

Module 5. February 14, h 0min Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Stationary ARMA Processes

Stationary ARMA Processes University of Pavia 2007 Stationary ARMA Processes Eduardo Rossi University of Pavia Moving Average of order 1 (MA(1)) Y t = µ + ǫ t + θǫ t 1 t = 1,...,T ǫ t WN(0, σ 2 ) E(ǫ t ) = 0 E(ǫ 2 t) = σ 2 E(ǫ

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Asymptotic distribution of MLE

Asymptotic distribution of MLE Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Lecture 2: ARMA Models

Lecture 2: ARMA Models Leture 2: ARMA Models Bus 41910, Autumn Quarter 2008, Mr Ruey S Tsay Autoregressive Moving-Average (ARMA) models form a lass of linear time series models whih are widely appliable and parsimonious in parameterization

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Bayesian modeling of inseparable space-time variation in disease risk

Bayesian modeling of inseparable space-time variation in disease risk Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

MATHACHij = γ00 + u0j + rij

MATHACHij = γ00 + u0j + rij Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Μοντέλα χρονολογικών σειρών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration )

ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration ) ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ (TEST: Unit Root-Cointegration ) ΦΑΙΝΟΜΕΝΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η στασιμότητα των δεδομένων (χρονοσειρών) είναι θεωρητική προϋπόθεση για την παλινδρόμηση, δηλ. την εκτίμηση

Διαβάστε περισσότερα