11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων"

Transcript

1 11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος 1

2 2 Θέματα Εισαγωγή Διατύπωση ΜΠΣ Βάσει Μετακινήσεων Γενική διατύπωση εξισώσεων ΠΣ Διατύπωση ΜΠΣ για δυναμική ανάλυση Υπολογισμός αγνώστων μεγεθών Τοπικά και απόλυτα συστήματα συντεταγμένων Μητρώα παρεμβολής με γενικευμένες συντεταγμένες Διατύπωση ισοπαραμετρικών ΠΣ Γραμμικά Μέλη Επιφανειακά και χωρικά στοιχεία Βασικά είδη ΠΣ ΠΣ επίπεδης παραμόρφωσης και επίπεδης έντασης Πλάκες Κελύφη Διακριτοποίηση σε ΠΣ

3 Εισαγωγή Κάνοντας συγκεκριμένες παραδοχές και απλοποιήσεις, ένα φυσικό πρόβλημα υπολογιστικής μηχανικής μπορεί να προσομοιωθεί με ένα κατάλληλο μαθηματικό μοντέλο, το οποίο μπορεί να επιλυθεί αριθμητικά με Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ). Τα αποτελέσματα από την ανάλυση με χρήση ΠΣ πρέπει πάντα να αξιολογούνται και να ερμηνεύονται ώστε να διαπιστώνεται αν παρέχουν ικανοποιητική για το συγκεκριμένο πρόβλημα ακρίβεια. Συχνά, απαιτείται τροποποίηση της επίλυσης με χρήση ΠΣ, τροποποιώντας το μαθηματικό μοντέλο ή επαναδιατυπώνοντας το φυσικό πρόβλημα, ώστε να επιτυγχάνεται η απαιτούμενη ακρίβεια των αποτελεσμάτων με τις ελάχιστες δυνατές υπολογιστικές απαιτήσεις και κόστος. 3

4 Οι ΜΠΣ μπορούν να χρησιμοποιηθούν για προσεγγιστικές επιλύσεις προβλημάτων ενός μεγάλου φάσματος εφαρμογών μηχανικής, τα οποία συνήθως δεν έχουν αναλυτικές λύσεις. Η διαδικασία διατύπωσης των ΜΠΣ βάσει της ΑΔΕ είναι όμοια με τη μέθοδο άμεσης δυσκαμψίας για κατασκευές από γραμμικά μέλη. Η μέθοδος άμεσης δυσκαμψίας για γραμμικά μέλη, όπως ράβδους και δοκούς, μπορεί ουσιαστικά να θεωρηθεί σαν μια ειδική περίπτωση των ΜΠΣ όπου είναι γνωστή η ακριβής μορφή παραμόρφωσης του μέλους και μπορεί να σχηματιστεί το ακριβές μητρώο δυσκαμψίας του κάθε μέλους, κάνοντας συχνά κάποιες απλοποιητικές παραδοχές. Όπως έχουμε δει, μπορούμε να εκφράσουμε τα εντατικά μεγέθη ενός μονοδιάστατου, ραβδωτού, στοιχείου συναρτήσει των μετακινήσεων των κόμβων του. 4

5 Σε αυτές τις περιπτώσεις γενικά πρέπει να γίνουν κάποιες παραδοχές για τις μεταβολές των μετακινήσεων μέσα στο κάθε στοιχείο για να μπορέσει να σχηματιστεί το αντίστοιχο προσεγγιστικό μητρώο δυσκαμψίας του μέλους βάσει της ΜΠΣ. Όμως κάτι τέτοιο είναι αδύνατο για επιφανειακά και τρισδιάστατα στοιχεί αφού δεν υπάρχουν οι σχετικές λύσεις των αντίστοιχων Μερικών Διαφορικών Εξισώσεων (ΜΔΕ). Στις περιπτώσεις επιφανειακών και χωρικών στοιχείων μπορούν να χρησιμοποιηθούν οι ΜΠΣ με τις οποίες ένα συνεχές μέσο διαχωρίζεται σε ΠΣ. Θεωρώντας συγκεκριμένη μεταβολή των μετακινήσεων σε κάθε πεπερασμένο στοιχείο επιτρέπει την επίλυση του προβλήματος βάσει ενός συστήματος αλγεβρικών εξισώσεων αντί ΜΔΕ. 5

6 Διατύπωση ΜΠΣ Βάσει Μετακινήσεων Η διατύπωση MΠΣ βάσει των μετακινήσεων είναι αντίστοιχη της μεθόδου των μετακινήσεων για γραμμικούς φορείς και τα κύρια βήματα της διαδικασίας, τα οποία είναι κοινά, είναι τα ακόλουθα: Μοντελοποίηση της κατασκευής από αριθμό στοιχείων τα οποία συνδέονται με κοινούς κόμβους, οι οποίοι έχουν συγκεκριμένους ΒΕ, ανάλογα με τον τύπο του προβλήματος και το είδος του στοιχείου. Καθορισμός των άγνωστων μετακινήσεων που αντιστοιχούν στους ΒΕ των κόμβων της κατασκευής. Σχηματισμός των μητρώων δυσκαμψίας όλων των μελών, τα οποία συνδέουν τις μετακινήσεις των κόμβων του κάθε μέλους με τα αντίστοιχα εντατικά μεγέθη. 6

7 Βάσει των κατάλληλα μετασχηματισμένων μητρώων δυσκαμψίας των μελών, κατάστρωση εξισώσεων ισορροπίας που αντιστοιχούν στους άγνωστους ΒΕ και σχηματισμός του μητρώου δυσκαμψίας της κατασκευής. Επίλυση των εξισώσεων ισορροπίας και υπολογισμός των αντίστοιχων μετακινήσεων των ΒΕ. Υπολογισμός των εσωτερικών εντατικών μεγεθών ή τάσεων στο κάθε μέλος βάσει των γνωστών μετακινήσεων των κόμβων. Υπολογισμός των αντιδράσεων στους δεσμευμένους ΒΕ. Ερμηνεία των αποτελεσμάτων που έχουν υπολογιστεί. 7

8 ΜΠΣ Βάσει Μετακινήσεων Το συνολικό μητρώο δυσκαμψίας, της κατασκευής σχηματίζεται με τη μέθοδο άμεσης δυσκαμψίας βάσει των κατάλληλα μετασχηματισμένων μητρώων δυσκαμψίας των επιμέρους μελών. Για την προσομοίωση γραμμικών μελών, δηλαδή ράβδων και δοκών, μπορεί να υπολογιστεί ακριβώς η σχέση εντατικών μεγεθών και μετακινήσεων στα άκρα, βάσει των διαφορικών εξισώσεων του ραβδωτού μέλους. Αντιθέτως, για γενικές αναλύσεις με ΠΣ, όπως δισδιάστατα και τρισδιάστατα στοιχεία, χρησιμοποιούνται προσεγγιστικές συναρτήσεις για τις μετακινήσεις και έτσι οι εξισώσεις ισορροπίας δεν ικανοποιούνται γενικά σε οποιοδήποτε σημείο του στοιχείου. 8

9 Η αδυναμία ευρέσεως ακριβής λύσης οφείλεται στις απαραίτητες παραδοχές που γίνονται για τις μετακινήσεις σημείων στο εσωτερικό των στοιχείων και τη χρήση προσεγγιστικών μητρώων δυσκαμψίας. Το σφάλμα λόγω αυτής της παραδοχής μειώνεται με την πύκνωση της διακριτοποίησης των πεπερασμένων στοιχείων. Η μεθοδολογία της ΜΠΣ βάσει των μετακινήσεων μπορεί να χρησιμοποιηθεί με τον ίδιο ακριβώς τρόπο για ισοστατικούς όσο και για υπερστατικούς φορείς. Επίσης, μπορεί να χρησιμοποιηθεί τόσο για στατική όσο και δυναμική ανάλυση ανάλογα με το αν προκύπτουν ή όχι σημαντικές αδρανειακές δυνάμεις. Τα αποτελέσματα της ανάλυσης έχουν ικανοποιητική ακρίβεια για συγκεκριμένα ζητούμενα εάν το κατάλληλο μοντέλο και διακριτοποίηση χρησιμοποιηθούν. 9

10 Γενική διατύπωση εξισώσεων ΠΣ Ένα τρισδιάστατο σώμα στη γενική περίπτωση έχει μια περιοχή με δεδομένες μετακινήσεις, δηλαδή δεσμευμένους ΒΕ και υπόκειται σε επιφανειακές φορτίσεις, φορτία σώματος οι οποίες είναι φορτίσεις ανά μονάδα όγκου και συγκεντρωμένα φορτία σε οποιοδήποτε σημείο και συνεπώς οποιοδήποτε αντίστοιχο ΒΕ. 10

11 Στη γενικότερη περίπτωση, έχουμε τα εξής εξωτερικά επιβαλλόμενα φορτία με τρεις συνιστώσες στο χώρο: φορτία σώματος φορτία επιφάνειας συγκεντρωμένα φορτία Τα συγκεντρωμένα φορτία είναι ουσιαστικά φορτία επιφανείας ασκούμενα σε πάρα πολύ μικρές επιφάνειες, τις οποίες μπορούμε να θεωρήσουμε σημειακές. Ουσιαστικά δεν υπάρχουν πραγματικά συγκεντρωμένα φορτία, αλλά είναι μια άλλη απλοποιητική εξιδανίκευση. 11

12 Για την επιφάνεια του σώματος ισχύει: όπου είναι η ελεύθερη επιφάνεια, στην οποία μπορούν να εφαρμοστούν επιφανειακά φορτία, και η επιφάνεια με δεσμευμένους τους ΒΕ, δηλαδή στις στηρίξεις. Είναι πρακτικά αδύνατο να έχουμε μια επιφάνεια όπου στο ίδιο σημείο και διεύθυνση, δηλαδή στον ίδιο ΒΕ, ασκούνται ταυτοχρόνως επιφανειακά φορτία και αντιδράσεις λόγω δεσμευμένων ΒΕ. Έτσι στους δεσμευμένους ΒΕ έχουμε άγνωστες τις δυνάμεις: 12

13 Θεωρώντας ότι η κατασκευή έχει γραμμική ελαστική συμπεριφορά, οι μετακινήσεις της μετρούνται από την αρχική αφόρτιστη θέση και γεωμετρία της κατασκευής βάσει ενός συστήματος συντεταγμένων ΧΥΖ: Οι αντίστοιχες παραμορφώσεις είναι: 13

14 Οι ορθές παραμορφώσεις ορίζονται ως εξής: ενώ οι διατμητικές παραμορφώσεις: Οι αντίστοιχες τάσεις δίδονται από τη σχέση τάσεων- παραμορφώσεων: Το διάνυσμα των τάσεων, περιέχει τυχόν τάσεις που προϋπάρχουν πριν από την εφαρμογή των φορτίων. 14

15 Το μητρώο τάσεων παραμορφώσεων, εκφράζει τον καταστατικό νόμο του υλικού. Στη γενική περίπτωση ενός τρισδιάστατου σώματος έχει την πιο κάτω μορφή: 15

16 Έχοντας τη γεωμετρία μιας κατασκευής, τον καταστατικό νόμο του υλικού τις αρχικές τάσεις και τις δεσμευμένες μετακινήσεις σε κάποια σημεία στήριξης του σώματος, ζητούμενο της ανάλυσης είναι ο υπολογισμός των άγνωστων μετακινήσεων και οι αντίστοιχες παραμορφώσεις ε και τάσεις τ σε κάθε απειροστό στοιχείο, και της κατασκευής. 16

17 Βάσει της ΑΔΕ αν σε ένα σώμα που βρίσκεται σε ισορροπία επιβληθούν οποιεσδήποτε, συμβατές με τις στηρίξεις, μικρές δυνατές μετακινήσεις το συνολικό εσωτερικό δυνατό έργο ισούται με το συνολικό εξωτερικό δυνατό έργο: όπου και είναι οι δυνατές μετακινήσεις και οι αντίστοιχες δυνατές παραμορφώσεις. 17

18 Οι τάσεις, είναι με ακρίβεια οι πραγματικές τάσεις που ισορροπούν τα εξωτερικά επιβαλλόμενα φορτία μόνο εφόσον η πιο πάνω εξίσωση ισχύει για οποιεσδήποτε αυθαίρετες δυνατές μετακινήσεις οι οποίες είναι συνεχείς και μηδενικές στα σημεία και διευθύνσεις που είναι δεδομένες οι μετακινήσεις, δηλαδή των δεσμευμένων ΒΕ. Οι δυνατές παραμορφώσεις, υπολογίζονται από παραγώγιση των δυνατών μετακινήσεων, για αυτό το λόγο πρέπει να είναι συνεχείς οι μετακινήσεις. Όλες οι ολοκληρώσεις γίνονται με βάση την αρχική και απαραμόρφωτη γεωμετρία του φορέα θεωρώντας ότι τόσο οι πραγματικές όσο και οι δυνατές μετακινήσεις είναι πολύ μικρές ώστε να είναι επιτρεπτή η γραμμική ελαστική ανάλυση. 18

19 Η ακριβής λύση, πρέπει απαραίτητα να ικανοποιεί: τις εξισώσεις ισορροπίας τη συμβιβαστότητα των παραμορφώσεων τον καταστατικό νόμο του υλικού (δηλαδή τη σχέση τάσεων-παραμορφώσεων) 19

20 Για να είναι σωστή μια λύση η ισορροπία πρέπει να ικανοποιείται σε όλο το σώμα, σε οποιοδήποτε τμήμα του αλλά και σε οποιοδήποτε απειροστό στοιχείο. Οι εξισώσεις ισορροπίας σε ένα απειροστό στοιχείο μπορούν να σχηματιστούν από απλή ισορροπία δυνάμεων στην κάθε διεύθυνση. 20

21 Εφαρμόζοντας ισορροπία δυνάμεων στη Χ-διεύθυνση βάσει των τάσεων σε αυτή τη διεύθυνση και των αντίστοιχων επιφανειών όπου ασκούνται, μπορούμε να προσδιορίσουμε την ακριβή εξίσωση ισορροπίας. 21

22 22

23 Παρομοίως προκύπτουν και οι υπόλοιπες εξισώσεις ισορροπίας: Αυτές οι σχέσεις μπορούν να γραφτούν σε συμπυκνωμένη μορφή χρησιμοποιώντας τένσορες: Στις ΜΠΣ οι πιο πάνω ακριβείς εξισώσεις ισορροπίας ικανοποιούνται μόνο στο επίπεδο του κάθε πεπερασμένου στοιχείου, εκτός εάν θεωρητικά το μέγεθος του κάθε πεπερασμένου στοιχείου είχε τις διαστάσεις ενός απειροστού στοιχείου, το οποίο είναι αδύνατο. 23

24 Στις ΜΠΣ, το σώμα διακριτοποιείται σε πεπερασμένα στοιχεία (ΠΣ) τα οποία είναι συνδεδεμένα μεταξύ τους στους κόμβους που ορίζονται στα όρια του κάθε ΠΣ. Οι μετακινήσεις σε κάθε ΠΣ εκφράζονται βάσει του τοπικού συστήματος συντεταγμένων του κάθε στοιχείου, κάνοντας την παραδοχή ότι μπορούν να εκφραστούν συναρτήσει όλων των ΒΕ, δηλαδή των μετακινήσεων όλων των κόμβων στις τρεις διευθύνσεις στο απόλυτο σύστημα συντεταγμένων στην περίπτωση του γενικού χωρικού στοιχείου: 24

25 Οι ΜΠΣ στηρίζονται στην παραδοχή ότι οι μετακινήσεις στο εσωτερικό ενός ΠΣ μπορούν να εκφραστούν συναρτήσει των μετακινήσεων των κόμβων στο απόλυτο σύστημα συντεταγμένων και του μητρώου παρεμβολής των μετακινήσεων, το οποίο έχει πολλά μηδενικά στοιχεία. 25

26 Το μητρώο παρεμβολής έχει μηδενικά όλα τα στοιχεία του εκτός αυτά που αντιστοιχούν στους ΒΕ των κόμβων του στοιχείου. Δηλαδή για ένα χωρικό ΠΣ με 8 κόμβους μόνο 24=8x3 στοιχεία μπορεί να μην είναι μηδενικά. Συνεπώς, οι μετακινήσεις ενός σημείου στο εσωτερικό ενός στοιχείου εξαρτώνται μόνο από τις μετακινήσεις των κόμβων του στοιχείου. Κάθε ΠΣ έχει το δικό του τοπικό σύστημα συντεταγμένων, με το οποίο εκφράζονται οι μετακινήσεις στο εσωτερικό του: 26

27 Είναι απαραίτητο οι μετακινήσεις σημείων που βρίσκονται είτε σε κοινή επιφάνεια είτε σε γραμμή μεταξύ των ορίων δύο στοιχείων να είναι ίσες ανεξάρτητα από ποιο από τα δύο ΠΣ χρησιμοποιείται για να προσδιοριστούν οι μετακινήσεις. 27

28 28

29 29

30 Τότε αν πρόκειται για ΠΣ επίπεδης έντασης ή επίπεδης παραμόρφωσης οι τάσεις και παραμορφώσεις, είναι και στις δύο περιπτώσεις οι εξής : 30

31 31

32 32

33 33

34 Αντικαθιστώντας τις σχέσεις αυτές στην ΑΔΕ: 34

35 35

36 Σε μητρωική μορφή οι εξισώσεις ισορροπίας παίρνουν τη γνωστή μορφή: όπου: 36

37 Η διαδικασία σχηματισμού του συνολικού μητρώου δυσκαμψίας της κατασκευής από τα μητρώα δυσκαμψίας των επιμέρους στοιχείων γίνεται με τη Μέθοδο Άμεσης Δυσκαμψίας. Στην πράξη μόνο τα μη μηδενικά στοιχεία του μητρώου δυσκαμψίας του κάθε στοιχείου, το οποίο είναι και συμμετρικό, προσδιορίζονται, και λαμβάνοντας υπόψη τους σχετικούς ΒΕ, προστίθενται στις αντίστοιχες θέσεις του συνολικού μητρώου δυσκαμψίας της κατασκευής για να αποφευχθεί περιττή χρήση της διαθέσιμης μνήμης του Η/Υ. 37

38 38

39 Μπορούν έτσι να υπολογιστούν οι άγνωστες μετακινήσεις των ενεργών ΒΕ: 39

40 Έχοντας υπολογίσει τις άγνωστες μετακινήσεις, στη συνέχεια μπορούν να προσδιοριστούν οι άγνωστες αντιδράσεις των δεσμευμένων ΒΕ, από τη σχέση: 40

41 41

42 Διατύπωση ΜΠΣ για Δυναμική Ανάλυση Αν τα φορτία ασκηθούν με τέτοιο μέγεθος και ρυθμό σε σχέση με τις ιδιοσυχνότητες του φορέα, αναπτύσσονται μη αμελητέες αδρανειακές δυνάμεις, οι οποίες πρέπει να συμπεριληφθούν στα πλαίσια δυναμικής, αντί στατικής, ανάλυσης. Χρησιμοποιώντας την Αρχή του D Alembert, μπορούν να συμπεριληφθούν οι αδρανειακές δυνάμεις σαν φορτία σώματος, θεωρώντας ότι για τις επιταχύνσεις των στοιχείων μπορεί να χρησιμοποιηθούν τα ίδια μητρώα παρεμβολής: 42

43 Έτσι, οι συνολικές δυνάμεις σώματος του στοιχείου m ισούνται με: Το ολοκλήρωμα στον 2 ο όρο ισούται με το μητρώο μάζας M. Έτσι το μητρώο μάζας του σώματος σχηματίζεται από το άθροισμα των επιμέρους μητρώων μάζας των ΠΣ: 43

44 Με αυτό τον τρόπο σχηματίζεται το σύμμορφο μητρώο μάζας (consistent mass matrix), αφού χρησιμοποιούνται οι ίδιες συναρτήσεις παρεμβολής που χρησιμοποιούνται για τον σχηματισμό του μητρώου δυσκαμψίας. Συχνά στην πράξη, αντί του σύμμορφου μητρώου μάζας, χρησιμοποιείται μητρώο με συγκεντρωμένες μάζες (lumped mass matrix), όπου απλά κατανέμεται η μάζα του στοιχείου στους κόμβους του. 44

45 Στην πραγματικότητα, όταν έχουμε δυναμική απόκριση υπάρχει απόσβεση ενέργειας, την οποία μπορούμε να λάβουμε υπόψη με κατάλληλες δυνάμεις απόσβεσης οι οποίες μπορούμε να θεωρήσουμε ότι εξαρτώνται από την ταχύτητα. Έτσι, οι δυνάμεις σώματος διαμορφώνονται ως εξής: Έτσι ορίζεται το μητρώο απόσβεσης : Στην πράξη όμως το μητρώο απόσβεσης C, υπολογίζεται έμμεσα συναρτήσει του μητρώου μάζας M και δυσκαμψίας K ολόκληρης της κατασκευής (Rayleigh damping). 45

46 Οι εξισώσεις δυναμικής ισορροπίας παίρνουν πλέον τη γνωστή μορφή: Κατά τη δυναμική ανάλυση λαμβάνονται υπόψη μόνο οι δυναμικοί ΒΕ αφού αφαιρεθούν με κατάλληλη στατική συμπύκνωση οι υπόλοιποι ΒΕ, οι οποίοι δεν υπάρχει λόγος να ληφθούν υπόψη κατά τη δυναμική ανάλυση. 46

47 Υπολογισμός αγνώστων μεγεθών Στη γενική περίπτωση ανάλυσης με ΠΣ, αφού προσδιοριστεί το μητρώο δυσκαμψίας Κ καθώς και τα μητρώα μάζας M και απόσβεσης C αν πρόκειται για δυναμική ανάλυση, επιλύνεται το σύστημα εξισώσεων ισορροπίας για να υπολογιστούν οι άγνωστες μετακινήσεις των αδέσμευτων ΒΕ από τα εξωτερικά επιβαλλόμενα φορτία. Στη συνέχεια, χρησιμοποιώντας τις σχέσεις τάσεων-παραμορφώσεων και παραμορφώσεων-μετακινήσεων μπορούν να υπολογιστούν οι τάσεις: Μια λύση με ΠΣ ικανοποιεί τις εξισώσεις ισορροπίας των κόμβων στο επίπεδο, των στοιχείων και όλης της κατασκευής λαμβάνοντας υπόψη τις σχετικές ΜΔΕ ισορροπίας και τις συνοριακές συνθήκες: 47

48 Οι εξισώσεις ισορροπίας δεν ικανοποιούνται με την λύση που παρέχει η ανάλυση με ΠΣ στο επίπεδο ενός απειροστού στοιχείου (απειροστών διαστάσεων), αφού αντί να ληφθούν οι εξισώσεις σε απειροστό επίπεδο μετασχηματίζονται σε επίπεδο στοιχείων με πεπερασμένο αριθμό ΒΕ στους κόμβους όπου και επιλύονται. Αυτό φαίνεται από τις ασυνέχειες των τάσεων μεταξύ στοιχείων και τις μη μηδενικές τάσεις σε επιφάνειες που δεν υπάρχουν αντίστοιχα επιφανειακά φορτία. Καθώς πυκνώνει η διακριτοποίηση ΠΣ αυτές οι ασυνέχειες μειώνονται σημαντικά, γεγονός το οποίο είναι μια ένδειξη σύγκλισης της ανάλυσης. 48

49 Η ανάλυση με ΠΣ διασφαλίζει την ισορροπία σε κάθε κόμβο και κάθε στοιχείο καθώς και σε ολόκληρο το σώμα. 49

50 Τοπικά και απόλυτα συστήματα συντεταγμένων Τα περισσότερα στοιχεία των μητρώων τα οποία σχηματίζονται και χρησιμοποιούνται για το κάθε στοιχείο m είναι μηδενικά. Οι εξισώσεις ισορροπίας του σώματος του προκύπτουν είναι συναρτήσει των ΒΕ των κόμβων βάσει του απόλυτου συστήματος συντεταγμένων. Όμως είναι ευκολότερο τα μητρώα που αφορούν τα στοιχεία να σχηματίζονται χρησιμοποιώντας κατάλληλα τοπικά συστήματα xyz συντεταγμένων και μόνο τους σχετικούς ΒΕ που αντιστοιχούν στις μετακινήσεις των κόμβων των στοιχείων. 50

51 Συνεπώς, μπορούν να υπολογιστούν τα μητρώα δυσκαμψίας, μάζας και ισοδύναμων επικόμβιων φορτίων βάσει του τοπικού συστήματος συντεταγμένων: 51

52 Μετασχηματισμός από το τοπικό σύστημα στο απόλυτο σύστημα συντεταγμένων στο επίπεδο και στο χώρο. 52

53 Mητρώo μετασχηματισμού Η παρεμβολή των μετακινήσεων ενός στοιχείου διαμορφώνεται σαν: 53

54 Έτσι, υπολογίζοντας τα μητρώα στα τοπικά συστήματα των στοιχείων μπορούν να μετασχηματιστούν κατάλληλα στο απόλυτο σύστημα συντεταγμένων: Αφού τα μητρώα κατασκευαστούν βάσει του τοπικού συστήματος συντεταγμένων, στη συνέχεια μετασχηματίζονται στο απόλυτο σύστημα συντεταγμένων. Ακολούθως, βάσει της συνδεσμολογίας των στοιχείων και της αντιστοιχίας τοπικών και απόλυτων ΒΕ σχηματίζονται τα συνολικά μητρώα της κατασκευής με τη μέθοδο άμεσης δυσκαμψίας. 54

55 Το συνολικό μητρώο δυσκαμψίας προκύπτει, αφού το θέσουμε αρχικά να έχει όλα τα στοιχεία του μηδενικά προσθέτουμε διαδοχικά τα στοιχεία δυσκαμψίας των αντίστοιχων ΒΕ του κάθε στοιχείου. Το σχηματιζόμενο μητρώο δυσκαμψίας είναι ιδιάζων και μόνο με την εφαρμογή των συνοριακών συνθηκών μετακινήσεων μπορεί να επιλυθεί το σύστημα εξισώσεων που προκύπτει το οποίο στη γενική περίπτωση έχει την πιο κάτω μορφή: Για δεσμεύσεις μετακινήσεων με διαφορετικό προσανατολισμό από ότι οι ΒΕ των αντίστοιχων κόμβων, γίνεται μετασχηματισμός των αντίστοιχων εξισώσεων με κατάλληλους πολλαπλασιασμούς των αντίστοιχων γραμμών και στηλών. 55

56 Οι εξισώσεις κίνησης επιλύονται αριθμητικά είτε με επαλληλία των ιδιομορφών είτε με απευθείας ολοκλήρωση του συστήματος εξισώσεων χωρίς οποιοδήποτε μετασχηματισμό. Για την αριθμητική ολοκλήρωση των εξισώσεων κίνησης μπορούν να χρησιμοποιηθούν άμεσες αριθμητικές μέθοδοι, όπως η Μέθοδος Κεντρικής Διαφοράς (Central Difference Method) και έμμεσες μέθοδοι, όπως η Μέθοδος Newmark. Για τον υπολογισμό των ιδιοτιμών και ιδιομορφών μπορούν να χρησιμοποιηθούν οι μέθοδοι επαναληπτικών διανυσμάτων (π.χ. Stodalla-Vianello) με κατάλληλη ορθογωνοποίηση (Gram-Schmidt). 56

57 Μητρώα παρεμβολής με γενικευμένες συντεταγμένες Χρησιμοποιώντας το τοπικό σύστημα συντεταγμένων ενός ΠΣ οι μετακινήσεις στο εσωτερικό του μπορούν να εκφραστούν συναρτήσει κάποιου πολυωνύμου: Οι μετακινήσεις σε μητρωική μορφή μπορούν να εκφραστούν ως: 57

58 Χρησιμοποιώντας αυτή τη σχέση για τις μετακινήσεις των κόμβων και τις αντίστοιχες δεδομένες συντεταγμένες τους μπορούν να υπολογιστούν οι γενικευμένες συντεταγμένες. Για ένα επίπεδο τετράπλευρο στοιχείο με τέσσερις κόμβους οι μετακινήσεις σε οποιοδήποτε σημείο μπορούν να εκφραστούν συναρτήσει των μετακινήσεων των κόμβων και του μητρώου παρεμβολής. 58

59 Έτσι, οι μετακινήσεις εκφράζονται ως: 59

60 Εφαρμόζοντας αυτή την παρεμβολή, μια για κάθε ένα από τους τέσσερεις κόμβους προκύπτουν δυο εξισώσεις για κάθε κόμβο. Παραδείγματος χάριν, για τον κόμβο ισχύει η σχέση: 60

61 Χρησιμοποιώντας τις αντίστοιχες σχέσεις για τους άλλους κόμβους με τις συντεταγμένες τους προκύπτει το πιο κάτω σύστημα: 61

62 Έτσι, οι μετακινήσεις σε κάθε σημείο μέσα στο ΠΣ μπορούν να εκφραστούν συναρτήσει του μητρώου παρεμβολής: 62

63 Διατύπωση Ισοπαραμετρικών ΠΣ Λόγω πρακτικών δυσκολιών με την προηγούμενη διαδικασία, προτιμάται ο τρόπος με τον οποίο κατασκευάζονται τα ισοπαραμετρικά ΠΣ. Η ισοπαραμετρική διατύπωση των ΠΣ βασίζεται στη χρήση συναρτήσεων παρεμβολής που ορίζονται στο φυσικό σύστημα συντεταγμένων τόσο για τις συντεταγμένες σημείων των στοιχείων όσο και για τις μετακινήσεις τους. Η χρήση των ίδιων μητρώων παρεμβολής τόσο για τις συντεταγμένες όσο και για τις μετακινήσεις διευκολύνει το σχηματισμό των απαραίτητων μητρώων. 63

64 Οι συντεταγμένες στο τοπικό σύστημα συντεταγμένων, όπου σε αυτή την περίπτωση είναι απλά ο άξονας X, μπορούν να εκφραστούν βάσει του φυσικού συστήματος συντεταγμένων, το οποίο έχει τιμές ±1 στο όρια του στοιχείου. 64

65 Με τον ίδιο τρόπο μπορούν να εκφραστούν οι μετακινήσεις σε οποιοδήποτε σημείο του στοιχείου συναρτήσει των μετακινήσεων των κόμβων. Για τον υπολογισμό του μητρώου δυσκαμψίας K πρέπει να προσδιορίσουμε το μητρώο παραμορφώσεων-μετακινήσεων βάσει της σχέσεως των παραμορφώσεων και μετακινήσεων. Η αξονική παραμόρφωση του μονοδιάστατου ισούται εξ ορισμού με: 65

66 Έτσι το μητρώο παραμορφώσεων-μετακινήσεων ισούται με: Εφόσον το μητρώο αυτό είναι γενικά συναρτήσει των φυσικών συντεταγμένων r, η ολοκλήρωση για να υπολογιστεί το μητρώο δυσκαμψίας, όπου σε αυτή την περίπτωση είναι ένα στοιχείο μόνο, πρέπει επίσης να γίνει βάσει των φυσικών συντεταγμένων: Το Ιακωβιανό (Jacobian) μητρώο, που σε αυτή την περίπτωση είναι διαστάσεων 1x1, συνδέει μια μονάδα μήκους του τοπικού ή απόλυτου συστήματος συντεταγμένων με μια μονάδα μήκους του φυσικού συστήματος συντεταγμένων. 66

67 Επιφανειακά και χωρικά στοιχεία Το πρώτο βήμα για την ισοπαραμετρική διατύπωση των ΠΣ είναι η έκφραση των τοπικών συντεταγμένων και των μετακινήσεων σε ένα στοιχείο συναρτήσει του φυσικού συστήματος συντεταγμένων του στοιχείου. Στη γενική περίπτωση ενός χωρικού στοιχείου οι παρεμβολές των συντεταγμένων βασίζονται στις σχέσεις: 67

68 Αντίστοιχα στις περιπτώσεις επιπέδου δηλαδή δισδιάστατου, στοιχείου οι συντεταγμένες στο φυσικό σύστημα μπορούν να εκφραστούν συναρτήσει των συντεταγμένων στο τοπικό σύστημα συντεταγμένων ως ακολούθως: 68

69 Απαραίτητη συνθήκη είναι το άθροισμα των συναρτήσεων παρεμβολών να είναι παντού ίσο με 1.0: 69

70 Για ένα τετράπλευρο στοιχείο με 4 κόμβους οι συναρτήσεις παρεμβολής ισούνται με: 1 h1 1 r 1 s 4 1 h2 1 r 1 s 4 1 h3 1 r 1 s 4 1 h4 1 r 1 s 4 70

71 Αντίστοιχα, οι συναρτήσεις παρεμβολής για την περίπτωση ενός χωρικό εξαεδρικού στοιχείου με 8 κόμβους είναι οι εξής: 1 h1 1 r 1 s 1 t 8 1 h2 1 r 1 s 1 t 8 1 h3 1 r 1 s 1 t 8 1 h4 1 r 1 s 1 t 8 1 h5 1 r 1 s 1 t 8 1 h6 1 r 1 s 1 t 8 1 h7 1 r 1 s 1t 8 1 h8 1 r 1 s 1 t 8 71

72 72

73 Κατά την ισοπαραμετρική διατύπωση των ΠΣ, τόσο η γεωμετρία του στοιχείου όσο και οι μετακινήσεις των κόμβων εκφράζονται χρησιμοποιώντας τις ίδιες συναρτήσεις παρεμβολών και τις συντεταγμένες και μετακινήσεις των κόμβων αντίστοιχα: n x h x i1 i i n y h y i1 i i n z h z i1 i i u n i1 h u i i n v h v i1 i i n w h w i1 i i 73

74 n x h x i1 i i n y h y i1 i i n z h z i1 i i u n i1 h u i i n v h v i1 i i n w h w i1 i i Έτσι το μητρώο παρεμβολής-μετακινήσεων προκύπτει άμεσα από τις συναρτήσεις παρεμβολής. Για το τετράπλευρο επίπεδο στοιχείο με 4 κόμβους το μητρώο παρεμβολής ορίζεται ως: H h 0 h 0 h 0 h 0 0 h1 0 h2 0 h3 0 h 4 m To μητρώο παρεμβολής, έχει τη συγκεκριμένη μορφή εφόσον το διάνυσμα μετακινήσεων των κόμβων του στοιχείου έχει την πιο κάτω μορφή: 74

75 75

76 αντίστοιχα: 76

77 Σε ορισμένες περιπτώσεις τα στοιχεία του Ιακωβιανού μητρώου μπορούν να προσδιοριστούν πολύ εύκολα. Παραδείγματος χάριν, για το ορθογωνικό ΠΣ που παρουσιάζεται στο πιο κάτω σχήμα, το Ιακωβιανό μητρώο προκύπτει απευθείας ως: 77

78 Οι προηγούμενες συναρτήσεις μπορούν να υπολογιστούν βάσει των συναρτήσεων παρεμβολής, για το τετράπλευρο ΠΣ και αντίστοιχα για οποιοδήποτε άλλο ΠΣ: r r n x h i n i1 i i i1 n x hi x h x s s i1 x x i i r r n y h i n i1 i i i1 n y hi y h y s s i1 y y i i 78

79 αντίστοιχα για τις μετακινήσεις: u r r n u h i n i1 hi ui i1 n u hi s s i1 u u i i r r n v h i n i1 i i i1 n v hi v h v s s i1 v v i i 79

80 Στη γενική χωρική περίπτωση οι παράγωγοι για τις παραμορφώσεις ορίζονται, αντίστοιχα, ως ακολούθως: x y z x r r r r r x y z 1 J y s s s s s x y z z t t t t t 1 80

81 81

82 T m m m m m K B E B J dr ds dt m m m m m T K B E B J w i j k r,s,t i j k ijk 82

83 83

84 84

85 Βασικά είδη Πεπερασμένων Στοιχείων Οι γενικές εξισώσεις των ΜΠΣ που έχουν αναπτυχθεί για ένα γενικά τρισδιάστατο σώμα μπορούν να εξειδικευτούν σε συγκεκριμένα κοινά είδη πρακτικών προβλημάτων και αντίστοιχων στοιχείων. Τα πιο συνηθισμένα είδη στοιχείων είναι τα δικτυώματα (truss elements), δοκοί (beam elements), στοιχεία επίπεδης ένστασης (plane stress), στοιχεία επίπεδης παραμόρφωσης (plane strain), στοιχεία πλακών, στοιχεία κελυφών (shell) και γενικά τρισδιάστατα στοιχεία (solid elements). Ανάλογα με το είδος, τη φόρτιση και τη συμπεριφορά ενός στοιχείου ή γενικά ενός φορέα ορίζονται οι αντίστοιχοι ΒΕ των κόμβων. Η κοινή διαδικασία για τη διατύπωση των εξισώσεων ισορροπίας για στατική και δυναμική ανάλυση ανεξάρτητα, από το είδος των ΠΣ επιτρέπει το συνδυασμό ΠΣ διαφορετικών τύπων κατά τη διακριτοποίηση και ανάλυση μιας κατασκευής. Έτσι μπορεί μια κατασκευή να αναλυθεί με ΜΠΣ χρησιμοποιώντας μαζί ράβδους με δοκούς και στοιχεία πλακών ή κελυφών. 85

86 ΠΣ επίπεδης παραμόρφωσης και επίπεδης έντασης 86

87 87

88 88

89 89

90 Πλάκες Στην περίπτωση μιας πλάκας, η μετακίνηση που μας ενδιαφέρει είναι η βύθιση w, οι παραμορφώσεις και τα εντατικά μεγέθη (καμπτικές ροπές) που αντιστοιχούν στις τάσεις είναι οι εξής: Το μητρώο ελαστικότητας πλάκας πάχους h έχει την πιο κάτω μορφή: 90

91 91

92 92

93 Διακριτοποίηση σε ΠΣ Ανάλογα με το είδος της κατασκευής, της φόρτισης και της συμπεριφοράς καθώς και την απαιτούμενη ακρίβεια της ανάλυσης χρησιμοποιούνται διαφορετικά είδη και αριθμός ΠΣ. Η επίλυση με ΠΣ πρέπει να ελέγχεται για την ορθότητα της πυκνώνοντας τον κάναβο ΠΣ και ελέγχοντας εάν τα αποτελέσματα συγκλίνουν σε κάποια λύση. Η ακρίβεια της επίλυσης εκφράζεται από το είδος των ΠΣ, την πυκνότητα του κανάβου αλλά και το σχήμα των ΠΣ. Ο λόγος των διαστάσεων των πλευρών και εδρών ενός στοιχείου πρέπει να είναι κοντά στο 1.0 και οι γωνίες κοντά στις 90 o. Η χρήση ικανοποιητικού αριθμού ΠΣ ελέγχεται με διαδοχικές αναλύσεις με πυκνότερους κανάβους των οποίων τα αποτελέσματα πρέπει να συγκλίνουν σε κάποια λύση όταν είναι ικανοποιητικά μικρές οι διαστάσεις των ΠΣ. 93

94 Σε πολλές περιπτώσεις όπως σε σημεία εφαρμογής συγκεντρωμένων φορτίων ή ασυνεχειών απαιτείται πύκνωση του κανάβου ΠΣ. Οι περιοχές όπου απαιτείται ενδεχομένως πύκνωση του κανάβου των ΠΣ είναι εκεί όπου από την ανάλυση με ΠΣ προκύπτουν μεγάλες ασυνέχειες στις τάσεις στις διεπιφάνειες μεταξύ γειτονικών ΠΣ. 94

95 95

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8

Διαβάστε περισσότερα

1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)

1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων) ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος 1 Θέματα Μέθοδος

Διαβάστε περισσότερα

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος,

Διαβάστε περισσότερα

7. Δυναμική Ανάλυση ΠΒΣ

7. Δυναμική Ανάλυση ΠΒΣ ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 7. Δυναμική Ανάλυση ΠΒΣ Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στα πολυβάθμια συστήματα

Διαβάστε περισσότερα

4. Επίλυση Δοκών και Πλαισίων με τις

4. Επίλυση Δοκών και Πλαισίων με τις ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 4. Επίλυση Δοκών και Πλαισίων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος

Διαβάστε περισσότερα

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής

Διαβάστε περισσότερα

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος

ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7 Στατική των γραμμικών φορέων ix ΠΕΡΙΕΧΟΜΕΝΑ σελ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ. 1 1.1 Εισαγωγή.. 3 1.2 Συστήματα συντεταγμένων. 7 2. Η ΚΙΝΗΣΗ ΚΑΙ Η ΣΤΗΡΙΞΗ ΤΟΥ ΔΙΣΚΟΥ ΑΝΤΙΔΡΑΣΕΙΣ 13 2.1 Η κίνηση και η στήριξη

Διαβάστε περισσότερα

9. Χρήση Λογισμικού Ανάλυσης Κατασκευών

9. Χρήση Λογισμικού Ανάλυσης Κατασκευών 9. Χρήση Λογισμικού Ανάλυσης Κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής Κατανομή φορτίων πλακών

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών 5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Σύγχρονες μέθοδοι ανάλυσης κατασκευών

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros

Διαβάστε περισσότερα

4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα

4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros

Διαβάστε περισσότερα

9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ

9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση

Διαβάστε περισσότερα

Ανάλυση Ισοστατικών ικτυωµάτων

Ανάλυση Ισοστατικών ικτυωµάτων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 5 η και 6 η Ανάλυση Ισοστατικών ικτυωµάτων Τετάρτη,, 15, Παρασκευή, 17 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα

7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος

Διαβάστε περισσότερα

Σημειώσεις του μαθήματος Μητρωϊκή Στατική

Σημειώσεις του μαθήματος Μητρωϊκή Στατική ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού

Διαβάστε περισσότερα

1 η Επανάληψη ιαλέξεων

1 η Επανάληψη ιαλέξεων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ

Διαβάστε περισσότερα

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος

Διαβάστε περισσότερα

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:

Διαβάστε περισσότερα

ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ

ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών ΣΥΜΜΕΤΟΧΗ Ι ΙΟΜΟΡΦΩΝ ΣΤΗ ΜΕΘΟ Ο ΕΠΑΛΛΗΛΙΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ υναμική Ανάλυση Ραβδωτών Φορέων Μετακινήσεις στη μέθοδο επαλληλίας των ιδιομορφών,

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55

ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ

Διαβάστε περισσότερα

Πρόλογος... 15. Οι συγγραφείς... 18

Πρόλογος... 15. Οι συγγραφείς... 18 Περιεχόμενα Πρόλογος... 15 Οι συγγραφείς... 18 1 Θεμελιώδεις έννοιες... 19 1.1 ΕΙΣΑΓΩΓΗ... 19 1.2 ΙΣΤΟΡΙΚΟ... 19 1.3 ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ... 20 1.4 ΤΑΣΕΙΣ ΚΑΙ ΙΣΟΡΡΟΠΙΑ... 20 1.5 ΣΥΝΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ...

Διαβάστε περισσότερα

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,, ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των

Διαβάστε περισσότερα

1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΥΠΟΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Διατύπωση

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ

ΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ 1 Περιεχόμενα

Διαβάστε περισσότερα

Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής

Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής Κεφάλαιο 5 Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής Στο παρόν κεφάλαιο παρουσιάζονται οι περιπτώσεις συνοριακών συνθηκών οι οποίες συναντώνται σε προβλήματα γεωτεχνικής μηχανικής.

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το

Διαβάστε περισσότερα

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 20. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 2 Χειμερινό Εξάμηνο 213 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/214, 12. Απαιτείται αποδεικτικό ταυτότητας Απαγορεύεται η παρουσία & χρήση κινητού!

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΕΠΕΞΗΓΗΜΑΤΙΚΟ ΣΗΜΕΙΩΜΑ... xvii ΚΑΤΑΛΟΓΟΣ ΣΥΜΒΟΛΩΝ... xviii 1. ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΚΑΙ Η ΙΣΤΟΡΙΚΗ ΤΟΥΣ ΕΞΕΛΙΞΗ... 1-1 1.1 Η πραγματική κατασκευή και η "Στατική Μελέτη" της... 1-3

Διαβάστε περισσότερα

Δυναμική Μηχανών I. H Μέθοδος των Πεπερασμένων Στοιχείων

Δυναμική Μηχανών I. H Μέθοδος των Πεπερασμένων Στοιχείων Δυναμική Μηχανών I 8 3 H Μέθοδος των Πεπερασμένων Στοιχείων 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 17.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 17. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 7. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - Copyrigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

Διδάσκων: Κολιόπουλος Παναγιώτης

Διδάσκων: Κολιόπουλος Παναγιώτης ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 10: ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ (-ΒΕ) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ

ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ Να γίνει πλήρης ανάλυση του μεταλλικού δικτυώματος του σχήματος. Ολες οι συνδέσεις των ράβδων στους κόμβους είναι αρθρωτού τύπου. Επί πλέον, ο ένας εκ των άνω κόμβων μπορεί

Διαβάστε περισσότερα

Κεφάλαιο 1 Βασικές αρχές µελέτης των κατασκευών 1

Κεφάλαιο 1 Βασικές αρχές µελέτης των κατασκευών 1 Περιεχόµενα Εισαγωγή Σύµβολα Ε1-Ε9 Σ1-Σ10 Κεφάλαιο 1 Βασικές αρχές µελέτης των κατασκευών 1 2. Σύµβαση πρόσηµων 2.1 Συστήµατα αναφοράς 2.2 υνάµεις και ροπές 2.3 Tάσεις 2.4 Τέµνουσες δυνάµεις και καµπτικές

Διαβάστε περισσότερα

Πρόλογος Οι συγγραφείς... 18

Πρόλογος Οι συγγραφείς... 18 Περιεχόμενα Πρόλογος... 15 Οι συγγραφείς... 18 1 Θεμελιώδεις έννοιες... 19 1.1 ΕΙΣΑΓΩΓΗ... 19 1.2 ΙΣΤΟΡΙΚΟ... 19 1.3 ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ... 20 1.4 ΤΑΣΕΙΣ ΚΑΙ ΙΣΟΡΡΟΠΙΑ... 20 1.5 ΣΥΝΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ...

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ Εργαστήριο Στατικής & Αντισεισμικών Ερευνών 008-009 Μητρωικές Μέθοδοι Μετατοπίσεων και Δυνάμεων Ανάλυσης Κατασκευών

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ

ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ Να γίνει στατική επίλυση τoυ χωρικού πλαισίου από οπλισμένο σκυρόδεμα κατηγορίας C/, κάτοψη του οποίου φαίνεται στο σχήμα (α). Δίνονται: φορτίο επικάλυψης πλάκας gεπικ. KN/, κινητό

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 4. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 4 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Μοντελοποίηση Μηχανικών Συστημάτων Ν Βαθμών Ελευθερίας Μηχανικά δυναμικά συστήματα πολλών Β.Ε. Μοντελοποίηση

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΕΡΕΟΙ ΚΟΜΒΟΙ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα Εισαγωγή Κινηματικές

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας

Διαβάστε περισσότερα

Μέθοδοι των Μετακινήσεων

Μέθοδοι των Μετακινήσεων Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΑΤΙΚΗ ΣΥΜΠΥΚΝΩΣΗ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα.

Διαβάστε περισσότερα

ΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών

ΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 320: Δυναμική Ανάλυση των Κατασκευών Ακαδημαϊκό Έτος 2005-6, Χειμερινό Εξάμηνο Τελική Εξέταση 8:30-11:30

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού

ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ. Μερικές βασικές έννοιες διανυσματικού λογισμού ΕΜΒΟΛΙΜΗ ΠΑΡΑΔΟΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Μερικές βασικές έννοιες διανυσματικού λογισμού ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 1. Oρισμοί Διάνυσμα ονομάζεται η μαθηματική οντότητα που έχει διεύθυνση φορά και μέτρο.

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση

Διαβάστε περισσότερα

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control)

Έλεγχος Αλληλεπίδρασης με το. Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Αλληλεπίδρασης με το Περιβάλλον Έλεγχος «Συμμόρφωσης» ή «Υποχωρητικότητας» (Compliance Control) Έλεγχος Εμπέδησης (Impeance Control) Αλληλεπίδραση με το περιβάλλον Η αλληλεπίδραση με το περιβάλλον

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ.. 1. Σύνοψη των βημάτων επίλυσης φορέων με τη ΜΜ.. xiv. 2. Συμβάσεις προσήμων...

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ.. 1. Σύνοψη των βημάτων επίλυσης φορέων με τη ΜΜ.. xiv. 2. Συμβάσεις προσήμων... ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΑΤΑΛΟΓΟΣ ΑΣΚΗΣΕΩΝ.. iii. Σύνοψη των βημάτων επίλυσης φορέων με τη ΜΜ.. xi. Συμβάσεις προσήμων.... Τοπικό και καθολικό σύστημα αναφοράς. xiii. Συμβατικά θετικές φορές εξωτερικών εντασιακών

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - Β. - Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 06. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

ιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004

ιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 3 η Ισορροπία, στατικότητα και εντατικά µεγέθη κατασκευών Παρασκευή, 10 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα

Πολυβάθμια Συστήματα Πολυβάθμια Συστήματα Εισαγωγή Πολυβάθμια Συστήματα: Δ19-2 Η βασική προϋπόθεση για την προσομοίωση μίας κατασκευής ως μονοβάθμιο ταλαντωτή είναι πως η μάζα, ο μηχανισμός απόσβεσης και η ακαμψία μπορούν

Διαβάστε περισσότερα

Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο

Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ, 2016- Τελική Εξέταση Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο Τελική Εξέταση 8:30-11:30 π.µ.

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Η µέθοδος των πεπερασµένων στοιχείων. Βασικές έννοιες.

Η µέθοδος των πεπερασµένων στοιχείων. Βασικές έννοιες. Η µέθοδος των πεπερασµένων στοιχείων. Βασικές έννοιες.. Γενικά Στο κεφάλαιο αυτό θα δοθεί µία εισαγωγή στη µέθοδο των πεπερασµένων στοιχείων ΜΠΣ και στη χρήση της στην ανάλυση και το σχεδιασµό των λεπτότοιχων

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 21. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 21 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο (6.00 μον.) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ

ΘΕΜΑ 1 ο (6.00 μον.) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : -9-0, :00-:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός

Διαβάστε περισσότερα

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Διδάσκων: Γιάννης Χουλιάρας Διάφοροι τύποι ολόσωμων ισοστατικών πλαισίων Ισορροπία κόμβων ΣF x = 0 N 1 + N 2 cosθ + Q 2 sinθ N 3

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Τεχνικές Προγραμματισμού και χρήσης λογισμικού Η/Υ στις κατασκευές

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Τεχνικές Προγραμματισμού και χρήσης λογισμικού Η/Υ στις κατασκευές Τεχνικές Προγραμματισμού και χρήσης λογισμικού Η/Υ στις κατασκευές Θέματα Εξετάσεων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Α.Ε.Μ. Εξάμηνο : 9 ο 23 Ιανουαρίου 2013 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ: Επιτρέπεται κάθε βοήθημα σε αναλογική ή

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Προσέγγιση Galerkin

Δυναμική Μηχανών I. Προσέγγιση Galerkin Δυναμική Μηχανών I 8 2 Προσέγγιση Galerkin Χειμερινό Εξάμηνο 214 Τμήμα Μηχανολόγων Μηχανικών, ΕΜΠ Δημήτριος Τζεράνης, Ph.D. 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ

ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

Μέθοδος Επικόμβιων Μετατοπίσεων

Μέθοδος Επικόμβιων Μετατοπίσεων Μέθοδος Επικόμβιων Μετατοπίσεων Εισαγωγή Μέθοδος Επικόμβιων Μετατοπίσεων: Δ18-2 Τα περισσότερα προγράμματα Η/Υ έχουνωςθεμελιώδηβάση τους τη Μέθοδο Επικόμβιων Μετατοπίσεων. Στη Μέθοδο των Επικόμβιων Μετατοπίσεων,

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 7--, 9:-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα. (συνέχεια)

Πολυβάθμια Συστήματα. (συνέχεια) Πολυβάθμια Συστήματα (συνέχεια) Ορθογωνικότητα Ιδιομορφών Πολυβάθμια Συστήματα: Δ21-2 Μία από τις σπουδαιότερες ιδιότητες των ιδιομορφών είναι η ορθογωνικότητα τους ως προς τα μητρώα μάζας [m] και ακαμψίας

Διαβάστε περισσότερα