معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:
|
|
- Φοῖνιξ Σαμαράς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x + c e r x میباشد. معادله مشخصه دو ریشه حقیقی متمایز r ١ و r دارد. جواب عمومی بهشکل معادله مشخصه ریشه تکراری = r ١ r = r دارد. در این حالت جواب عمومی عبارت است از. (c ١ + c x)e rx = c ١ e rx + c xe rx معادله مشخصه = ٠ c + br + ar ریشه حقیقی ندارد یعنی < ٠ ۴a = b. در این حالت دو ریشه مختلط مزدوج α + iβ و α iβ داریم( ١ =.(i در این صورت جوابها عبارتند از = e (α+iβ)x ١ y و = e (α iβ)x.y جواب عمومی عبارتست از. c ١ e αx cos βx + c e αx sin βx د ر ن با ی در قسمت (ب) فرض کردیم r جواب تکراری معادله = ٠ c + br + ar است و = e rx y ١ جواب تکراری معادلهی = ٠ cy ay + by + باشد. با استفاده از روش کاهش مرتبه جواب دیگر را بهشکل = V (x)e rx y میگیریم. a ( V e rx + rv e rx + r V e rx) + b ( V e rx + V e rx) + cv e rx = ٠ V (ar + br + c) + av + (ar + b)v = ٠ جمله اول صفر است زیرا r ریشه معادله درجه دوم است. لذا = ٠ b)v (ar + +.av چون r ریشهی تکراری است لذا = ٠ b ar + پس = ٠.aV چون ٠ a پس = ٠ V در نتیجه V (x) = x و جواب دوم عبارت خواهد بود از = xe rx y که مستقل از y ١ است. در این حالت جواب عمومی عبارت است از + c x)e rx = c ١ e rx + c xe rx ١.(c در قسمت (پ) فرض کردیم معادله درجه دوم = ٠ c + br + ar ریشه حقیقی ندارد یعنی < ٠ ۴a = b. در این حالت دو ریشه مختلط مزدوج α + iβ و α iβ داریم ١) =.(i در این صورت جوابها عبارتند از = e (α+iβ)x = e αx e iβx ١ y و = e (α iβ)x = e αx e iβx.y در اعداد مختلط نشان داده میشود که برای هر θ حقیقی.e iθ = cos θ + i sin θ بنابراین y ١ = e αx (cos βx + i sin βx), y ١ = e αx (cos βx i sin βx) چون معادله دیفرانسیل حقیقی است در جستجوی جوابهای حقیقی هستیم. چون y ١ و y دو جواب معادلهی همگن هستند لذا ) y ١ ١ i (y و ) + y ١ (y ١ نیز جوابند. پس به جوابهای حقیقی e αx sin βx و e αx cos βx میرسیم. برای این دو جواب داریم W ١ (x)= e αx cos βx e αx sin βx βe αx sin βx + αe αx cos βx βe αx cos βx + αe αx sin βx =βeαx cos βx+βe αx sin βx=βe αx ٠ اینها دو جواب اساسی معادلهاند و جواب عمومی عبارتست از.c ١ e αx cos βx + c e αx sin βx ١
2 n صورت کلی معادله خطی همگن با ضرایب ثابت مرتبه n بهصورت = ٠ y + a ١ y + a ٠ + (n ١) n ١ y y (n) + a است. برای حل این معادلات همانند مرتبه دوم ابتدا معادله مشخصه را تشکیل میدهیم. y n = e r nx... y ١ = e r ١x اگر معادله مشخصه n ریشه متمایز = r n r ١ rداشته باشد آنگاه جوابهای مستقل خطی هستند. اگر معادله مشخصه n ریشه حقیقی داشته باشد ولی m تای آنها با هم مساوی باشند یعنی = r m = ١ r در اینصورت جوابهای y ١ = e r ١x, y = xe r ١x, y ٣ = x e r ١x,..., y m = x m ١ e r ١x و m+١ y n... y مشابه حالت اول بهدست میآید. توضیحات بیشتر را در قالب مثال بیان میکنیم: د ر ن با ی جواب عمومی معادله دیفرانسیل = ٠ ٣y y y را بیابید. معادله مشخصه عبارت است از = ٠ ٣r r ٣ r پس = ٠ ١ r ٣ = r و ١ = ٣ r بنابراین طبق توضیح بالا.y = c ١ e ٠x + c e ٣x + c ٣ e x و لذا جواب عمومی عبارت است از y ٣ = e x و y = e ٣x y ١ = e ٠x = ١ جواب عمومی معادله دیفرانسیل = ٠ y y را بیابید. y ٣ = e x و y = xe ٠x y ١ = e ٠x بنابراین = ١ r ٣ و = ١ r ١ = r پس = ٠ r ٣ r معادله مشخصه عبارت است از = ٠ و لذا جواب عمومی عبارت است از.y = c ١ e ٠x + c xe ٠x + c ٣ e x جواب عمومی معادله دیفرانیسیل = ٠ y y + (۴) y را بیابید. معادله مشخصه عبارت است از = ٠ ١ + r ۴ r و یا = ٠ ١) + (r ١) (r = ١)) + ١)(r ((r = ١) (r پس = ١ = r ١ r ١ = ۴ = r ٣ r درنتیجه = e x ١ = xe x y = e x y ٣ y و y ۴ = xe x بنابراین جواب عمومی عبارت است از.y = c ١ e x + c xe x + c ٣ e x + xc ۴ e x جواب عمومی معادله دیفرانیسیل = ٠ y + ٣y ٣y y را بیابید. y ١ = e x درنتیجه r ١ = r = r ٣ پس = ١ (r ١) ٣ و یا = ٠ r ٣ ٣r + ٣r ١ معادله مشخصه عبارت است از = ٠.y = c ١ e x + c xe x + c ٣ x e x لذا جواب عمومی عبارت است از y ٣ = x e x و y = xe x
3 صورت کلی معادلات مرتبه دوم خطی عبارت است از g(x).y + p(x)y + q(x)y = در حالتیکه ٠ g(x) معادله غیرهمگن است. قبلا دیدیم که اگر y ١ و y دو جواب مستقل خطی برای معادله همگن باشند تمام جوابها (جواب عمومی) از ترکیب خطی + c y ١ c ١ y بهدست میآید. فرض کنید y p یک جواب خاص برای معادله غیرهمگن باشد. در این صورت جواب عمومی معادله غیرهمگن عبارت است از + c y ١. y p + c ١ y زیرا اولا هر تابعی بهشکل فوق به ازای ثابتهای c ١ و c جواب معادله غیرهمگن است (یک جایگذاری ساده) و ثانیا اگر تابع φ جوابی از معادله غیرهمگن باشد تفاضل φ y p جواب معادله همگن است زیرا { φ + p(x)φ + q(x)φ = g(x) y p + p(x)y p + q(x)y p = g(x) تفاضل = = ٠ ) p (φ y p) + p(x)(φ y p ) + q(x)(φ y دو معادله درنتیجه به ازای ثابتهای مناسب c ١ و c داریم + c y ١ φ y p = c ١ y لذا + c y ١.φ = y p + c ١ y بنابراین برای یافتن جوابهای عمومی معادله غیرهمگن باید دو کار انجام دهیم: ١) جواب عمومی معادله همگن را بیابیم ) جواب خاصی از معادله غیرهمگن را بیابیم. ن با ی انجام کلی ندارد! ر روش د توجه کنید که هیچ کدام از دو کار بالا y +۴y = x برای معادله غیرهمگن.c ١ sin x+c cos x عبارتند از y +۴y جوابهای معادله مرتبه دوم همگن = ٠ یک جواب خاص = ١ x p y است لذا جواب عمومی عبارتست از. ١ ۴ x + c ١ sin x + c cos x مثلا برای معادله غیرهمگن ۴. ١ ۵ ex + c ١ sin x + c cos x است. پس جواب عمومی عبارتست از y p = ١ ۵ ex جواب خصوصی y + ۴y = e x گوییم. در حالتیکه ضرایب معادله ثابت باشند روش کلی برای بهدست آوردن جواب عمومی معادله همگن در دست است. با توجه بهشکل تابع g در سمت راست معادله میتوان جواب خاص برای معادله غیرهمگن بهدست آورد. این روش را ٣y ۴y = x y را حل کنید. اگر فرض کنیم که جواب بهصورت Ax باشد آنگاه = x ٣(Ax) ۴Ax (A) بهدست آوردن A از این رابطه ممکن نیست. ولی اگر جواب خاص را بهشکل + Bx + C y p = Ax بنویسیم و در معادله قرار دهیم: A ٣(Ax + B) ۴(Ax + Bx + C) = x A ٣B ۴C = ٠ ۶A ۴B = ٠ ۴A = ١ A = ١ ۴, B = ٣ ٨, C = ١٣ ٣.y p = ١ ۴ x + ٣ ٨ x ١٣ ٣ از این جا بهدست میآوریم: پس جواب خاص برابر است با ٣
4 میخواهیم معادله غیرهمگن ٣y ۴y = e x y را حل کنیم. فرض میکنیم جواب خاص بهشکل y p = Ae x باشد. در معادله قرار میدهیم: Ae x + ٣Ae x ۴Ae x = e x ٠ = e x > ٠ که این غیرممکن است. دلیل این است که e x جواب معادله همگن است و لذا هر مضربی از آن طرف چپ را صفر میکند. حال تابع y = Axe x را امتحان میکنیم: ( Ae x A(١ x)e x) ٣ ( Ae x Axe x) ۴Axe x = e x ( A + Ax) ٣(A Ax) ۴Ax = ١ ۵A = ١ A = ١ ۵ ١ = p y میباشد. پس جواب خاص بهشکل ۵ xe x حال معادله غیرهمگن ٣y ۴y = sin x y را حل میکنیم. جواب خاص را بهشکل y p = A sin x + B cos x انتخاب میکنیم و در معادله قرار میدهیم: ن با ی A sin x B cos x ٣(A cos x B sin x) ۴(A sin x + B cos x) = sin ر x د { ۵A + ٣B = ١ ٣A ۵B = ٠ A = ۵ ٣۴, B = ٣ ٣۴ معادله غیرهمگن y + ۴y = sin x را حل کنید. تابع A sin x + B cos x را نمیتوان بهعنوان جواب خاص انتخاب کرد زیرا خود جوابی از معادله همگن است. در این حالت تابع y p = Ax sin x + Bx cos x را جواب خاص میگیریم و با حل کردن A و B را بهدست میآوریم. با توجه به مثالهای فوق میتوان حالتهای کلی زیر را برای معادله دیفرانسیل g(x) ay + by + cy = در نظر گرفت: g(x) = a n x n + + a ٠ و معادله دیفرانسیل g(x) ay + by + cy = داده شده است. در این حالت جواب خاص را بهشکل y p = A n x n + + A ٠ انتخاب میکنیم اگر = ٠ c y p فوق را در x ضرب میکنیم و اگر = ٠ c y p b = فوق را در x ضرب میکنیم. در این حالت جواب خاص عبارتست از g(x) = e αx p(x) که p(x) چندجملهای درجه n مثل حالت بالا است. ) ٠ y p = e αx (A n x n + + A اگر e αx جواب معادله همگن باشد y p را در x و اگر جواب تکراری معادله همگن باشد y p را در x ضرب میکنیم. g(x) = e αx p(x) cos βx یا.g(x) = e αx p(x) sin βx در این حالت جواب خاص را بهشکل y p (x) = e αx q ١ (x) cos βx + e αx q (x) sin βx ۴ که q ١ و q هر دو چندجملهای درجهی n هستند
5 اگر عدد مختلط α ± βi ریشه معادله مشخصه باشد y p فوق را در x ضرب میکنیم. (x) (x) + + g k ١ g(x) = g که هر کدام از gها i به یکی از سه صورت فوق است در این صورت معادله را به ازای طرف راست g i حل میکنیم و جواب خاص y pi را مییابیم و سپس جوابهای خاص را با هم جمع میکنیم. معادله غیرهمگن + x sin x x + ١ = ۴y y + داده شده است. جواب کلی معادله همگن عبارتست از c ١ sin x + c cos x جواب خاص = ١ ۴y y + عبارتست از = ١ ۴ p y جواب خاص y + ۴y = x عبارتست از = ١ ۴ x p١ y جواب خاص = x sin x ۴y y + با استفاده از روش پ) بهدست میآید که = ٠ α و = β ولی ± i ٠ ریشه معادله مشخصه = ٠ ۴ + r است پس با نکته گفته شده داریم = x(ax + B) sin x + x(cx + D) cos x p.y مجموع این سه جواب جواب خصوصی معادلهی غیرهمگن اولیه است. + ٣e x.y + ۴y = x جواب کلی معادله همگن عبارتست از.c ١ sin x + c cos x برای یافتن جواب خاص ناهمگن دو مورد را بررسی میکنیم:.C = ١ ن با ی y p ١ در معادله قرار میدهیم. داریم = ١ ۴ A ٠ = B و = Ax +Bx+C ر که قرار میدهیم د y +۴y = x پس در این حالت جواب خاص ١ x = ١ ۴ p١ y است. = ٣e x ۴y.y + در این حالت قرار میدهیم y p = Ae x در معادله دومی قرار دهیم داریم = ٣ A و در نتیجه.y p لذا جواب خاص کلی برابر مجموع این دو یعنی ١ x + ١ ۴ ex = ٣ ۴ p y است. = ٣ ۴ ex و جواب عمومی معادله دیفرانسیل داده شده برابر است با ١ x + ١ ۴ ex + ٣ ۴ x y(x) = c ١ sin x + c cos با شرط اولیه.c = ١ = ٠ y(٠) و = (٠) y میتوان c ١ و c را بهدست آورد که عبارت میشوند از = ۵ ٨ ١ c و ۴ روش ضرایب نامعین برایمعادلات با ضرایب ثابت بهکار میرود شکل تابع سمت راست از نوع خاصی است یا چندجملهای است یانمایی است یا عبارت مثلثاتی و یا ترکیبی از این سه حالت. جواب عمومی معادلات دیفرانسیل زیر را بهدست آورید: y + y y = x y ۴y ۶y = ٣e x y + ۴y = x + ٣e x y + y = ٣ + ۴ sin x.(sinh x = ex e x معادله = sinh x ۴y y + y + را حل کنید (راهنمایی: معادله y = cosh x y y را حل کنید. معادله y + y + y = sin x را حل کنید (راهنمایی: sin x را بر حسب cos x بنویسید). ۵ جواب عمومی معادلات دیفرانسیل زیر را بهدست آورید:
6 y + ٩y = x e ٣x + ۶ y y +y = xe x +۴, y(٠) = ١, y (٠) = ١ y + y = ٣ sin x + x cos x y + y + y = e x cos x برای معادله + ۴xe x + x sin x = x ۴y y ۴y + شکل مناسبی برای y p بهدست آورید. (محاسبه ضرایب و ثابتها لازم نیست). ابتدا جواب معادله همگن را پیدا میکنیم: = ٠ ۴ + ۴r r پس = r ریشه تکراری است بنابراین جواب عمومی معادله همگن عبارت است از )e x + xc ١.y = (c برای جواب خصوصی معادله = x ۴y y ۴y + قرار میدهیم: + A ١ x + A ٠ = A x p١ y برای جواب خصوصی معادله y ۴y + ۴y = ۴xe x چون e x ریشه تکراری معادله همگن است لذا با نکته قسمت (ب) قرار میدهیم ) ٠ = x e x (A ١ x + A p.y برای جواب خصوصی معادله y ۴y + ۴y = x sin x قرار میدهیم:.y p = y p١ + y p + y و در آخر داریم p٣ y p٣ = (A ١ x + A ٠ ) sin x + (B ١ x + B ٠ ) cos x د ر ن با ی در این مثال به منظور جلوگیری از شلوغی حل ضرایب و ثابتها را محاسبه نکردیم سعی کنید آنها را هم بهدست آورید. با پیروی از مثال قبل با استفاده از روش ضرایب نامعین y p را در مساي ل زیر بهدست آورید محاسبه ضرایب و ثابتها لازم نیست. y + ٣y = x ۴ + x e ٣x + sin ٣x y + y = x(١ + sin x) y ۵y + ۶y = e x cos x + e x (٣x + ۴) sin x y +y +y = ٣e x +e x cos x+۴e x x sin x ۶
محاسبه ی برآیند بردارها به روش تحلیلی
محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور
مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0
مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله
روش محاسبه ی توان منابع جریان و منابع ولتاژ
روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این
قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :
۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه
تحلیل مدار به روش جریان حلقه
تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در
تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢
دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم
تصاویر استریوگرافی.
هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی
سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات
سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara
مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل
مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A
هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min
جلسه ی ۵: حل روابط بازگشتی
دانشکده ی علوم ریاضی ساختمان داده ها ۶ مهر ۲ جلسه ی ۵: حل روابط بازگشتی مدر س: دکتر شهرام خزاي ی نگارنده: ا رمیتا ثابتی اشرف و علی رضا علی ا بادیان ۱ مقدمه پیدا کردن کران مجانبی توابع معمولا با پیچیدگی
شاخصهای پراکندگی دامنهی تغییرات:
شاخصهای پراکندگی شاخصهای پراکندگی بیانگر میزان پراکندگی دادههای آماری میباشند. مهمترین شاخصهای پراکندگی عبارتند از: دامنهی تغییرات واریانس انحراف معیار و ضریب تغییرات. دامنهی تغییرات: اختالف بزرگترین و
مینامند یا میگویند α یک صفر تابع
1 1-1 مقدمه حل بسیاری از مسائل اجتماعی اقتصادی علمی منجر به حل معادله ای به شکل ) ( می شد. منظر از حل این معادله یافتن عدد یا اعدادی است که مقدار تابع به ازای آنها صفر شد. اگر (α) آنگاه α را ریشه معادله
جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر
فصل 5 :اصل گسترش و اعداد فازی
فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع
آزمایش 8: تقویت کننده عملیاتی 2
آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده
جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز
تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی
جلسه ی ۳: نزدیک ترین زوج نقاط
دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم
فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn
درس»ریشه ام و توان گویا«تاکنون با مفهوم توان های صحیح اعداد و چگونگی کاربرد آنها در ریشه گیری دوم و سوم اعداد آشنا شده اید. فعالیت زیر به شما کمک می کند تا ضمن مرور آنچه تاکنون در خصوص اعداد توان دار و
جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.
محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک
باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g
تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی
آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك
آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت
دبیرستان غیر دولتی موحد
دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط
مدار معادل تونن و نورتن
مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی
SanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک
مقطع مخروطی: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک صفحه میتواند دایره بیضی سهمی هذلولی یا نقطه خط و دو خط متقاطع باشد. دایره: مکان هندسی نقاطی است که فاصلهی
بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd
بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )( shimiomd خواندن مقاومت ها. بررسی قانون اهم برای مدارهای متوالی. 3. بررسی قانون اهم برای مدارهای موازی بدست آوردن مقاومت مجهول توسط پل وتسون 4. بدست آوردن مقاومت
جلسه ی ۱۰: الگوریتم مرتب سازی سریع
دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع
جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال
نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه
تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب
تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر
جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان
هندسه تحلیلی و جبر خطی ( خط و صفحه )
هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی
تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.
مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از
تمرین اول درس کامپایلر
1 تمرین اول درس 1. در زبان مربوط به عبارت منظم زیر چند رشته یکتا وجود دارد (0+1+ϵ)(0+1+ϵ)(0+1+ϵ)(0+1+ϵ) جواب 11 رشته کنند abbbaacc را در نظر بگیرید. کدامیک از عبارتهای منظم زیر توکنهای ab bb a acc را ایجاد
جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.
تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات
دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال
دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته
جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1
محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به
جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:
نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.
Angle Resolved Photoemission Spectroscopy (ARPES)
Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند
تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد:
تخمین با معیار مربع خطا: هدف: با مشاهده X Y را حدس بزنیم. :y X: مکان هواپیما مثال: مشاهده نقطه ( مجموعه نقاط کنارهم ) روی رادار - فرض کنیم می دانیم توزیع احتمال X به چه صورت است. حالت صفر: بدون مشاهده
خالصه درس: نویسنده:مینا سلیمان گندمی و هاجر کشاورز امید ریاضی شرطی. استقالل متغیر های تصادفی پیوسته x و y استقالل و امید ریاضی
به نام خدا آمار و احتمال مهندسی هفته 21 نیمسال اول ۴9-۴9 مدرس: دکتر پرورش ۴9/24/49 نویسنده:مینا سلیمان گندمی و هاجر کشاورز خالصه درس: امید ریاضی شرطی استقالل متغیر های تصادفی پیوسته x و y استقالل و امید
جلسه ی ۲۴: ماشین تورینگ
دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)
1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }
هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف
جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز
نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت
ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد
دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها
ˆ ˆ ˆ. r A. Axyz ( ) ( Axyz. r r r ( )
دینامیک و ارتعاشات ad ad ω x, ω y 6, ω z s s ωω ˆ ˆ ˆ ˆ y j+ω z k 6j+ k A xx x ˆ yy y ˆ zz z ˆ H I ω i+ I ω j+ I ω k, ω x HA Iyyω y ˆ i+ Izz ωz k ˆ Ωω y ĵ پاسخ تشریحی توسط: استاد مسیح لقمانی A گزینه درست
جلسه ی ۴: تحلیل مجانبی الگوریتم ها
دانشکده ی علوم ریاضی ساختمان داده ها ۲ مهر ۱۳۹۲ جلسه ی ۴: تحلیل مجانبی الگوریتم ها مدر س: دکتر شهرام خزاي ی نگارنده: شراره عز ت نژاد ا رمیتا ثابتی اشرف ۱ مقدمه الگوریتم ابزاری است که از ا ن برای حل مسا
فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(
فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................
ک ت اب درس ی ن ظ ری ه گ راف ب الاک ری ش ن ان و ران گ ان ات ه ان (ح ل ت ع دادي از ت م ری ن ه اي ف ص ل ه اي 4 و 5) دک ت ر ب ی ژن ط اي ري
ک ت اب درس ی ن ظ ری ه گ راف ب الاک ری ش ن ان و ران گ ان ات ه ان (ح ل ت ع دادي از ت م ری ن ه اي ف ص ل ه اي 4 و 5) دک ت ر ب ی ژن ط اي ري دان ش ک ده ي ع ل وم ری اض ی دان ش گ اه ص ن ع ت ی اص ف ه ان Copyright
فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت
فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار بماند ولی در فیدبک مثبت هدف فقط باال بردن بهره است در
همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین
همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین دو صفت متغیر x و y رابطه و همبستگی وجود دارد یا خیر و آیا می توان یک مدل ریاضی و یک رابطه
آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(
آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه
به نام خدا. الف( توضیح دهید چرا از این تکنیک استفاده میشود چرا تحلیل را روی کل سیگنال x[n] انجام نمیدهیم
پردازش گفتار به نام خدا نیمسال اول 59-59 دکتر صامتی تمرین سری سوم پیشبینی خطی و کدینگ شکلموج دانشکده مهندسی کامپیوتر زمان تحویل: 32 آبان 4259 تمرینهای تئوری: سوال 1. می دانیم که قبل از انجام تحلیل پیشبینی
زمین شناسی ساختاری.فصل پنجم.محاسبه ضخامت و عمق الیه
پن ج م فص ل محاسبه ضخامت و عم ق الهی زمین شناسی ساختاری.کارشناسی زمین شناسی.بخش زمین شناسی دانشکده علوم.دانشگاه شهید باهنر کرمان.استاد درس:دکتر شهرام شفیعی بافتی 1 تعاریف ضخامت - فاصله عمودی بین دو صفحه
هندسه تحلیلی بردارها در فضای R
هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد
جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از
برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A
مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I
ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی
ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه
ارتعاشات منابع سرفصل درس تعاریف و مفاهیم پایه ارتعاشات آزاد سیستمهاي یك درجه آزادي ارتعاش اجباري هارمونیك ارتعاش گذرا سیستمهاي دو درجه آزادي
ارتعاشات منابع 1- تئوری ارتعاشات و کاربرد آن در مهندسی دکتر منصور نیکخواه بهرامی انتشارات دانشگاه تهران 2 - Vibration Theory with Applications - Thomson W.T. and M.D.Dahleh 3 - Mechanical Vibrations -
فصل اول ماتریس و کاربردها
فصل اول ماتریس و کاربردها اول فصل ماتریسها روی اعمال و ماتریس اول: درس ماتریس حقیقی عدد هر است. ماتریس یک ستون و سطر تعدادی شامل حقیقی عددهای از مستطیلی آرایش هر مینامیم. ماتریس آن درایة را ماتریس هر در
فصل پنجم زبان های فارغ از متن
فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*
فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22
فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................
فصل سوم جبر بول هدف های رفتاری: در پایان این فصل از فراگیرنده انتظار می رود که :
فصل سوم جبر بول هدف کلی: شناخت جبر بول و اتحادهای اساسی آن توابع بولی به شکل مجموع حاصل ضرب ها و حاصل ضرب جمع ها پیاده سازی توابع منطقی توسط دروازه های منطقی پایه و نقشة کارنو هدف های رفتاری: در پایان
محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است.
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه 1 محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته
مسائل. 2 = (20)2 (1.96) 2 (5) 2 = 61.5 بنابراین اندازه ی نمونه الزم باید حداقل 62=n باشد.
) مسائل مدیریت کارخانه پوشاک تصمیم دارد مطالعه ای به منظور تعیین میانگین پیشرفت کارگران کارخانه انجام دهد. اگر او در این مطالعه دقت برآورد را 5 نمره در نظر بگیرد و فرض کند مقدار انحراف معیار پیشرفت کاری
:موس لصف یسدنه یاه لکش رد یلوط طباور
فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی
ارتعاشات واداشته از حرارت در تیرها با در نظر گرفتن اینرسی دورانی
ارتعاشات واداشته از حرارت در تیرها با در نظر محمدرضا یعقوبی 1 دانشجوی کارشناسی یاسر کیانی 2 استادیار گرفتن اینرسی دورانی در تحقیق حاضر به بررسی ارتعاشات واداشته از حرارت در تیرها پرداخته شده است. سازه
فصل دهم: همبستگی و رگرسیون
فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری
جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی
دانشکده ی علوم ریاضی ساختمان داده ۱۰ ا ذر ۹۲ جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی مدر س: دکتر شهرام خزاي ی نگارنده: معین زمانی و ا رمیتا اردشیری ۱ یادا وری همان طور که درجلسات پیش مطرح
تحلیل الگوریتم پیدا کردن ماکزیمم
تحلیل الگوریتم پیدا کردن ماکزیمم امید اعتصامی پژوهشگاه دانشهاي بنیادي پژوهشکده ریاضیات 1 انگیزه در تحلیل الگوریتم ها تحلیل احتمالاتی الگوریتم ها روشی براي تخمین پیچیدگی محاسباتی یک الگوریتم یا مساله ي
بخش اول: زاویه و مثلث... 7 بخش دوم: چندضلعی بخش دوم: مساحت مثلث بخش سوم: مساحت چهارضلعیها بخش اول: نسبت و تناسب تالس...
فصل : هندسه و استدالل... 7 بخش اول: زاویه و مثلث... 7 بخش دوم: چندضلعی... 8 پرسشهای چهارگزینهای... 5 پاسخنامهی تشریحی فصل اول... 3 فصل : مساحت و قضیهی فیثاغورس... 43 بخش اول: قضیهی فیثاغورس... 43 بخش دوم:
دانشگاه صنعتی شریف پاسخنامه امتحان میانترم اقتصاد کالن پیشرفته دکتر محمدحسین رحمتی- پاییز ۵۹۳۱ نویسنده: ناصر امنزاده سوال ۱(
بسمه تعالی دانشگاه صنعتی شریف پاسخنامه امتحان میانترم اقتصاد کالن پیشرفته دکتر محمدحسین رحمتی- پاییز ۵۹۳۱ نیسنده: ناصر امنزاده سال ۱( N در این مساله n کدام از نیرهای کار را به معنی ساعت کاری یک فرد را
جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه
نظریه اطلاعات کوانتمی 1 ترم پاییز 1392-1391 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: مرتضی نوشاد جلسه 28 1 تقطیر و ترقیق درهم تنیدگی ψ m بین آذر و بابک به اشتراك گذاشته شده است. آذر و AB فرض کنید
یا هلحرم یاه نومزآ لامتحا و تایبیکرت 1
آزمونهای مرحلهای ترکیبیات و احتمال اول فصل آزمونهای تشریحی پاسخ آزمون تشریحی پاسخ برای جا دانشآموز چهار این طرف دو و بین بایس تند. هم کنار اس ت ممکن حالت! در چهارم کالس دانشآموز اول: راهحل - یهنیزگ!! 8
دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم
آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر
نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا
به نام خدا پردازش سیگنالهای دیجیتال نیمسال اول ۹۵-۹۶ هفته یازدهم ۹۵/۰8/2۹ مدرس: دکتر پرورش نویسنده: محمدرضا تیموری محمد نصری خالصۀ موضوع درس یا سیستم های مینیمم فاز تجزیه ی تابع سیستم به یک سیستم مینیمم
1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی
فصل او ل 1 دایره هندسه در ساخت استحکامات دفاعی قلعهها و برج و باروها از دیرباز کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم به»قضیۀ همپیرامونی«میگوید در بین همۀ شکلهای هندسی بسته با محیط ثابت
تبدیل سوم: فصل تجانس انواع تجانس
ها تبدیل سوم: فصل تجانس پنجم: بخش میخوانیم بخش این در آنچه تجانس مفهوم تجانس ضابطهی تجانس انواع تجانس ویژگیهای )O αβ, ) مرکز با تجانس ضابطهی متوالی تجانسهای زیر صورت به را آن که میباش د تجانس نیس ت ایزومتری
فصل ترکیبیات درس اول شمارش درس دوم جایگشت درس سوم ترکیب
ترکیبیات 6 فصل و إ ن ت ع د وا ن ع م ة الل ه ل ت ح صو ه ا»سورۀ ابراهیم آیۀ 4«و اگر بخواهید نمی توانید نعمت های خدا را بشمارید. درس اول شمارش درس دوم جایگشت درس سوم ترکیب داشتن حداقل چند رنگ کافی است تا
به نام ستاره آفرین قضیه ویریال جنبشی کل ذرات یک سیستم پایدار مقید به نیرو های پایستار را به متوسط انرژی پتانسیل کل شان
به نام ستاره آفرین قضیه ویریال درود بر ملت نجومی! در این درس نامه می خواهیم یکی از قضیه های معروف اخترفیزیک و مکانیک یعنی قضیه ی شریفه ی ویریال را به دست آوریم. به طور خالصه قضیه ی ویریال متوسط انرژی جنبشی
هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه
آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست
مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد
گاما شماره ی ٢٣ تابستان ١٣٨٩ مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد امیر آقامحمدی چ یده مسي لهی نردبان که کنار دیوار لیز م خورد بدون و با در نظر گرفتن اصط اک بررس شده است. م خواهیم حرکت نردبان
( ) x x. ( k) ( ) ( 1) n n n ( 1) ( 2)( 1) حل سري: حول است. مثال- x اگر. يعني اگر xها از = 1. + x+ x = 1. x = y= C C2 و... و
معادلات ديفرانسيل y C ( ) R mi i كه حل سري يعني جواب دقيق ميخواهيم نه به صورت صريح بلكه به صورت سري. اگر فرض كنيم خطي باشد, اين صورت شعاع همگرايي سري فوق, مينيمم اندازه است جواب معادله ديفرانسيل i نقاط
نمونه برداری از سیگنالهای زمان پیوسته
فصل چهارم: نمونهبرداری: سیگنالهای گسسته را میتوان به روشهای متعددی ایجاد کرد. یکی از این روشها نمونه برداری از سیگنال های پیوسته است که با یک دوره تناوب خاص می باشد. شکل زیر بلوک دیاگرام یک مبدل سیگنال
ارتعاشات منابع سرفصل درس تعاریف و مفاهیم پایه ارتعاشات آزاد سیستمهاي یك درجه آزادي ارتعاش اجباري هارمونیك ارتعاش گذرا سیستمهاي دو درجه آزادي
ارتعاشات منابع 1- تئوری ارتعاشات و کاربرد آن در مهندسی دکتر منصور نیکخواه بهرامی انتشارات دانشگاه تهران 2 - Vibration Theory with Applications - Thomson W.T. and M.D.Dahleh 3 - Mechanical Vibrations -
3 لصف یربج یاه ترابع و ایوگ یاه ناوت
فصل توان های گویا و عبارت های جبری 8 نگاه کلی به فصل هدفهای این فصل را میتوان به اختصار چنین بیان کرد: همانگونه که توان اعداد را در آغاز برای توانهای طبیعی عددهای ٢ و ٣ تعریف میکنیم و سپس این مفهوم را
نگاه کلی به فصل ششم اهداف کل ی 2 آشنایی با شرط تساوی دو ماتریس ماتریس صفر قرینه یک ماتریس و ویژگیهای آنها
نگاه کلی به فصل ششم اهداف کل ی آشنایی با ماتریس و ویژگیهای آن آشنایی با شرط تساوی دو ماتریس ماتریس صفر قرینه یک ماتریس و ویژگیهای آنها 3 آشنایی با اعمال روی ماتریسها )جمع ماتریسها ضرب عدد در ماتریس ضرب
تبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد.
تبدیل ها ن گاشت : D با یک و تنها یک عضو از مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. Rست که در آن هر عضو مجموعه تبد ی ل : نگاشتی یک به یک از صفحه به روی خودش است یعنی در تبدیل هیچ دو
فصل اول پیچیدگی زمانی و مرتبه اجرایی
فصل اول پیچیدگی زمانی و مرتبه اجرایی 1 2 پیچیدگی زمانی Complexity) (Time مثال : 1 تابع زیر جمع عناصر یک آرایه را در زبان C محاسبه می کند. در این برنامه اندازه ورودی همان n یا تعداد عناصر آرایه است و عمل
به نام خدا دانشگاه آزاد اسالمی واحد نجفآباد دانشکده مهندسی برق نرم افزار MATLAB مدرس: ایمان صادقخانی
به نام خدا دانشگاه آزاد اسالمی واحد نجفآباد دانشکده مهندسی برق مقدمهای بر توابع ریاضی رسم شکل و برنامهنویسی در نرم افزار MATLAB مدرس: ایمان صادقخانی - نحوه تعریف و واردکردن یک ماتریس برای جداکردن درایههای
هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله
آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده
تجزیهی بندرز مقدمه کشور هستند. بدین سبب این محدودیتهای مشترک را محدودیتهای پیچیده
تجزیهی بندرز مقدمه بسیاری از مسایلی که از نطر عملی از اهمیت برخوردارند را میتوان بهصورت ترکیبی از چند مساله کوچک در نظر گرفت. در واقع بسیاری از سیستمهای دنیای واقعی دارای ساختارهایی غیر متمرکز هستند. به
( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s.
معادلات ديفرانسيل + f() d تبديل لاپلاس تابع f() را در نظر بگيريد. همچنين فرض كنيد ( R() > عدد مختلط با قسمت حقيقي مثبت) در اين صورت صورت وجود لاپلاس f() نامند و با قضايا ) ضرب در (انتقال درحوزه S) F()
به نام حضرت دوست. Downloaded from: درسنامه
به نام حضرت دوست درسنامه کروی هندسه گردآوری: و تهی ه معتمدی ارسالن اصالح: سی د و بازبینی امیر سادات موسوی سالم دوستان همان طور که می دانیم نجوم کروی یکی از بخش های مهم المپیاد نجوم است. این علم شامل دو
سینماتیک مستقیم و وارون
3 سینماتیک مستقیم و وارون بهنام میری پور فرد استادیار گروه مهندسی رباتیک دانشگاه صنعتی همدان همدان ایران bmf@hut.ac.ir B. Miripour Fard Hamedan University of Technology 1 در سینماتیک حرکت بررسی کند می
1- مقدمه. 2 Action. 1 Heuristic
یک الگوریتم نوین جهت رنگ آمیزی گراف با استفاده از آتوماتای یادگیر حبیب مطیع قادر دانشگاه آزاد اسلامی واحد تبریز باشگاه پژوهشگران جوان Habib_moti@yahoo.com عباس میرزایی ثمرین بورسیه هیات علمی دانشگاه آزاد
فصل ششم: ترکیبات درس اول: شمارش اصل جمع و اصل ضرب فعالیت قیمه هویج سیب پرتقال قورمه «سورۀ نحل»
کد 11 فصل 6 فصل ششم: ترکیبات و إ ن ت ع د وا ن ع م ة الل ه ل ت ح صو ه ا و اگر بخواهید نمی توانید نعمت های خدا را بشمارید. «سورۀ نحل» درس اول: شمارش شاید شمارش درنظر برخی یک مهارت با اهمیت ریاضی نباشد و
هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف.
4 هندسه در فضا فصل در اين فصل ميخوانيم: 1. خط و صفحه در فضا الف. اصول هندسهي فضايي ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا ث. حاالت چهارگانهي مشخص كردن صفحه
بسمه تعالی «تمرین شماره یک»
بسمه تعالی «تمرین شماره یک» شماره دانشجویی : نام و نام خانوادگی : نام استاد: دکتر آزاده شهیدیان ترمودینامیک 1 نام درس : ردیف 0.15 m 3 میباشد. در این حالت یک فنر یک دستگاه سیلندر-پیستون در ابتدا حاوي 0.17kg
هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط
هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را
جلسه ی ۱۱: درخت دودویی هرم
دانشکده ی علوم ریاضی ساختمان داده ا بان جلسه ی : درخت دودویی هرم مدر س: دکتر شهرام خزاي ی نگارنده: احمدرضا رحیمی مقدمه الگوریتم مرتب سازی هرمی یکی دیگر از الگوریتم های مرتب سازی است که دارای برخی از بهترین