GEOMETRIJSKA VEROVATNOĆA. U slučaju kada se ishod nekog opita definiše slučajnim položajem tačke u nekoj oblasti, pri čemu je proizvoljni položaj

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "GEOMETRIJSKA VEROVATNOĆA. U slučaju kada se ishod nekog opita definiše slučajnim položajem tačke u nekoj oblasti, pri čemu je proizvoljni položaj"

Transcript

1 GEMETRIJK VERVTNĆ U slučju kd se ishod nekog oi definiše slučjnim oložjem čke u nekoj oblsi, ri čemu je roizvoljni oložj čke u oj oblsi jednko moguć, korisimo geomerijsku verovnoću. ko, recimo, obeležimo d je dimenzij cele oblsi, dimenzij del e oblsi, čije se sve čke smrju ovoljnom z ishod dogđj, ond se verovnoć izrčunv: P=. Reč dimenzij smo nmerno svili od nvodnike jer i mogu redsvlji duži, ovršine, zremine id. U zdcim s geomerijskom verovnoćom je goovo neohodno ncri sliku, uočii koj dužin, ovršin ili zremin je nm ovoljn. Pžljivo čije zdk.... U kvdru je uisn krug. dredii verovnoću d slučjno izbrn čk u kvdru rid i krugu. Definišimo dogđj : slučjno izbrn čk je u krugu D skicirmo roblem: r=/ vde nm očigledno rebju ovršine. Površin kvdr srnice je =. Polurečnik uisnog krug je olovin srnice kvdr, je ovoljn ovršin π = r π = π = 4 dvde je π 4 π π P( ),

2 . redine srnic kvdr, srnice, sjnjem dju onovo kvdr. Tčk M je n slučjn nčin izbrn. dredii verovnoću d je izbrn čk M iz drugog ( mnjeg) kvdr. Definišimo dogđj : slučjno izbrn čk M je u mnjem kvdru D M ko je srnic većeg kvdr, ond dužinu srnice mnjeg kvdr možemo izrčuni rimenom Pigorine eoreme:. Jsno je d se oe rdi o ovršinm. je ovoljn ovršin mnjeg kvdr, dok je celokun ovršin, ovršin većeg kvdr: 4 P( ) = =. U du kocku uisn je lo. dredii verovnoću d slučjno izbrn čk rid i unuršnjosi loe. Dogđj : slučjno izbrn čk je u unuršnjosi loe U ovom rimeru ćemo rčuni odnos zremin. Ncrjmo sliku i nđimo vezu između olurečnik i dužine srnice kocke.

3 r=/ je zremin kocke ( ovoljn zremin) je zremin loe olurečnik, koj je uisn u kocku. 4 4 r π V π L P( ) = V K 4 π 8 π = 6,5 4. Duž dužine odeljen je n ri del. dredii verovnoću d se od dobijenih delov može konsruisi rougo. Izdelimo njre du duž n roizvoljne delove:, y, i --y. y --y bls u rvni čine sve čke čije koordine zdovoljvju jednkos: + y< N slici bi o bilo:

4 y +y= +y< d rzmišljmo kko d dobijemo ovršinu koj je nm ovoljn. Znmo d z srnice rougl mor d vži eorem d je zbir dve srnice rougl veći od reće srnice! rnice smo obeležili s, y, i --y, je dkle: + y > - - y odvde je + y> + (- - y) > y odvde je y + (- - y) > odvde je y< < Ncrjmo ove ri rve n nšoj slici i dobićemo ovršinu koj nm je ovoljn: y y< + y> +y= < 4

5 d možemo nći i rženu verovnoću: : od dobijenih delov se može konsruisi rougo P( ) 4 =, Dve osobe zkzle su ssnk u oku jednog s, n nznčenom mesu, uz obvezu čeknj minu ( s). dredii verovnoću susre ko je dolzk svke od osob jednko moguć u roizvoljnom momenu nznčenog vremen. Pošo su osobe zkzle susre u oku jednog s, u rvni o možemo redsvii ko ovršinu kvdr srnice jedn. y s s = P kvdr znčimo ovko: - je renuk dolsk rve osobe y - je renuk dolsk druge osobe Kko je obvez čeknj min, o jes s, mor d vži: y i y Ncrrjmo ove dve rve i d vidimo koje oblsi zdovoljvju nejednčine: 5

6 y (,) (, ) (,) (, ) Površinu ćemo dobii kd od ovršine kvdr oduzmemo ovršine ov dv rvougl rouglić srnice 4 5 = Pkvdr Prougl = = = 9 9 : susre osob u oku s s obvezom čeknj min P( ) =, Dv brod morju d signu u jedno iso risniše. Vreme dolsk obdv brod je nzvisno i jednko moguće u oku dn. Nći verovnoću d će jedn od brodov mori čeki n oslobđnje risniš, ko je vreme zdržvnj rvog brod jedn, drugog dv s. beležimo s : - vreme dolsk rvog brod y - vreme dolsk drugog brod Pošo u zdku kže d se rdi o celom dnu, o je 4 i y 4, odnosno, ovršin je ovršin kvdr s srnicm = P kvdr Iz odk d je vreme zdržvnj rvog brod jedn drugog dv s, dobijmo dve nejednčine: 6

7 y i y. Ncrjmo ove dve rve n slici i uočimo koje oblsi zdovoljvju nejednčine: y 4 8 zelen ovršin nm je ovoljn y y lično ko i u rehodnom zdku, ovršinu ćemo dobii kd od ovršine kvdr oduzmemo ovršine ov dv rvougl rougl, je: P( ) =, gde je : brod ček n oslobđnje risniš 7. dredii verovnoću d slučjno izbrn eiv kružnice bude već od srnice jednkosrničnog rougl koji je uisn u u kružnicu. ( ERTRNDV PRDK) : nsumice izbrn eiv je duž od srnice uisnog jednkosrničnog rougl vj roblem je zdo frncuski memičr errnd još dvne 889. godine i u memici se o njemu i zove errndov rdoks. Prdoks se ssoji u ome d se dobijju ri rzliči rešenj zdk, u zvisnosi od og kko je ovučen eiv. Posmrmo ri nčin ( nsumičnog ) ovlčenj eive: 7

8 I nčin ( fiksirn je jedn krjnj čk eive) N eriferiji krug roizvoljnog olurečnik r uočimo čku i kroz nju ovučemo eivu u nsumice izbrnom rvcu ( slik ). Uišemo u di krug jednkosrnični rougo čije je jedno eme čk. ojimo čku s cenrom krug ( može i d rodužimo d bude ceo rečnik ), ogledje sliku. r 6 o α slik slik slik slik 4 znčimo s α ugo koji eiv grdi s olurečnikom. ( slik ) d rzmišljmo: eiv će bii duž od srnice rougl ko rvi uglove s rečnikom do izvesi s obe srne ( slik 4), zključujemo d su nm ovoljni uglovi do Ugo α može d uzim sve vrednosi do 8, o jes do π. π Tržen verovnoć je : P( ) = = π II nčin ( ko je fiksirn rvc eive) 6, o jes do. kko o možemo 6 π =. Fiksirmo jedn rvc i ovučemo nsumice eivu krug rlelno fiksirnom rvcu. Uišemo u krug jednkosrničn rougo li ko d je jedn njegov srnic rleln s izbrnim rvcem ( slik.) r/ { r/ { r/ r/ r/ r/ rvc rvc rvc slik. slik. slik. Rsojnje srnice rougl od cenr dog krug je očigledno r. beležimo rsojnje eive do cenr s (slik.) d rzmišljmo: d bi eiv bil duž od srnice rougl, njeno rsojnje mor bii krće od r. Isu siuciju immo i ko okrenemo rougo (slik.), šo nm govori d rsojnje ide od do r. 8

9 Tržen verovnoć je u ovom slučju r P( ) r III nčin ( znmo oložj središ eive) Izberemo u krugu jednu čku i kroz nju ovučemo eivu koj će bii reolovljen om čkom( slik.) slik. slik. slik. Uišemo jednkosrničn rougo d srnic bude rleln s eivom( slik.) d rzmišljmo: eiv će imi veću dužinu od srnice jednkosrničnog rougl ko i smo ko njeno središe leži unur krug koji je uisn u j jednkosrnični rougo! ( slik.) Polurečnik ovko uisnog krug ( sivog) je r ovršin r r π π = 4 Tržen verovnoć je u ovom slučju r π 4 P( ) = r π = 4 Ko šo vidimo, u sv ri slučj smo dobili rzličie verovnoće, šo redsvlj rdoks. bjšnjenje z ovj rdoks leži u činjenici d zdk ( roblem ) nije recizno formulisn! vde se usvri rdi o ri rzliči zdk, u zvisnosi od og š odrzumevmo od ojmom roizvoljne eive. Zo mi slno onvljmo d zdke iz verovnoće reb žljivo čii i olko roučvi uz odgovrjuću skicu roblem 9

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Priprema za ispit znanja trigonometrija pravokutnog trokuta

Priprema za ispit znanja trigonometrija pravokutnog trokuta Pipem z ispit znnj tigonometij pvokutnog tokut 1. Zoj duljin ktet pvokutnog tokut jednk je 12 m, jedn kut tokut iznosi 58⁰. Kolik je duljin hipotenuze ovog tokut? + = 12 = 58⁰ =? S oziom d se u zdnim podim

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

1. NEODREÐENI INTEGRAL

1. NEODREÐENI INTEGRAL . NEODREÐENI INTEGRAL Pitnj: Je li dn reln funkcij f : A! R, A R, derivcij neke relne funkcije g : A! R? Riješiti jedndbu g = f, pri cemu se z dni f tri g. T jedndb ili nem rješenj ili ih im beskoncno

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 17. VEKORI I KVADRANE MARICE 17.1 Opcenito o vektorim Vektor je usmjeren duzin i zto im: pocetk (hvtiste), krj i smjer. Vektor se ozncv s oznkom n pr.: rpq,, Duzin PQ ili r nziv se duzin vektor, intenzitet

Διαβάστε περισσότερα

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.

Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον

Διαβάστε περισσότερα

n n su realni brojevi, a n, koji mora biti cjelobrojna

n n su realni brojevi, a n, koji mora biti cjelobrojna Aproksmrnje podtk Aproksmrnje podtk krvuljom Aproksmrnje podtk krvuljom (engl. curve ttng), nzv se još regresjsk nlz (engl. regresson nlss), je postupk uklpnj unkcje u skup točk koje predstvljju određene

Διαβάστε περισσότερα

Skinuto sa

Skinuto sa Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo sa www.ef.ba Skinuo

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 6 Μαΐου 2015 1 / 42 Εύρεση Ελάχιστου Μονοπατιού

Διαβάστε περισσότερα

Ο ΠΡΟΕΔΡΟΣ ΤΟΥ Δ.Σ. ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ

Ο ΠΡΟΕΔΡΟΣ ΤΟΥ Δ.Σ. ΤΗΣ ΕΠΙΧΕΙΡΗΣΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΝΟΜΟΣ: ΧΑΛΚΙΔΙΚΗΣ ΔΗΜΟΣ: ΚΑΣΣΑΝΔΡΑΣ ΚΟΙΝΩΦΕΛΗΣ ΕΠΙΧΕΙΡΗΣΗ ΔΗΜΟΥ ΚΑΣΣΑΝΔΡΑΣ Αριθ. Απόφ.:80/2013 Καλλιθέα:02-06-2013 ΘΕΜΑ: «Πρόχειρος διαγωνισμός για την

Διαβάστε περισσότερα

1.1 Neodre deni integral

1.1 Neodre deni integral . Neodre deni integrl.. Površinski problem Uvod u površinski problem Iko većin rzmišlj o integrlu isključivo ko o obrtu izvod, osnove integrlnog rčun sežu mnogo dlje u prošlost od modernih vremen. Jedn

Διαβάστε περισσότερα

1.3.1 Ubrzanje pri vektorskom opisivanju kretanja Pretpostavimo da se materijalna tačka kreće s leva na desno. U trenutku t 1 = t nalazi se u r r

1.3.1 Ubrzanje pri vektorskom opisivanju kretanja Pretpostavimo da se materijalna tačka kreće s leva na desno. U trenutku t 1 = t nalazi se u r r KINEMATIKA.3 Ubznje Ubznj je ekosk fizičk eličin kojom se efiniše nčin pomene eko bzine okom emen. Ko i bzinu, ubznje ko pojm pi je ueo Glilej..3. Ubznje pi ekoskom opisinju kenj Peposimo se meijln čk

Διαβάστε περισσότερα

Εβδομαδιαίο Εκπαιδευτικό Πρόγραμμα

Εβδομαδιαίο Εκπαιδευτικό Πρόγραμμα ΈΤΟΣ 2012 2013 ΕβδομαδιαίοΕκπαιδευτικόΠρόγραμμα ΟΡΘΟΠΑΙΔΙΚΗΚΛΙΝΙΚΗΓ.Ν.ΛΙΒΑΔΕΙΑΣ The image part with relationship ID rid8 was not found in the file. ΣυντονιστήςΔιευθυντής:Ι.Π.Σοφιανός ΣΕΠΤΕΜΒΡΙΟΣ2012 19/09/2012

Διαβάστε περισσότερα

Trenutni pol brzine. Načini njegovog određivanja.

Trenutni pol brzine. Načini njegovog određivanja. Tenutni ol bzine. Nčini njegovog odeđivnj. Svko kuto telo koje vši vno ketnje, u oštem slučju, u svkom tenutku, n svom mteijlnom ili nemteijlnom delu, im smo jednu tčku, čij je bzin jednk nuli V = 0. T

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Προς: Μαθητές Α, Β & Γ Λυκείου / Κάθε ενδιαφερόμενο Αγαπητοί Φίλοι Όπως σίγουρα

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

ΕΡΓΑΛΕΊΑ ΑΈΡΟΣ ...142 ΑΕΡΌΚΛΕΙΔΑ ...144 ΔΡΑΠΑΝΟ ...145 ΤΡΟΧΟΙ ΠΡΙΤΣΙΝΑΔΟΡΟΣ ...146 ΚΑΣΤΑΝΙΕΣ ...148 ΚΑΡΥΔΆΚΙΑ IMPACT 1/2" ...153 ...

ΕΡΓΑΛΕΊΑ ΑΈΡΟΣ ...142 ΑΕΡΌΚΛΕΙΔΑ ...144 ΔΡΑΠΑΝΟ ...145 ΤΡΟΧΟΙ ΠΡΙΤΣΙΝΑΔΟΡΟΣ ...146 ΚΑΣΤΑΝΙΕΣ ...148 ΚΑΡΥΔΆΚΙΑ IMPACT 1/2 ...153 ... ...42 ΑΕΡΌΚΛΕΙΔΑ... ΔΡΑΠΑΝΟ...45 ΤΡΟΧΟΙ...45 ΠΡΙΤΣΙΝΑΔΟΡΟΣ...46 ΚΑΣΤΑΝΙΕΣ...48 ΚΑΡΥΔΆΚΙΑ IMPACT 3/8"...48 ΚΑΡΥΔΆΚΙΑ IMPACT /2"...53 ΚΑΡΥΔΆΚΙΑ IMPACT 3/4"...56 ΣΕΙΡΆ IMPACT " 4 ΑΕΡΌΚΛΕΙΔΑ ΑΕΡΌΚΛΕΙΔΟ /2"

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Výpočet. grafický návrh

Výpočet. grafický návrh Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado

Διαβάστε περισσότερα

ΟΦΘΑΛΜΟΣΚΟΠΙΟ ΕΥΡΕΙΑΣ ΓΩΝΙΑΣ

ΟΦΘΑΛΜΟΣΚΟΠΙΟ ΕΥΡΕΙΑΣ ΓΩΝΙΑΣ ΟΦΘΑΛΜΟΣΚΟΠΙΟ ΕΥΡΕΙΑΣ ΓΩΝΙΑΣ ΟΔΗΓΙΕΣ ΠΑΡΑΚΑΛΟΥΜΕ ΔΙΑΒΑΣΤΕ ΚΑΙ ΤΗΡΗΣΤΕ ΠΡΟΣΕΚΤΙΚΑ ΑΥΤΕΣ ΤΙΣ ΟΔΗΓΙΕΣ ΠΕΡΙΕΧΟΜΕΝΑ 1. Σύμβολα 2. Προειδοποιήσεις & επισημάνσεις 3. Περιγραφή προϊόντος 4. Ξεκινώντας 5. Ανοίγματα&

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α 2 4 8 4 Ε Π Ι Σ Τ Ο Λ Η Δ Ι Ο Ι Κ Η Τ Η Α Υ Γ Ο Υ Σ Τ Ο Σ Μ η ν ι α ί α Ε π ι σ τ ο λ ή ι ο ι κ η τ ή 1 Π ε ρ ι ε χ ό μ ε ν α Σ ε λ ί δ ε ς Τ ο μ ή ν υ μ α τ

Διαβάστε περισσότερα

ALEISTER CROWLEY LIBER DXXXVI ASTROLOGY (SA STUDIJAMA O NEPTUNU I URANU)! * " ) # - ( $ ' % & HRUMACHIS XI OAZA ORDO TEMPLI ORIENTIS BEOGRAD 2009

ALEISTER CROWLEY LIBER DXXXVI ASTROLOGY (SA STUDIJAMA O NEPTUNU I URANU)! *  ) # - ( $ ' % & HRUMACHIS XI OAZA ORDO TEMPLI ORIENTIS BEOGRAD 2009 ) KONX OM PAX ( ALEISTER CROWLEY LIBER DXXXVI ASTROLOGY (SA STUDIJAMA O NEPTUNU I URANU) *! " ) ( - # $ ' & % HRUMACHIS XI OAZA ORDO TEMPLI ORIENTIS BEOGRAD 2009 ASTROLOGY SADRŽAJ UVOD... 4 PRVI DEO -

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

2 Ηλεκτρικές Ταλαντώσεις

2 Ηλεκτρικές Ταλαντώσεις 2 Ηλεκτρικές Ταλαντώσεις 2.1 Το κύκλωµα L - C ιαθέτουµε ένα κύκλωµα που περιλαµβάνει ένα πυκνωτή χωρητικότητας C, ένα ιδανικό πηνίο µε συντελεστή αυτεπαγωγής L και ένα διακόπτη συνδεδεµένα σε σειρά.αν

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

ZBIRKA ZADATAKA SA PRIJEMNIH ISPITA NA FAKULTETU TEHNIČKIH NAUKA

ZBIRKA ZADATAKA SA PRIJEMNIH ISPITA NA FAKULTETU TEHNIČKIH NAUKA UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA NOVI SAD ZBIRKA ZADATAKA SA PRIJEMNIH ISPITA NA FAKULTETU TEHNIČKIH NAUKA (MATEMATIKA) NOVI SAD, 0 Izdvč: Fultet tehničih nu Trg Dositej Obrdović 000 Novi

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA

ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA David Brčić ORTODROMSKA, LOKSODROMSKA I KOMBINIRANA PLOVIDBA Riješeni zadaci DAVID BRČIĆ LOKSODROMSKA PLOVIDBA I. Loksodromski zadatak (kurs i udaljenost): tgk= II. Loksodromski zadatak (relativne koordinate):

Διαβάστε περισσότερα

GEOMETRIJA KUGLE I SFERE

GEOMETRIJA KUGLE I SFERE Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Ružica Korać GEOMETRIJA KUGLE I SFERE Diplomski rad Voditelj rada: doc.dr.sc. Maja Starčević Zagreb, rujan 2015. Svaki dan je

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

ΚΑΤΑΛΟΓΟΣ ΑΝΑΒΑΘΜΙΣΕΩΝ ΠΑ.ΝΙ.ΜΕΞ. - DIGI-TEC. Κατανάλω ση. Αύξη ση vmax

ΚΑΤΑΛΟΓΟΣ ΑΝΑΒΑΘΜΙΣΕΩΝ ΠΑ.ΝΙ.ΜΕΞ. - DIGI-TEC. Κατανάλω ση. Αύξη ση vmax ΚΑΤΑΛΟΓΟΣ ΑΝΑΒΑΘΜΙΣΕΩΝ ΠΑ.ΝΙ.ΜΕΞ. - DIGI-TE Κατασκευαστής Τύπος1 Τύπος2 PS Κυβικά Νέα Απόδο Στροφές MEREDES!!! * Για το 271 μοτέρ χρησιμοποιήτε ιμάντας 7ΡΚ 2470 και για το 111 μοτέρ χρησιμοποιήτε ιμάντας

Διαβάστε περισσότερα

Α Α :Β8Χ8ΩΚΑ-6ΚΑ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΗΜΟΣ ΝΙΚΑΙΑΣ ΑΓ. ΙΩΑΝΝΗ ΡΕΝΤΗ

Α Α :Β8Χ8ΩΚΑ-6ΚΑ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΗΜΟΣ ΝΙΚΑΙΑΣ ΑΓ. ΙΩΑΝΝΗ ΡΕΝΤΗ Α Α :Β8Χ8ΩΚΑ-6ΚΑ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΗΜΟΣ ΝΙΚΑΙΑΣ ΑΓ. ΙΩΑΝΝΗ ΡΕΝΤΗ ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ /ΝΣΗ ΟΙΚΟΝΟΜΙΚΩΝ ΤΜΗΜΑ ΠΡΟΜΗΘΕΙΩΝ ΥΛΙΚΩΝ & ΕΞΟΠΛΙΣΜΟΥ ΥΠΗΡΕΣΙΩΝ Ταχ. /νση: Π.Τσαλδάρη 10 Ταχ.κώδικας: 18450 ΝΙΚΑΙΑ Τηλ.:

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

O N E T OUC H B A C K U P 3 P O R T S U S B 2. 0 H U B Ε Γ Χ Ε Ι Ρ Ί Δ Ι Ο

O N E T OUC H B A C K U P 3 P O R T S U S B 2. 0 H U B Ε Γ Χ Ε Ι Ρ Ί Δ Ι Ο C O N N E C T I V I T Y S U P P O R T C O N N E C T I V I T Y S U P P O R T H A R D D I S K A D A P T E R I DC OE / MS BATA O UT SO B UH SU BB 2 1 - I N - 1 R E A D E R O N E T OUC H B A C K U P 3 P O

Διαβάστε περισσότερα

GeoGebra. P osljednjih se godina sve više nameće potreba. Prvi softver dinamične geometrije na hrvatskom jeziku. Zašto program GeoGebra?

GeoGebra. P osljednjih se godina sve više nameće potreba. Prvi softver dinamične geometrije na hrvatskom jeziku. Zašto program GeoGebra? Matematika i računalo GeoGebra Prvi softver dinamične geometrije na hrvatskom jeziku Šime Šuljić, Pazin Čeka nas svijet u kojem će sav softver biti slobodan i dostupan poput matematike, fizike ili filozofije,

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

6122/16-4-2015 ΔΗΜΟΣ ΤΑΝΑΓΡΑΣ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ

6122/16-4-2015 ΔΗΜΟΣ ΤΑΝΑΓΡΑΣ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ ΔΗΜΟΣ ΤΑΝΑΓΡΑΣ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΤΡΟΠΗ 6122/16-4-2015 ΑΠΟΦΑΣΗ: 295 Από το πρακτικό 12 ης /2015 συνεδρίασης της Οικονομικής Επιτροπής του Δήμου Τανάγρας. Περίληψη «Περί λήψης απόφασης για τη έγκριση των τεχνικών

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

Rad, energija, snaga. Glava Rad

Rad, energija, snaga. Glava Rad Glava 4 Rad, energija, snaga Pojam energije je jedan od najvažnijih u nauci i tehnici ali se koristi i u svakodnevnom životu. U našoj svakodnevnici taj pojam se obično odnosi na gorivo za pokretanje automobila

Διαβάστε περισσότερα

PROTOČNI ANALIZATOR ANTENE DAA 10

PROTOČNI ANALIZATOR ANTENE DAA 10 1 Tekst: Mladen Petrović, 9A4ZZ PROTOČNI ANALIZATOR ANTENE DAA 10 DIRECTIONAL ANTENNA ANALYZER DAA 10 Uvod Predstavljamo vam jednostavni instrument za mjerenje impedancije antene SWR -a i koaksijalnih

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.)

Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.) Univerzitet u Zenici Pedagoški fakultet Matematika i informatika Sadržaj sveske sa vježbi iz predmeta Euklidska geometrija 1 (akademska 2011/2012.) Sedmica broj 1 i 2 (Osnovi pojmovi iz geometrije) Uvod

Διαβάστε περισσότερα

Χημικές Διεργασίες: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική

Χημικές Διεργασίες: Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική : Χημική Ισορροπία η σύνδεση με τη Θερμοδυναμική Η Θερμοδυναμική σε μία τάξη Θεμελιώδης συνάρτηση: F(U, S, V) = 0 Ενέργεια, ικανότητα παραγωγής έργου Εντροπία, μη ικανότητα παραγωγής έργου, μη διαθεσιμότητα

Διαβάστε περισσότερα

PRSKALICA - LELA 12 L / LELA16 L

PRSKALICA - LELA 12 L / LELA16 L PRSKALICA - LELA 12 L / LELA16 L UPUTSTVO ZA UPOTREBU 1 Prskalica je pogodna za raspršivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Uredjaj je namenjen za kućnu,

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

Karakterizacija kontinualnih sistema u prelaznom režimu

Karakterizacija kontinualnih sistema u prelaznom režimu Karakterizacija kontinualnih sistema u prelaznom režimu Postoji veći broj parametara koji karakterišu ponašanje sistema u prelaznom režimu. Ovi parametri pripadaju različitim prostorima u kojima se sistemi

Διαβάστε περισσότερα

12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija

12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija 12 Elementarni zadaci: Računanje površine tijela u ravni i trigonometrija Elementarna pitanja: 1. Nabrojati sve geometriske figure prikazane na slici ispod. [kocka, kvadar, četverostrana piramida, sfera

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ »»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()

Διαβάστε περισσότερα

INSO LED " # $ # % ! :2 ( ) " # LED : $ &'(

INSO LED  # $ # % ! :2 ( )  # LED : $ &'( INSO 1487823 LED :2 LED :3 LED :3 :2 LED.1. LED 148781 1 : LED. LED. 50 230 LED. LED :3 :2 LED.2 ). (.. LED :3 :2 LED.2. (Lux). ( ).. ( ). LED :3 :2 LED (L min /L ave )..2. (L min /L max ) () ) 5. LED

Διαβάστε περισσότερα

KLASIƒNI NAUƒNI SPISI GEOMETRISKA ISPITIVANJA IZ TEORIJE PARALELNIH LINIJA. N. I. LOBAƒEVSKOG

KLASIƒNI NAUƒNI SPISI GEOMETRISKA ISPITIVANJA IZ TEORIJE PARALELNIH LINIJA. N. I. LOBAƒEVSKOG S R P S K K M I J N U K KLSIƒNI NUƒNI SPISI KNJIG III MTMTIƒKI INSTITUT KNJIG 3 GOMTRISK ISPITIVNJ IZ TORIJ PRLLNIH LINIJ O N. I. LOƒVSKOG Preveo RNISLV PTRONIJVI RUGO, PRO IRNO IZNJ O G R 1951 Na²ao sam

Διαβάστε περισσότερα

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr

Περικλέους Σταύρου 31 34100 Χαλκίδα Τ: 2221-300524 & 6937016375 F: 2221-300524 @: chalkida@diakrotima.gr W: www.diakrotima.gr Περικλέους Σταύρου 1 4100 Χαλκίδα Τ: 1-0054 & 69701675 F: 1-0054 @: chalkida@diakrotima.gr W: www.diakrotima.gr Προς: Μαθητές Α, Β & Γ Λυκείου / Κάθε ενδιαφερόμενο Αγαπητοί Φίλοι Όπως σίγουρα γνωρίζετε,

Διαβάστε περισσότερα

Čudesni svijet kvantne mehanike

Čudesni svijet kvantne mehanike «Svijet je čudan», reče Jeremy. «U usporedbi s čim?» zapita Spider. George MacDonald Najprije: Pozdrav Festivalu! Festivalska fizika! Je li to nova fizikalna disciplina? S obzirom na definiciju da je fizika

Διαβάστε περισσότερα

Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 27 Μαίου 2014

Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 27 Μαίου 2014 Νόμος Faraday Κανόνας Lenz Αυτεπαγωγή - Ιωάννης Γκιάλας 7 Μαίου 014 Στόχοι διάλεξης Πώς να: υπολογίζει την μεταβολή της μαγνητικής ροής. εφαρμόζει το νόμο του Faraday για τον υπολογισμό της επαγόμενης

Διαβάστε περισσότερα

NASTAVNI PROGRAM HEMIJA

NASTAVNI PROGRAM HEMIJA SADRŽAJ NASTAVNI PROGRAM... emij... Mtemtik... ZADACI IZ EMIJE... ZADACI IZ MATEMATIKE...9 Sređivnje lgerskih izrz...9 Kvdrtn jednčin...0 Sistemi jednčin...0 Jednčine... Binomn formul... Kvdrtn funkcij...

Διαβάστε περισσότερα

#INGLiveWell ΤΥΧΕΡΟΙ ΑΡΙΘΜΟΙ ΤΗΣ ΚΛΗΡΩΣΗΣ ΤΩΝ ΔΩΡΩΝ / LUCKY NUMBERS FROM THE LOTTERY DRAW FOR THE GIFTS

#INGLiveWell ΤΥΧΕΡΟΙ ΑΡΙΘΜΟΙ ΤΗΣ ΚΛΗΡΩΣΗΣ ΤΩΝ ΔΩΡΩΝ / LUCKY NUMBERS FROM THE LOTTERY DRAW FOR THE GIFTS 1 1002 Euromedica 1 επίσκεψη σε γιατρούς διαφόρων ειδικοτήτων, στην Κλινική Αθήναιον 2 1008 Όμιλος Εταιρειών Υγείας ΒΙΟΙΑΤΡΙΚΗ 3 1016 Όμιλος Εταιρειών Υγείας ΒΙΟΙΑΤΡΙΚΗ 4 1017 Όμιλος Εταιρειών Υγείας ΒΙΟΙΑΤΡΙΚΗ

Διαβάστε περισσότερα

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika

NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika NAIZMENIČNA STRUJA koristiti kao dopunu udžbenika 1 Da bude jasno na samom početku : Tesla nije izmislio struju jer je ona bila poznata ljudima pre nogo što je Tesla ušao u svet nauke. Njegov doprinos

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ «ΜΑΜΑΤΣΕΙΟ»- «ΜΠΟΔΟΣΑΚΕΙΟ» ΦΟΡΕΑΣ Ν.ΚΟΖΑΝΗΣ

ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ «ΜΑΜΑΤΣΕΙΟ»- «ΜΠΟΔΟΣΑΚΕΙΟ» ΦΟΡΕΑΣ Ν.ΚΟΖΑΝΗΣ ΓΕΝΙΚΟ ΝΟΣΟΚΟΜΕΙΟ «ΜΑΜΑΤΣΕΙΟ»- «ΜΠΟΔΟΣΑΚΕΙΟ» ΦΟΡΕΑΣ Ν.ΚΟΖΑΝΗΣ ΥΠΟΒΟΛΗ ΤΕΧΝΙΚΩΝ ΠΡΟΔΙΑΓΡΑΦΩΝ ΚΑΙ ΠΡΟΤΥΠΩΝ ΣΥΜΦΩΝΑ ΜΕ ΤΟ ΕΓΓΡΑΦΟ 2891/24-07-2015 ΤΗΣ ΕΠΥ : ΑΝΑΚΟΙΝΩΣΗ ΑΡ. ΠΡΩΤ. 8219 30-10-2015 για τον επικείμενο

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ έως 0,5bar Μέρος 2 Κανονισμός

ΕΣΩΤΕΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ έως 0,5bar Μέρος 2 Κανονισμός ΕΣΩΤΕΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ έως 0,5bar Μέρος 2 Κανονισμός ΕΣΩΤΕΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ Ο Νέος Κανονισμός Από 28 Μαρτίου 2012 Επισημάνσεις Πίεση λειτουργίας μέχρι και 0,5 bar Πεδίο

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση

Διαβάστε περισσότερα

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ==========================

VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== VJEROVATNOĆA I STATISTIKA ZBIRKA RIJEŠENIH ZADATAKA ========================== M. JOVANOVIĆ M. MERKLE Z. MITROVIĆ Elektrotehnički fakultet Banja Luka ================================== ii Autori: dr Milan

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 12: Αλγόριθμοι Γραφημάτων/Συντομότατα μονοπάτια/αλγόριθμος Bellman-Ford/Αλγόριθμος Dijkstra/Floyd-Warshall Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες

Διαβάστε περισσότερα

1 3 5 7 9 11 12 13 15 17 [Nm] 400 375 350 325 300 275 250 225 200 175 150 155 PS 100 PS 125 PS [kw][ps] 140 190 130 176 120 163 110 149 100 136 125 30 100 20 1000 1500 2000 2500 3000 3500 4000 4500 RPM

Διαβάστε περισσότερα