Stationary ARMA Processes

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Stationary ARMA Processes"

Transcript

1 University of Pavia 2007 Stationary ARMA Processes Eduardo Rossi University of Pavia

2 Moving Average of order 1 (MA(1)) Y t = µ + ǫ t + θǫ t 1 t = 1,...,T ǫ t WN(0, σ 2 ) E(ǫ t ) = 0 E(ǫ 2 t) = σ 2 E(ǫ t ǫ t j ) = 0 j 0 E(Y t ) = E(µ + ǫ t + θǫ t 1 ) E(Y t ) = µ + E(ǫ t ) + θe(ǫ t 1 ) E(Y t ) = µ Eduardo Rossi c - Macroeconometria 2

3 Moving Average of order 1 (MA(1)) E(Y t µ) 2 = E(ǫ t + θǫ t 1 ) 2 = E(ǫ 2 t + θ 2 ǫ 2 t 1 + 2θǫ t 1 ǫ t ) = σ 2 + θ 2 σ = (1 + θ 2 )σ 2 First Autocovariance γ(1) = E(Y t µ)(y t 1 µ) = E(ǫ + θǫ t 1 )(ǫ t 1 + θǫ t 2 ) = E(ǫ t ǫ t 1 + θǫ 2 t 1 + θǫ t ǫ t 2 + θ 2 ǫ t 1 ǫ t 2 ) = 0 + θσ = θσ 2 Higher Autocovariances are all zero γ(j) = E[(Y t µ)(y t j µ)] = 0 Eduardo Rossi c - Macroeconometria 3

4 Moving Average of order 1 (MA(1)) MA(1) is covariance stationary regardless the value of θ. γ(j) = (1 + θ 2 )σ 2 + θσ 2 < j=0 If ǫ t is a Gaussian White Noise, then MA(1) is ergodic for all moments. Autocorrelation function ρ(j) γ(j) γ(0) ρ(j) 1 ρ(1) = ρ(j) = 0 j > 0 θσ 2 (1 + θ 2 )σ 2 = θ 1 + θ 2 Eduardo Rossi c - Macroeconometria 4

5 Moving Average of order 1 (MA(1)) The largest possible value for ρ(1) is 0.5. This occurs if θ = 1. The smallest is 0.5, θ = 1. For 0.5 < ρ(1) < 0.5 there are two different values of θ that could produce that autocorrelation. θ 1+θ 2 is unchanged if θ is replaced by 1/θ. Eduardo Rossi c - Macroeconometria 5

6 Invertibility MA(1): Y t = µ + ǫ t + θ 1 ǫ t 1 Y t = µ + (1 + θ 1 L)ǫ t Autocorrelation function: ρ(1) γ(1) γ(0) = θ 1 + θ 2 Replacing θ by 1/θ and assuming that the (unobserved) shock process has a variance of θ 2 σ 2 instead of σ 2 yields a process with the same autocovariance structure as the original process. The invertibility of (1 + θ 1 z) depends on the roots of 1 + θ 1 z = 0 Eduardo Rossi c - Macroeconometria 6

7 Invertibility invertibility requires θ < 1; if θ 1 the infinite sequence (1 θl + θ 2 L 2 θ 3 L ) would not be well defined. For a MA(q) there are 2 q representations of the process having the same correlogram. Identification problem. To overcome this problem we impose the invertibility condition. AR( ) representation: θ(l) 1 Y t = θ(1) 1 µ + ǫ t Eduardo Rossi c - Macroeconometria 7

8 Moving average of order q (MA(q)) Y t = µ + θ(l)ǫ t t = 1,...,T ǫ t WN(0, σ 2 ) θ(l) = 1 + θ 1 L θ q L q E(Y t ) = µ E[(Y t µ) 2 ] = E[(θ(L)ǫ t ) 2 ] = E(ǫ 2 t + θ1ǫ 2 2 t θqǫ 2 2 t q) = (1 + θ θq)σ 2 2 Eduardo Rossi c - Macroeconometria 8

9 Moving average of order q (MA(q)) because E(θ i θ j ǫ t i ǫ t j ) = 0 i j i, j = 0,...,q θ 0 = 1 The autocovariance function γ(j) = E[(θ(L)ǫ t )(θ(l)ǫ t j )] = E[(ǫ t θ j ǫ t j θ q ǫ t q )(ǫ t j + θ 1 ǫ t j θ q ǫ t q j )] = E(θ j ǫ 2 t j + θ 1 θ j+1 ǫ 2 t j θ q θ q j ǫ 2 t q) = (θ j + θ 1 θ j θ q θ q j )σ 2 j = 1,...,q γ(j) = 0 j > q Eduardo Rossi c - Macroeconometria 9

10 Example: MA(2) Y t = µ + ǫ t + θ 1 ǫ t 1 + θ 2 ǫ t 2 γ(0) = (1 + θ1 2 + θ2)σ 2 2 γ(1) = E[(ǫ t + θ 1 ǫ t 1 + θ 2 ǫ t 2 )(ǫ t 1 + θ 1 ǫ t 2 + θ 2 ǫ t 3 )] = θ 1 E(ǫ 2 t 1) + θ 1 θ 2 E(ǫ 2 t 2) = (θ 1 + θ 1 θ 2 )σ 2 γ(j) = 0 j = 3, 4,... Eduardo Rossi c - Macroeconometria 10

11 The Infinite-Order Moving Average Process Y t = µ + ψ j ǫ t j j=0 ǫ t WN(0, σ 2 ) The infinite sequence generates a c.s. process provided that square summability holds ψj 2 < j=0 a slightly stronger condition is the absolute summability ψ j < j=0 Eduardo Rossi c - Macroeconometria 11

12 The Infinite-Order Moving Average Process E(Y t ) = µ γ(0) = E(Y t µ) 2 = lim T E(ψ 0ǫ t + ψǫ t ψ T ǫ t T ) = lim T (ψ2 0 + ψ ψ 2 T)σ 2 γ(j) = E[(Y t µ)(y t j µ)] = σ 2 (ψ j ψ 0 + ψ j+1 ψ ) Eduardo Rossi c - Macroeconometria 12

13 The Infinite-Order Moving Average Process An MA( ) with absolutely summable coefficients has absolutely summable covariances γ(j) < j=0 An MA( ) absolutely summable is ergodic for the mean. If ǫ t i.i.d.n(0, σ 2 ) then the process is ergodic for all moments. Eduardo Rossi c - Macroeconometria 13

14 The Autoregressive process of order 1 (AR(1)) Y t = c + φy t 1 + ǫ t ǫ t WN(0, σ 2 ) Y t = c T 1 j=0 Y t is c.s. if φ < 1. φ j + φ T Y t T + T 1 j=0 φ j ǫ t j Eduardo Rossi c - Macroeconometria 14

15 The Autoregressive process of order 1 (AR(1)) First Order Difference Equation (1 φl)y t = w t If φ < 1 then backward solution: y t = w t + φw t If φ > 1 forward solution based on (1 φl) 1 = φ 1 L 1 1 φ 1 L 1 = φ 1 L 1 [1+φ 1 L 1 +φ 2 L ] (1 φl)(1 φl) 1 = 1 when it is applied to a bounded sequence {w t } t= the result is another bounded sequence. Applying (1 φl) 1 we are implicitly imposing a boundedness assumption. Eduardo Rossi c - Macroeconometria 15

16 The Autoregressive process of order 1 (AR(1)) Premultiplying by [1 + φ 1 L φ (T 1) L (T 1) ][ φ 1 L 1 ] the limit of this operator exists and is (1 φl) 1 when φ > 1 (1 φl) 1 = [ φ 1 L 1 ][1 + φ 1 L ] Applying this operator amounts to solving the difference equation forward. Eduardo Rossi c - Macroeconometria 16

17 The Autoregressive process of order 1 (AR(1)) For a AR(1) process with φ > 1: Y t = (1 φl) 1 ǫ t = [ φ 1 L 1 ][1 + φ 1 L ]ǫ t Y t = [ φ 1 L 1 ][ǫ t + φ 1 ǫ t ] = φ j ǫ t+j this is the unique stationary solution. This is regarded as unnatural since Y t is correlated with {ǫ s, s > t} a property not shared by the solution obtained when φ < 1. It is customary when modelling stationary time series to restrict attention to AR(1) processes with φ < 1 for which Y t has the representation in terms of {ǫ s, s t}. If φ = 1 there is no stationary solution. j=1 Eduardo Rossi c - Macroeconometria 17

18 The Autoregressive process of order 1 (AR(1)) When Y t is c.s. we can write: Y t = (c + ǫ t ) + φ(c + ǫ t 1 ) + φ 2 (c + ǫ t 2 ) +... when φ < 1 = c + cφ + cφ ǫ t + φǫ t c = 1 φ + ǫ t + φǫ t 1 + φ 2 ǫ 2 t }{{} MA( ) ψj =φ j ψ j = j=0 φ j = j=0 1 1 φ this ensures that the MA( ) representation exists. The AR(1) process is ergodic for the mean. Eduardo Rossi c - Macroeconometria 18

19 The Autoregressive process of order 1 (AR(1)) µ E(Y t ) = c 1 φ γ(0) = E[(Y t µ) 2 ] = E[(ǫ t + φǫ t 1 + φǫ t ) 2 ] = (1 + φ 2 + φ )σ 2 = σ 2 /(1 φ 2 ) γ(j) = E[(Y t µ)(y t j µ)] = E[(ǫ t + φǫ t 1 + φ 2 ǫ t )(ǫ t j + φǫ t j 1 + φ 2 ǫ t j )] = (φ j + φ j+2 + φ j )σ 2 = φ j (1 + φ 2 + φ )σ 2 = σ 2 (φ j /(1 φ 2 )) Eduardo Rossi c - Macroeconometria 19

20 The Autoregressive process of order 1 (AR(1)) Autocorrelation function ρ(j) = γ(j) γ(0) = φj geometric decay. solution: γ(j) = φγ(j 1) γ(j) = φ j γ(0) Eduardo Rossi c - Macroeconometria 20

21 The AR(2) process Y t = c + φ 1 Y t 1 + φ 2 Y t 2 + ǫ t ǫ t WN(0, σ 2 ) (1 φ 1 L φ 2 L 2 )Y t = c + ǫ t The difference equation is stable provided that the roots of 1 φ 1 z φ 2 z 2 = 0 lie outside the unit circle. ψ(l) = (1 φ 1 L φ 2 L 2 ) 1 = ψ 0 + ψ 1 L + ψ 2 L Eduardo Rossi c - Macroeconometria 21

22 The AR(2) process c µ = 1 φ 1 φ 2 The autocovariances Y t = µ(1 φ 1 φ 2 ) + φ 1 Y t 1 + φ 2 Y t 2 + ǫ t Y t µ = φ 1 (Y t 1 µ) + φ 2 (Y t 2 µ) + ǫ t multiplying both sides by (Y t j µ) and taking expectations produces E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] +φ 2 E[(Y t 2 µ)(y t j µ)] + E[ǫ t (Y t j µ)] γ(j) = φ 1 γ(j 1) + φ 2 γ(j 2) j = 1, 2,... Eduardo Rossi c - Macroeconometria 22

23 The AR(2) process The autocovariances follow the same the second-order difference equation as does the process for Y t. The autocorrelations ρ(j) = φ 1 ρ(j 1) + φ 2 ρ(j 2) j = 1, 2,... Setting j = 1 For j = 2 ρ(1) = φ 1 + φ 2 ρ(1) ρ(1) = φ 1 1 φ 2 ρ(2) = φ 1 ρ(1) + φ 2 The variance of a c.s. AR(2) E[(Y t µ) 2 ] = φ 1 E[(Y t 1 µ)(y t µ)]+φ 2 E[(Y t 2 µ)(y t µ)]+e[(ǫ t )(Y t µ)] Eduardo Rossi c - Macroeconometria 23

24 The AR(2) process E(ǫ t )(Y t µ) = E(ǫ t )[φ 1 (Y t 1 µ) + φ 2 (Y t 2 µ) + ǫ t ] = φ φ σ 2 γ(0) = φ 1 γ(1) + φ 2 γ(2) + σ 2 γ(0) = φ 1 ρ(1)γ(0) + φ 2 ρ(2)γ(0) + σ 2 Substituting ρ(1) and ρ(2) [ ] φ 2 γ(0) = 1 + φ 2 (φ 1 ρ(1) + φ 2 ) γ(0) + σ 2 1 φ 2 [ φ 2 = 1 + φ 2φ 2 ] 1 + φ 2 2 γ(0) + σ 2 1 φ 2 1 φ 2 Eduardo Rossi c - Macroeconometria 24

25 The AR(2) process γ(0) = = = = = [ 1 φ2 1 φ 2φ 2 ] 1 1 φ 2 2 σ 2 1 φ 2 1 φ 2 [ 1 φ2 φ 2 1 φ 2 φ 2 1 φ 2 2(1 φ 2 ) 1 φ 2 (1 φ 2 )σ 2 1 φ 2 φ 2 1 φ 2φ 2 1 φ2 2 (1 φ 2) (1 φ 2 )σ 2 1 φ 2 φ 2 1 φ 2φ 2 1 φ2 2 (1 φ 2) (1 φ 2 )σ 2 (1 + φ 2 )[(1 φ 2 ) 2 φ 2 1 ] ] 1 σ 2 Eduardo Rossi c - Macroeconometria 25

26 The AR(p) process Y t = c + φ 1 Y t 1 + φ 2 Y t φ p Y t p + ǫ t ǫ t WN(0, σ 2 ) provided that the roots of φ(z) = 1 φ 1 z... φ p z p = 0 all lie the unit circle. Covariance-stationary representation: Y t = µ + ψ(l)ǫ t = c + 1 φ 1 φ 2... φ p 1 1 φ 1 L... φ p L p ǫ t Eduardo Rossi c - Macroeconometria 26

27 The AR(p) process where ψ(z) = (1 φ 1 z... φ p z p ) 1 = φ(z) 1 and ψ j < j=0 The mean is µ = E(Y t ) = c 1 φ 1... φ p Y t µ = φ 1 (Y t 1 µ) + φ 2 (Y t 2 µ) φ p (Y t p µ) + ǫ t Autocovariances are found by multiplying both sides by (Y t j µ) and taking expectations Eduardo Rossi c - Macroeconometria 27

28 The AR(p) process The autocovariance function φ 1 γ(j 1) + φ 2 γ(j 2) φ p γ(j p) j = 1, 2,... γ(j) = φ 1 γ(1) φ p γ p + σ 2 j = 0 Eduardo Rossi c - Macroeconometria 28

29 The AR(p) process Dividing the autocovariance function by γ 0 we obtain the Yule-Walker equations: ρ j = φ 1 ρ j 1 + φ 2 ρ j φ p ρ j p j = 1, 2,... Thus the autocovariances and autocorrelations follow the same p-th order difference equation as does the process itself. For distinct roots, their solutions take the form γ(j) = g 1 λ j 1 + g 2λ j g pλ j p where the eigenvalues (λ 1,...,λ p ) are the solutions to λ p φ 1 λ p 1... φ p = 0 Eduardo Rossi c - Macroeconometria 29

30 The Autoregressive Moving Average process (ARMA(p,q)) Y t = c + φ 1 Y t φ p Y t p + ǫ t + θ 1 ǫ t θ q ǫ t q (1 φ 1 L... φ p L p )Y t = c + (1 + θ θ q L q )ǫ t φ(l)y t = c + θ(l)ǫ t where φ(l) = 1 φ 1 L... φ p L p θ(l) = 1 + θ θ q L q the stationarity depends on the roots of 1 φ 1 z... φ p z p = 0 Eduardo Rossi c - Macroeconometria 30

31 The Autoregressive Moving Average process (ARMA(p,q)) If the roots are outside the unit circle then the inverse of φ(z) exists, then dividing by φ(l) both sides Y t = µ + ψ(l)ǫ t ψ(l) = θ(l) φ(l) c µ = 1 φ 1... φ p ψ j < j=0 Eduardo Rossi c - Macroeconometria 31

32 The Autoregressive Moving Average process (ARMA(p,q)) c = µ(1 φ 1... φ p ) Y t = µ(1 φ 1... φ p ) + φ 1 Y t φ p Y t p + ǫ t θ q ǫ t q Y t µ = φ 1 (Y t 1 µ) φ p (Y t p µ) + ǫ t + θ 1 ǫ t θ q ǫ t q The variance E[(Y t µ) 2 ] = φ 1 E[(Y t 1 µ)(y t µ)] φ p E[(Y t p µ)(y t µ)] +E[ǫ t (Y t µ)] + θ 1 E[ǫ t 1 (Y t µ)] θ q E[ǫ t q (Y t µ)] E[(Y t µ) 2 ] = φ 1 [σ 2 (ψ 1 ψ 0 + ψ 2 ψ )] φ p [σ 2 (ψ p ψ 0 + ψ p+1 ψ )] +E[ψ 0 ǫ 2 t] + θ 1 E[ψ 1 ǫ 2 t 1] θ q E[ψ q ǫ 2 t q] Eduardo Rossi c - Macroeconometria 32

33 The Autoregressive Moving Average process (ARMA(p,q)) E[(Y t µ) 2 ] = φ 1 [σ 2 (ψ 1 ψ 0 + ψ 2 ψ )] φ p [σ 2 (ψ p ψ 0 + ψ p+1 ψ )] +ψ 0 σ 2 + θ 1 ψ 1 σ θ q ψ q σ 2 An ARMA(p,q) process will have more complicated autocovariances for lags 1 through q than would the corresponding AR(p) process γ(j) = E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] φ p E[(Y t p µ)(y t j µ)] +E[ǫ t (Y t j µ)] + θ 1 E[ǫ t 1 (Y t j µ)] θ q E[ǫ t q (Y t j µ)] Eduardo Rossi c - Macroeconometria 33

34 The Autoregressive Moving Average process (ARMA(p,q)) For j > q autocovariances are given by E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] φ p E[(Y t p µ)(y t j µ)] +E[ǫ t (Y t j µ)] + θ 1 E[ǫ t 1 (Y t j µ)] θ q E[ǫ t q (Y t j µ)] E[ǫ t q (Y t j µ)] = E[ǫ t q (ψ(l)ǫ t j )] = E[ǫ t q (ψ 0 ǫ t j + ψ 1 ǫ t j )] = ψ 0 E[ǫ t q ǫ t j ] + ψ 1 E[ǫ t q ǫ t j 1 ] +... = 0 then E[(Y t µ)(y t j µ)] = φ 1 E[(Y t 1 µ)(y t j µ)] φ p E[(Y t p µ)(y t j µ)] Eduardo Rossi c - Macroeconometria 34

35 The Autoregressive Moving Average process (ARMA(p,q)) γ(j) = φ 1 γ(j 1)+φ 2 γ(j 2)+...+φ p γ(j p) j = q+1, q+2,... Thus after q lags the autocovariance function follow the p-th order difference equation governed by the autoregressive parameters. Eduardo Rossi c - Macroeconometria 35

36 The Autoregressive Moving Average process (ARMA(p,q)) There is a potential for redundant parameterization with ARMA processes. Consider a simple white noise process Y t = ǫ t Suppose both sides are multiplyied by (1 ρl): (1 ρl)y t = (1 ρl)ǫ t Both are valid representations, thus the latter might be described as an ARMA(1,1) process, with φ 1 = ρ and θ 1 = ρ. Since any value of ρ describes the data equally well, we will get into trouble trying to estimate the parameter ρ by maximum likelihood. Eduardo Rossi c - Macroeconometria 36

37 The Autoregressive Moving Average process (ARMA(p,q)) A related overparameterization can arise with an ARMA(p,q) model. Consider the factorization of the lag polynomial operators: (1 λ 1 L)(1 λ 2 L)...(1 λ p L)(Y t µ) = (1 η 1 L)...(1 η q L)ǫ t Assume that λ i < 1 for all i, so that the process is c.s.. If φ(l) and θ(l) have any roots in common, λ i = η j for some i and j, then both sides can be divided by (1 λ i L) p k=1,k i (1 λ k L)(Y t µ) = q k=1,k j (1 η k L)ǫ t Eduardo Rossi c - Macroeconometria 37

38 The Autoregressive Moving Average process (ARMA(p,q)) (1 φ 1L... φ p 1L p 1 )(Y t µ) = (1+θ 1L+...+θ q 1L q 1 )ǫ t where (1 φ 1L... φ p 1L p 1 ) p k=1,k i (1 λ k L) (1 + θ 1L θ q 1L q 1 ) q k=1,k j (1 η k L) The stationary process ARMA(p,q) process is clearly identical to the stationary ARMA(p-1,q-1) process. Eduardo Rossi c - Macroeconometria 38

39 ARMA(1,1) Y t = c + φ 1 Y t 1 + ǫ t + θ 1 ǫ t 1 (1 φ 1 L)Y t = c + (1 + θ 1 L)ǫ t φ 1 < 1 ψ(l) = 1 + θ 1L 1 φ 1 L = (1 + θ 1L)(1 + φ 1 L + φ 2 1L ) ψ 0 + ψ 1 L + ψ 2 L = (1 + θ 1 L)(1 + φ 1 L + φ 2 1L ) Eduardo Rossi c - Macroeconometria 39

40 ARMA(1,1) ψ 0 = 1 ψ 1 = θ 1 + ψ 1 ψ 2 = φ φ 1 θ 1... =... γ(0) = φ 1 E[(Y t 1 µ)(y t µ)]+e[ǫ t (Y t µ)]+θ 1 E[ǫ t 1 (Y t µ)] γ(0) = φ 1 [σ 2 (ψ 1 ψ 0 + ψ 2 ψ )] + σ 2 + θ 1 ψ 1 σ 2 γ(1) = φ 1 γ(0) + θ 1 σ 2 γ(2) = φ 1 γ(1) Eduardo Rossi c - Macroeconometria 40

Stationary ARMA Processes

Stationary ARMA Processes Stationary ARMA Processes Eduardo Rossi University of Pavia October 2013 Rossi Stationary ARMA Financial Econometrics - 2013 1 / 45 Moving Average of order 1 (MA(1)) Y t = µ + ɛ t + θɛ t 1 t = 1,..., T

Διαβάστε περισσότερα

2. ARMA 1. 1 This part is based on H and BD.

2. ARMA 1. 1 This part is based on H and BD. 2. ARMA 1 1 This part is based on H and BD. 1 1 MA 1.1 MA(1) Let ε t be WN with variance σ 2 and consider the zero mean 2 process Y t = ε t + θε t 1 (1) where θ is a constant. MA(1). This time series is

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Module 5. February 14, h 0min

Module 5. February 14, h 0min Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,

Διαβάστε περισσότερα

Stationary Univariate Time Series Models 1

Stationary Univariate Time Series Models 1 Stationary Univariate Time Series Models 1 Sebastian Fossati University of Alberta 1 These slides are based on Eric Zivot s time series notes available at: http://faculty.washington.edu/ezivot Example

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Lecture 2: ARMA Models

Lecture 2: ARMA Models Leture 2: ARMA Models Bus 41910, Autumn Quarter 2008, Mr Ruey S Tsay Autoregressive Moving-Average (ARMA) models form a lass of linear time series models whih are widely appliable and parsimonious in parameterization

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

5. Partial Autocorrelation Function of MA(1) Process:

5. Partial Autocorrelation Function of MA(1) Process: 54 5. Partial Autocorrelation Function of MA() Process: φ, = ρ() = θ + θ 2 0 ( ρ() ) ( φ2, ) ( φ() ) = ρ() φ 2,2 φ(2) ρ() ρ() ρ(2) = φ 2,2 = ρ() = ρ() ρ() ρ() 0 ρ() ρ() = ρ()2 ρ() 2 = θ 2 + θ 2 + θ4 0

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ARMA Models: I VIII 1

ARMA Models: I VIII 1 ARMA Models: I autoregressive moving-average (ARMA) processes play a key role in time series analysis for any positive integer p & any purely nondeterministic process {X t } with ACVF {γ X (h)}, there

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Introduction to Time Series Analysis. Lecture 16.

Introduction to Time Series Analysis. Lecture 16. Introduction to Time Series Analysis. Lecture 16. 1. Review: Spectral density 2. Examples 3. Spectral distribution function. 4. Autocovariance generating function and spectral density. 1 Review: Spectral

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

MAT Winter 2016 Introduction to Time Series Analysis Study Guide for Midterm

MAT Winter 2016 Introduction to Time Series Analysis Study Guide for Midterm MAT 3379 - Winter 2016 Introduction to Time Series Analysis Study Guide for Midterm You will be allowed to have one A4 sheet (one-sided) of notes date: Monday, Febraury 29, Midterm 1 Topics 1 Evaluate

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα