Projektovanje analognih filtara 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Projektovanje analognih filtara 1"

Transcript

1 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Kontnuln gnl Stem Furjerov trnformcj Dferencjlne jednčne Llov trnformcj Vremenk domen: Sgnl + dferencjlne jednčne = odv tem Imuln odv, konvolucj Trnformcon frekventn domen: Sgnl rkn u frekventnom domen Imuln odv tem u frekventnom domenu Odv tem u frekventnom domenu Prvmo tem koj vod dferencjlne jednčne! Dgtln obrd gnl Projektovnje nlognh fltr Dkretn gnl Stem Furjerov trnformcj Dferencne jednčne Z trnformcj Vremenk domen: Sgnl + dferencne jednčne = odv tem Imuln odv, konvolucj Trnformcon frekventn domen: Sgnl rkn u frekventnom domenu Imuln odv tem u frekventnom domenu Odv tem u frekventnom domenu Prvmo tem koj vod dferencne jednčne! Al možemo d e grmo u trnformconm domenm!

2 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Dferencn jednčn Trnformcon domen Dgtln obrd gnl Projektovnje nlognh fltr Št je clj? rvt tem koj vrš obrdu ulnog gnl n vom lu dje odgovrjuć odv Dkretn tem Relcj -> Dgtln kol Softverk rdverk Rčunrk efknot emorjk htev Utcj končne dužne reč

3 Projektovnje nlognh fltr 3 Dgtln obrd gnl Projektovnje nlognh fltr Potuk rojektovnj relcje nekog dkretnog tem toj e četr fe:. U f dvnj ecfkcj e n onovu nle roblem dju mltudk /l fn krktertk dkretnog tem koje treb otvrt, ko dovoljene tolerncje u relcj ovh krktertk.. U f ntee e određuju koefcjent olnom u brojocu menocu funkcje reno dte rom, l oložj olov nul funkcje reno, n tkv nčn d e dte ecfkcje otvre greškom koj lež unutr dovoljenh tolerncj. 3. U f relcje vrš e bor relcone trukture određvnje koefcjent množč. Pored krterjum ekonomčnot, rlkom bor e vod rčun o oetljvot relcje n končnu tčnot redtvljnj odtk u dgtlnm temm.. U f mlementcje vrš e oftverk l hrdverk relcj funkcje reno određene u f, koršćenjem relcone trukture brne u f 3. Dgtln obrd gnl Projektovnje nlognh fltr Otkud d nlogn fltr? U rk funkcj reno koj treb d e ntetuje njčešće m fltrko vojtvo, tj. ojčv l roušt be lbljenj gnle nekog oeg učetnot, dok lb gnle nekog drugog oeg učetnot, f ntee e občno nv nte fltrkh funkcj l otuk rokmcje jčešće e nte dgtlnog fltr vod ogodnom trnformcjom funkcje reno odgovrjućeg nlognog fltr.. Potuk ntee nlognh fltr nročto rounk nkh učetnot e roučv već vše od edeet godn tko d otoje rvjen otuc ntee mnoge vžne rktčne lučjeve.. U mnogm vžnm lučjevm olov l koefcjent funkcje reno nlognh fltr dt u eklctnm formulm. 3. Z lučjeve koje ne otoje eklctne formule funkcju reno čnjene u oežne tbele koje luže ko omoć r rojektovnju.

4 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Krktertke funkcje reno koju treb ntetovt, l krće, ecfkcje, dju e njčešće u frekvencjkom domenu. Kod elektvnh funkcj reno, koje u onte od nvom fltrke funkcje, rlkuju e roun oeg neroun oeg reln on. U rounom oegu gnl e u temu ojčv, roušt nemenjen l vrlo mlo lb. U nerounom oegu e gnl ntno olbljuje. U relnoj on funkcj reno e ne ecfcr, l e njčešće htev d mltudk krktertk bude monotono odjuć. roj rounh oeg, odnono nerounh oeg može bt već od jedn. Z d! Sve ole može d e generluje. Dgtln obrd gnl Projektovnje nlognh fltr Prmer mltudkh krktertk koje želmo d dobjemo

5 Projektovnje nlognh fltr 5 Dgtln obrd gnl Projektovnje nlognh fltr D b to dobl krećemo od:. Grnčne učetnot rounog oeg Ω. Grnčne učetnot nerounog oeg Ω 3. Vrjcj mltude u rounom oegu δ. Vrjcj mltude u nerounom oegu δ Grfčk Šrfrno = ne me Dgtln obrd gnl Projektovnje nlognh fltr Ako ojčnje ne me d bude veće od

6 Projektovnje nlognh fltr 6 Dgtln obrd gnl Projektovnje nlognh fltr jčešć nčn dvnj gbrt fltrkh funkcj je reko recročne vrednot mltudke krktertke ržen u d, odnono dje e lbljenje. U tom lučju e umeto vrjcje mltude u rounom oegu δ ecfcr mkmlno lbljenje u rounom oegu α, dok e umeto vrjcje mltude u nerounom oegu δ ecfcr mnmlno lbljenje u nerounom oegu α. Dgtln obrd gnl Projektovnje nlognh fltr

7 Projektovnje nlognh fltr 7 Dgtln obrd gnl Projektovnje nlognh fltr Zšto nkofrekventn fltr F koj rouštju mo nke učetnot kd nm možd gurno trebju Vokofrekventn fltr VF, odnono rounc vokh učetnot Prounc oeg učetnot PO erounc oeg učetnot O U lučju ntee F fltr, mogu e dobt eklctne formule olove nule funkcje reno. Snte otlh tčnh funkcj reno VF, PO, O vrš e njčešće trnformcjom F funkcje reno Prlkom rojektovnj učetnot u njčešće normlovne! Dgtln obrd gnl Projektovnje nlognh fltr tervortov rokmcj tervortov utterworth rokmcj delne mltudke krktertke F fltr je veden od retotvkom d je mltudk krktertk mkmlno rvn u koordntnom očetku. ε rmetr koj određuje lbljenje n grnc rounog oeg ω =ω red fltrke funkcje

8 Projektovnje nlognh fltr 8 Dgtln obrd gnl Projektovnje nlognh fltr tervortov rokmcj Dgtln obrd gnl Projektovnje nlognh fltr tervortov rokmcj Određvnje olov = jω Zbog ulov tblnot, koj htev d v olov funkcje reno leže u levoj olovn rvn komlekne učetnot, olov funkcje u koren leve olurvn k, dok u olov funkcje koren dene olurvn + k.

9 Projektovnje nlognh fltr 9 Dgtln obrd gnl Projektovnje nlognh fltr Čebševljev rokmcj rve vrte T = ond Ko kod tervort Dgtln obrd gnl Projektovnje nlognh fltr Čebševljev rokmcj rve vrte =3 =

10 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Čebševljev rokmcj rve vrte Polov Funkcj reno Dgtln obrd gnl Projektovnje nlognh fltr Čebševljev rokmcj druge vrte - nvern

11 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Čebševljev rokmcj druge vrte - nvern =5 Dgtln obrd gnl Projektovnje nlognh fltr Čebševljev rokmcj druge vrte - nvern Polov Funkcj reno

12 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Eltčk rokmcj Zjednčk krktertk tervortove Čebševljeve rokmcje je d u odlčne u nerounom oegu, l o cenu šroke relne one. Invern Čebševljev fltr mju mnje lbljenje u nerounom oegu l je lbljenje u gornjem delu rounog oeg četo uvše velko. jbolj reln on e dobj ko e grešk rokmcje delne krktertke rvnomerno rored u rounom nerounom oegu. Reultujuć mltudk krktertk m ocltorn krkter u rounom u nerounom oegu. Tkv rokmcj nv e eltčk rokmcj jer e u otuku ntee korte eltčke funkcje, l Kuerov rokmcj, rem utoru Cuer koj ju je rv formulo. Dgtln obrd gnl Projektovnje nlognh fltr Eltčk rokmcj Čebševljev rconln funkcj

13 Projektovnje nlognh fltr 3 Dgtln obrd gnl Projektovnje nlognh fltr Eltčk rokmcj Red fltr Dgtln obrd gnl Projektovnje nlognh fltr Eltčk rokmcj Funkcj reno

14 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Eltčk rokmcj Dgtln obrd gnl Projektovnje nlognh fltr Eltčk rokmcj

15 Projektovnje nlognh fltr 5 Dgtln obrd gnl Projektovnje nlognh fltr Eltčk rokmcj Dgtln obrd gnl Projektovnje nlognh fltr Eltčk rokmcj = =5

16 Projektovnje nlognh fltr 6 Dgtln obrd gnl Projektovnje nlognh fltr Poređenj tervort Čebševljev Invern Čebševljev Eltčk Dgtln obrd gnl Projektovnje nlognh fltr Poređenj Ω = to lbljenje 3db Proun oeg. U donjem delu rounog oeg u okoln ω = njbolj je nvern Čebševljev fltr, njm led tervortov rokmcj. Čebševljev eltčk fltr mju rblžno lčne krktertke.. U gornjem delu rounog oeg njbolj u eltčk Čebševljev fltr dok u nvern Čebševljev tervortov fltr ntno lošj jer unoe veće lbljenje. 3. U relnoj on, rem krterjumu šrne relne one, njbolj je eltčk fltr, njm led nvern Čebševljev fltr, ond Čebševljev, n krju, tervortov fltr. eroun oeg. U nerounom oegu Čebševljev tervortov fltr obebeđuju veće lbljenje od nvernog Čebševljevog l eltčkog fltr. eđutm, ov čnjenc ne redtvlj nkkvu rednot ove dve rokmcje jer je kod vh rokmcj dovoljen ulov d je u nerounom oegu lbljenje veće od mnmlne vrednot α

17 Projektovnje nlognh fltr 7 Dgtln obrd gnl Projektovnje nlognh fltr Poređenj Vrlo vžnu krktertku funkcje reno redtvlj Q fktor krtčnog r olov Krtčnm rom olov odrumev e onj koj je njblž mgnrnoj o. Ov krktertk je vžn bog tog što u relcju većeg Q fktor otrebne kvltetnje komonente mnjm gubcm u vnoj tehnologj mnjm tolerncjm u ktvnoj tehnologj. U lučju dgtlnh fltr, već Q fktor htev već broj bt u dgtlnoj reč. U ogledu Q fktor, njbolj je tervortov fltr, obe vrte Čebševljevh fltr u dentčne, dok je eltčk fltr njgor. Dgtln obrd gnl Projektovnje nlognh fltr Poređenj Što e tče jednotvnot relcje, u vm tehnologjm je jednotvnje relovt olnomke fltre čj funkcj reno nem nule kkv u tervortov Čebševljev, jer je otrebn mnj broj element u nlognm relcjm l mnj broj množč u dgtlnoj relcj. U ogledu odtunj od lnernot fne krktertke, odnono odtunj krktertke grunog kšnjenj od kontnte, njbolj je tervortov fltr, njm led nvern Čebševljev fltr, dok Čebševljev eltčk fltr mju ntno lošje krktertke nročto u gornjem delu rounog oeg???

18 Projektovnje nlognh fltr 8 Dgtln obrd gnl Projektovnje nlognh fltr Poređenj Drug vrt oređenj rlčth metod rokmcje mltudke krktertke može e vet tko što e određuje mnmln red funkcje koj dovoljv tržen gbrt. ek je otrebno odredt funkcju reno koj dovoljv krktertke: Ω =, Ω =.5, α =.5 d, α = 5 d. Red funkcje reno koj dovoljv tržene hteve mor bt tervort = 7 Čebševljev = 8 Invern Čebševljev = 8 Eltčk = 5 Eltčk rokmcj dje rešenje njnžeg red, koje je njčešće njekonomčnje relcju. Loš fn krktertk.??? Dgtln obrd gnl Projektovnje nlognh fltr tn f eelov rokmcj Lnern f = kontntno gruno kšnjenje eelov olnom

19 Projektovnje nlognh fltr 9 =,3,,5 Dgtln obrd gnl Projektovnje nlognh fltr tn f eelov rokmcj Dgtln obrd gnl Projektovnje nlognh fltr Trnformcje učetnot re trnformcje; ono što fgurše u funkcjm reno ole trnformcje F -> F obrnuto

20 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Trnformcje učetnot F -> VF obrnuto Dgtln obrd gnl Projektovnje nlognh fltr Trnformcje učetnot, F -> PO

21 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Trnformcje učetnot,, j j j j j j e borvt negtvne učetnot Dgtln obrd gnl Projektovnje nlognh fltr Trnformcje učetnot obrnuto

22 Projektovnje nlognh fltr Dgtln obrd gnl Projektovnje nlognh fltr Trnformcje učetnot, F -> O Dgtln obrd gnl Projektovnje nlognh fltr Trnformcje učetnot,, e borvt negtvne učetnot j j j j j j

23 Projektovnje nlognh fltr 3 Dgtln obrd gnl Projektovnje nlognh fltr Trnformcje učetnot obrnuto

8. SINTEZA SISTEMA SA BESKONAČNIM IMPULSNIM ODZIVOM

8. SINTEZA SISTEMA SA BESKONAČNIM IMPULSNIM ODZIVOM 8. SITEZA SISTEMA SA ESKOAČIM IMPULSIM ODZIVOM Postu rojetovnj relzcje neog dsretnog sstem sstoj se z četr fze:. U fz zdvnj secfcj se n osnovu nlze roblem zdju mltuds /l fzn rterst dsretnog sstem oje treb

Διαβάστε περισσότερα

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: u f Ulazi Izlazi (?) U opštem slučaju ovaj DS je NELINEARAN!!!!

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: u f Ulazi Izlazi (?) U opštem slučaju ovaj DS je NELINEARAN!!!! DINAMIKA Dnčk sste - ogon s otoro jednoserne struje: N: { DS } u u Ulz Izlz (?),,, [ ] θ U ošte slučju ovj DS je NELINEAAN!!!! BLOK DIJAGAM MAEMAIČKOG MODELA POGONA Iz jednčne ndukt u e e Iz Njutnove jednčne

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

REDUKCIJA SISTEMA NA TAČKU KOORDINATNOG POČETKA Glavni vektor Glavni moment. = xi. F r. r = j. M i. M r

REDUKCIJA SISTEMA NA TAČKU KOORDINATNOG POČETKA Glavni vektor Glavni moment. = xi. F r. r = j. M i. M r REUKCIJA ITEA NA TAČKU KOORINATNO POČETKA lvn vekto lvn moment O ) ( j ) ( j O k j k j j j j θ cos cosθ Pme. dt povoljn poston sstem sl speov (l.) sle su defnsne vektom: j k j k 4 j k j j j k k Pojekcje

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

x n = z z C, signal na izlazu mreže će biti jednak: ( ) = k ( ) H z y n b x n k a y n k k k k k k M k 1+ a z z + a z 1 p z z p 1+ +

x n = z z C, signal na izlazu mreže će biti jednak: ( ) = k ( ) H z y n b x n k a y n k k k k k k M k 1+ a z z + a z 1 p z z p 1+ + FUKCIJ PREOS DISKREE MREŽE ko ul dskrete mreže čj je muls odv jedk h dovedemo komleksu eksoecjlu sekvecu C sgl lu mreže će bt jedk: k k h h k k h k h k k k k. č kko dskret mrež mjej sgl defs je fukcjom

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

Strukture GMDH u modeliranju i predikciji vremenskih serija. Ivan Ivek

Strukture GMDH u modeliranju i predikciji vremenskih serija. Ivan Ivek Srukure GMDH u modelrnju predkcj vremenskh serj Ivn Ivek Group Mehod of D Hndlng Ivkhnenko, 966. regresj, esmcj, predkcj, konrol... Dobr svojsv: nskoprmersk lgorm smopodešvnje srukure selekcj ulnh vrjbl

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006. šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković

Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.

Διαβάστε περισσότερα

VEKTORI (m h) brzina, akceleracija, sila, kutna brzina, električno polje, magnetsko polje

VEKTORI (m h) brzina, akceleracija, sila, kutna brzina, električno polje, magnetsko polje sklr VEKTORI (m h) velčn ko e potpuno određen relnm roem (sklrom) Prmer ms, energ, tempertur, rd, sng, oum tel vektor dužn kod koe e određeno ko e nen run točk početn, ko vršn nv se usmeren dužn l vektor

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

Metoda najmanjih kvadrata

Metoda najmanjih kvadrata Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X

Διαβάστε περισσότερα

Dinamika krutog tijela. 14. dio

Dinamika krutog tijela. 14. dio Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

0 = x 0 < x 1 <... < x n = 1, x k = k n, x = 1 0 n. f(x k ) x =

0 = x 0 < x 1 <... < x n = 1, x k = k n, x = 1 0 n. f(x k ) x = Chpter Odredjen ntegrl Problem Nek je zdn funkcje f : [,b] R, f(x). Kko odredt površnu omedjenu grfom funkcje f(x) x-os? Površn prvokutnk: S = b Površn trokut: S = 1 v Kko defnrt površnu lk čje su strnce

Διαβάστε περισσότερα

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata] Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

1 PRORAČUN DEFORMACIJA POS 1

1 PRORAČUN DEFORMACIJA POS 1 PRORČUN DEFORMC PLOČE OSLONENE U EDNOM PRVCU P/ Odredt mksmln ug ploče z prmer P, uzmjuć u ozr efekte tečenj eton. Ukolko je dopušten rednost ug prekorčen, predložt zdooljjuće rešenje. PRORČUN DEFORMC

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

GEOMETRIJSKA VEROVATNOĆA. U slučaju kada se ishod nekog opita definiše slučajnim položajem tačke u nekoj oblasti, pri čemu je proizvoljni položaj

GEOMETRIJSKA VEROVATNOĆA. U slučaju kada se ishod nekog opita definiše slučajnim položajem tačke u nekoj oblasti, pri čemu je proizvoljni položaj GEMETRIJK VERVTNĆ U slučju kd se ishod nekog oi definiše slučjnim oložjem čke u nekoj oblsi, ri čemu je roizvoljni oložj čke u oj oblsi jednko moguć, korisimo geomerijsku verovnoću. ko, recimo, obeležimo

Διαβάστε περισσότερα

Vektori u ravnini. - Nije bitan redoslijed AB ili BA

Vektori u ravnini. - Nije bitan redoslijed AB ili BA Vektor u rnn. Osnon pomo o ektorm Skup sh tok prc p zmeu ukluuu nh sme ne dužnu Ne tn redosled l e poetn tok e zršn tok odsek n prcu p Defnc: Usmeren odsek od toke ko poetne toke do toke ko zršne toke

Διαβάστε περισσότερα

Izbor prenosnih odnosa teretnog vozila - primer

Izbor prenosnih odnosa teretnog vozila - primer FTN No Sad Katedra za motore ozla Teorja kretanja drumskh ozla Izbor prenosnh odnosa Izbor prenosnh odnosa teretnog ozla - prmer ata je karakterstka dzel motora MG OM 906 LA (Izor: http://www.dmg-dusburg.de/html/d_c_om906la.html)

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

4. Relacije. Teorijski uvod

4. Relacije. Teorijski uvod VI, VII i VIII dvoqs veжbi Vldimir Blti 4. Relije Teorijski uvod Podsetimo se n neke od pojmov veznih z skupove, koji su nm potrebni z uvođeƭe pojm relije. Dekrtov proizvod skup iniemo n slede i nqin:

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Vježba 1. Analiza i sinteza sistema regulacije brzine vrtnje istosmjernog motora

Vježba 1. Analiza i sinteza sistema regulacije brzine vrtnje istosmjernog motora ortorjske vježe z predet ootk uprvljje prozvod sste Vjež Vjež Alz stez sste regulcje rze vrtje stosjerog otor Clj vježe: Stez regultor rze vrtje stosjerog otor pooću etod tehčkog setrčog optu Alzrt dčko

Διαβάστε περισσότερα

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12. Pojmo:. Vekor sle F (ranslacja). omen sle (roacja) Dnamka kruog jela. do. omen romos masa. Rad kruog jela A 5. Kneka energja k 6. omen kolna gbanja L 7. u momena kolne gbanja momena sle L f ( ) Gbanje

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Elementi energetske elektronike

Elementi energetske elektronike ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke

Διαβάστε περισσότερα

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó L09 cloj=klk=tsvjmosopa jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó 4 16 27 38 49 60 71 82 93 P Éå Ñê ÇÉ áí dbq=ql=hklt=vlro=^mmif^k`b mo pbkq^qflk=ab=slqob=^mm^obfi ibokbk=pfb=feo=dboûq=hbkkbk

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

Nenad Nešić IE 04/05 UKP1 AudVež4. Četvrta auditorna vežba iz Upravljanja kvalitetom proizvoda 1

Nenad Nešić IE 04/05 UKP1 AudVež4. Četvrta auditorna vežba iz Upravljanja kvalitetom proizvoda 1 Nenad Nešć IE 0/05 UKP udvež Četvrta audtorna vežba z Upravljanja kvaltetom prozvoda MERNI LNCI (preporuke za zradu 6. amotalnog zadatka) Prmer. Tekt: Za deo prkazan na lc odredt rednje vrednot tolerancje

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα