On Weingarten tube surfaces with null curve in Minkowski 3-space

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On Weingarten tube surfaces with null curve in Minkowski 3-space"

Transcript

1 NTMSCI 3, No. 3, (2015) 168 New Trends in Mathematical Sciences On Weingarten tube surfaces with null curve in Minkowski 3-space Pelin (Pospos) Tekin 1 and F. Nejat Ekmekci 2 1 Aksaray University, Faculty of Sciences and Arts, Department of Mathematics 68100, Aksaray, Turkey. 2 Ankara University, Faculty of Sciences, Department of Mathematics 06100, Ankara,, Turkey. Received: 16 February 2015, Revised: 19 May 2015, Accepted: 31 May 2015 Published online: 30 September 2015 Abstract: In this paper, we study a tube surfaces, consisted spline curve is null. Furthermore, we have investigated Weingarten conditions of this surface using the the mean curvatre H, the Gaussian curvature K and the second Gaussian curvature K II, respectively. Keywords: Tube surfaces, Weingarten conditions, null curve, curvatures. 1 Introduction A surface S in either R 3 or E1 3 is called a Weingarten surface if there exists a non-trivial functional relation Ω(K,H) = 0 with respect to its Gaussian curvature K and its mean curvature H. The existence of a non-trivial functional relation Ω(K,H) = 0 on the surface S parametrized by Φ(u,v) is equivalent to the vanishing of the corresponding Jacobian determinant, namely (K,H) (u,v) = 0 Several geometers have studied on Weingarten surfaces and obtained many interesting results. For study of these surfaces, in 1994 W. Kühnel and in 1999 G. Stamou, investigated ruled Weingarten surface in a Euclidean 3-space E 3. Also, in 1997 C. Baikoussis and Th. Koufogiorgos studied helicoidal (H,K II )-Weingarten surfaces. in 1999 F. Dillen and W. Kühnel, in 2005 F. Dillen and W.Sodsiri gave a classification of ruled Weingarten surface in a Minkowski 3-space E 3 1. In 2009 J. Suk Ro and D. Won Yoon studied tubular Weingarten and linear Weingaren surface in three dimension Euclidean space E 3. In this paper we study a tube surface with null curve in a three dimension Minkowski space. 2 Preliminaries Let R 3 = {(x,y,z) : x,y,z R} be a 3-dimension space, and let X = (x 1,x 2,x 3 ) and Y = (y 1,y 2,y 3 ) be two vectors in R 3. The Lorentz scalar product of X and Y is defined by X,Y = x 1 y 1 + x 2 y 2 x 3 y 3 (2.1) Corresponding author pelinpospos@gmail.com

2 169 P. (Pospos) Tekin and F. Nejat Ekmekci: On Weingarten tube surfaces with null curve in Minkowski 3-space E1 3 = (R3, X,Y ) is called Minkowski 3-space. Since the metric is indefinite, x E1 3 has three causal characters: these are spacelike vector, null (lightlike) vector or timelike vector if x,x > 0 or x = 0, x,x = 0 and x 0, x,x < 0, respectively. For x E1 3, the norm of the vector x is given by x = x,x. Therefore, x is a unit vector if x,x = ±1. Similarly, an arbitrary curve α = α(s) E1 3 can locally be spacelike, timelike or null (lightlike) curve, if all of its velocity vectors α (s) are respectively spacelike, timelike or null (lightlike) i.e., α (s),α (s) > 0, α (s),α (s) < 0, α (s),α (s) = 0. So, α(s) is a unit speed curve if α (s),α (s) = ±1, where s is the arc-length parameter of α. Any two vectors X,Y E1 3 are called orthogonal if X,Y = 0 (O Neill, 1983). The vector product of two vectors X = (x 1,x 2,x 3 ), Y = (y 1,y 2,y 3 ) belong to E1 3, is defined as X Y = (x 3 y 2 x 2 y 3,x 1 y 3 x 3 y 1,x 1 y 2 x 2 y 1 ). We also recall that the pseudosphere of radius 1 and center at the origin is the hyperquadric in E1 3 S1 2(1) = {v E3 1 : v,v = 1} (O Neill, 1983). defined by Let α = α(u) : (a,b) E1 3 be a spacelike unit speed curve with a timelike binormal B, where u is the arc length parameter of α. Considering that T = 1, B = T T and N = T T T T, we obtain the orthonormal frame field {T (u),n(u),b(u)}. Consider M is a timelike tube surface parametrized by Ψ : j R E1 3. Then, the position vector of Ψ can be written in the following form Ψ(u,v) = α(u) + r(n(u)coshv + B(u)sinhv) (2.2) where α,n,b : j E1 3 and r : j R. We call α a base curve and a pair of two vectors N,B a director frame of the timelike tube surface Ψ. We must have Ψ(u,v) α(u) 2 = r 2 The last equation expresses analytically the geometric fact that Ψ(u,v) lies on a Lorentzian sphere S1 2 (u) of radius r centered at α(u) (Abdel-Aziz and Saad, 2011). Theorem 2.1. Let Ψ be a timelike tube surface in Minkowski 3-space E1 3 defined in (2.2) satisfying the Jacobi condition Ω(K,H) = 0 (2.3) for the Gaussian curvature K and the mean curvature H of Ψ. Then, Ψ is a Weingarten surface (Abdel-Aziz and Saad, 2011). Theorem 2.2. Let Ψ be a timelike tube surface with non-degenerate second fundamental form in Minkowski 3-space E 3 1 satisfying the Jacobi equation Ω(K II,K) = 0 (2.4) for the second Gaussian curvature K II and the Gaussian curvature K. Then, the surface Ψ is a Weingarten surface (Abdel- Aziz and Saad, 2011).

3 NTMSCI 3, No. 3, (2015) / Tubular weingarten surface with a null curve A parametric equation of a Ψ tube surface with C(t) : (a,b) E1 3 null curve is given by Ψ(t,θ) = C(t) + θn(t) + θ 2 B(t) (3.1) where T, N, B vectors are null, spacelike and null vectors respectively. The orthonormal frame is {T (t), N(t), B(t)} and we have the following conditions T,T = B,B = 0 N,N = T,B = 1 N,B = N,T = 0 κ(t) and τ(t) are curvature and torsion respectively and we can give differential formulas for this system as below T (t) = N N (t) = τt B B (t) = τn therefore, differentiation of the tube surface Ψ can be calculate as follows, Ψ t = (1 + τθ)t (t) + ( τθ 2) N(t) + ( θ)b(t) Ψ θ = N(t) + 2θB(t) Ψ t Ψ θ = ( 2τθ 3 + θ ) T (t) + ( 2θ + 2τθ 2) N(t) + ( 1 τθ)b(t) Ψ t Ψ θ = 8τ 2 θ τθ 3 2τθ 2 + 4θ 2 2θ we find the the unit normal vector field of the tube surface Ψ express by ξ (u) = Ψ t Ψ θ Ψ t Ψ θ = 1 ( 2τθ 3 + θ ) T (t) + ( 2θ + 2τθ 2) N(t) + ( 1 τθ)b(t) λ where λ = 8τ 2 θ τθ 3 2τθ 2 + 4θ 2 2θ. furthermore components of the first fundamental form of Ψ are E = Ψ t,ψ t = 2θ (1 + τθ) + τ 2 θ 4 F = Ψ t,ψ θ = τθ 2 + 2θ G = Ψ θ,ψ θ = 1 Components of the second fundamental form of Ψ are P = Ψ tt,σ = 1 λ [( 1 + 2τθ τ θ 2)( 2θ + 2τθ 2) + ( 1 + τ θ τ 2 θ 2) ( 1 τθ) + ( τθ 2)( 2τθ 3 + θ ) ] Q = Ψ tθ,σ = 1 [ ( τ ( 1 τθ) + ( 2τθ) 2θ + 2τθ 2 ) + ( 2τθ 3 θ )] λ W = Ψ θθ,σ = 1 λ [ 4τθ 3 + 2θ ]

4 171 P. (Pospos) Tekin and F. Nejat Ekmekci: On Weingarten tube surfaces with null curve in Minkowski 3-space The Gaussian curvature K, second Gaussian curvature K II and the mean curvature H are given by K = PW Q2 EG F 2 = 1 2 [ 8τ3 θ 8 + 8τ 2 τ θ 7 + ( 12τ 2 + 8ττ + 20τ 4) θ 6 + ( 4τ 2 τ + 36τ 3 8τ 2 4ττ ) θ 5 + ( 4τ 4ττ + 16τ 2 14τ 6τ 3 8τ 4) θ 4 + ( 6τ 2 + 2ττ 16τ 3 + 4τ ) θ 3 + ( 6τ 2 + 2τ + τ ) θ 2 + ( 2τ 3 + 2τ ) θ + τ 2 ]/ ( θ ( 1 + 2τθ 2 + (τ + 2)θ )) and H = EW 2FQ + GP 2(EG F 2 ) = 1 4 [4τ3 θ 6 + ( 4τ 2 + 8τ 3 )θ 4 + (24τ 2 2ττ )θ 3 +( 2τ + 17τ + 4τ 2 3τ 3 )θ 2 + ( 7τ 2 + 6τ + ττ )θ 4τ τ ]/(1 + 2τθ 2 + (τ + 2)θ). Also, we get K II = 1 4 [(64τ3 (τ ) τ 4 τ )θ 13 + ( 32τ 4 τ 64(τ ) 3 τ 2 160τ 3 τ τ )θ 12 +( 280τ 5 64τ τ 2 τ + τ τ 3 τ 32τ 3 τ 208τ 5 τ + 240τ (τ ) 2 τ τ τ 3 (τ ) 2 256τ 4 (τ ) 2 48τ 3 τ 64(τ ) 3 τ + 128τ 4 τ 192(τ ) 2 τ 2 )θ 11 +(96(τ ) 3 τ 320τ 4 τ + 48τ 3 τ 96(τ ) 3 τ τ 4 τ 240τ 5 τ + 80τ 5 τ +288τ 4 τ τ + 160τ τ 2 τ + 96(τ ) 2 ττ + 64τ τ τ (τ ) 2 τ 2 80τ 3 τ +96(τ ) 3 τ τ 3 τ + 160τ τ 4 τ 320τ 3 (τ ) 2 48τ 3 τ τ )θ 10 +(564τ τ τ 3 τ + 208τ(τ ) 2 376(τ ) 2 τ 2 544τ 4 τ τ 6 +64(τ ) 3 192τ τ 5 (τ ) 2 352τ 4 (τ ) 2 288τ 3 (τ ) (τ ) 3 τ 2 96(τ ) 3 τ + 512τ 3 τ 288τ τ 2 τ 32τ τ 3 τ 96(τ ) 2 τ τ 2 48(τ ) 2 ττ 16τ τ τ τ ττ + 32τ ττ + 288τ 4 τ + 224τ 4 τ 16τ 3τ 160τ 5 τ 200τ 3 τ + 40τ 2 τ + 120τ 6 τ + 48τ 2 τ )θ 9 + (216τ τ 2 τ τ τ 3 τ 288τ(τ ) 2 600(τ ) 2 τ τ 4 τ 296τ 6 16(τ ) τ 6 τ 1072τ 5 τ + 512τ 4 (τ ) 2 752τ 3 (τ ) 2 48(τ ) 3 τ (τ ) 3 τ (τ ) 3 τ 3 +16(τ ) 3 τ τ 3 τ 32τ 3 τ τ + 208τ τ 2 τ 240τ 4 τ τ 96(τ ) 2 ττ 64τ τ τ 2 256τ ττ 32τ ττ 480τ 4 τ 24τ 4 τ + 184τ 3 τ + 296τ 5 τ +504τ 3 τ 72τ 5 τ 8τ 2 τ 88τ 2 τ 48(τ ) 2 τ )θ 8 + ( 370τ τ 4 184τ 2 τ 180τ τ 3 τ 96(τ ) 2 48τ(τ ) 2 180(τ ) 2 τ τ 4 τ +1272τ (τ ) 3 578τ 7 96τ 5 (τ ) τ 5 τ + 128τ 4 (τ ) τ 3 (τ ) 2 64(τ ) 3 τ τ 8 488τ 3 τ τ + 48τ τ 2 τ + 8τ τ 3 τ + 24(τ ) 2 τ τ 2 +48(τ ) 2 ττ + 16τ τ τ τ ττ 32τ ττ + 208τ 4 τ 208τ 4 τ 32τ 3 τ + 4τ 5 τ 684τ 3 τ + 352τ 2 τ 48τ 6 τ + 56τ 2 τ + 44ττ +8τ τ 56ττ 16τ τ )θ 7 + (236ττ + 528τ τ τ 2 τ +4188τ τ 3 τ + 96τ τ(τ ) (τ ) 2 τ τ 4 τ 1468τ 6 8(τ ) τ 7 58τ 6 τ + 624τ 5 τ 224τ 4 (τ ) τ 3 (τ ) (τ ) 3 τ τ 6 + 8(τ ) 3 5τ 7 + 4τ 6 τ 92τ 5 τ + 28τ 4 τ 74τ 3 (τ ) 2 50τ + 48τ τ 2 τ 6τ 4 τ τ + 8τ ττ 8τ ττ + 56τ 3 τ + 16τ 5 τ 2τ 3 τ 2τ 5 τ + 114τ 2 τ +12τ 2 τ 12(τ ) ττ 54τ τ 10ττ )θ 4 + ( 31ττ 46τ + 416τ 2 226τ 3 234τ 858τ τ 2 τ + 158τ 5 80τ 3 τ 97(τ ) τ(τ ) 2 28(τ ) 2 τ 2 226τ 4 τ + 22τ 6 6τ 7 + 7τ 5 τ + τ 4 (τ ) τ 3 (τ ) 2 10τ

5 NTMSCI 3, No. 3, (2015) / τ 3 τ τ 12τ ττ + 14τ 4 τ 6τ 4 τ τ 5 τ 12τ 3 τ + 8τ 2 τ + 12τ 2 τ +17ττ 4ττ )θ 3 + (18τ(τ ) 2 4ττ 2τ 4 τ 6τ 3 τ + 4(τ ) 2 τ 2 10τ 6 44τ 2 5τ 6τ 3 τ + 4(τ ) 2 τ 2 10τ 6 44τ 2 5τ 252τ 3 + 3τ 4 τ + 4τ 3 τ 48(τ ) 3 τ + 48τ 3 τ τ 216τ τ 2 τ + 60τ 4 τ τ + 24τ 2 ττ + 16τ τ τ τ ττ + 32τ ττ + 68τ 4 τ + 12τ 4 τ 192τ 3 τ 128τ 5 τ + 60τ 3 τ +20τ 5 τ 504τ 2 τ + 20τ 2 τ + 48(τ ) 2 τ + 64ττ + 108τ τ + 36ττ )θ 6 +(640ττ + 187τ τ τ τ 2 τ 1396τ τ 3 τ +134(τ ) τ(τ ) 2 28(τ ) 2 τ τ 4 τ 291τ 6 32(τ ) τ 7 +12τ 5 (τ ) 2 136τ 5 τ 34τ 4 (τ ) 2 160τ 3 (τ ) (τ ) 3 τ 3τ 8 30τ 20τ + 120τ 3 τ τ + 56τ τ 2 τ 12(τ ) 2 ττ 4τ τ τ 2 56τ ττ + 8τ ττ 90τ 4 τ + 60τ 4 τ + 24τ 3 τ + 2τ 5 τ + 156τ 3 τ + 78τ 2 τ + 6τ 6 τ 56τ 2 τ 206ττ 4τ τ + 28ττ + 16τ τ )θ 5 + ( 768ττ 114τ τ 3 107τ 672τ τ 2 τ 962τ τ 3 τ 20(τ ) 2 338τ(τ ) 2 28(τ ) 2 137τ 4 τ +18τ 4 + 2τ 3 (τ ) 2 142τ 3 τ + 4τ 5 τ + 54ττ 11τ 2 τ + 68τ + 48τ 5 17τ 2 τ 6τ τ 2 τ )θ 2 + ( τ 3 τ + (τ ) 2 8τ 2 τ + 10τ 4 τ 4τ τ 4τ τ 4 2τ 2 τ ττ + 3(τ ) 2 4τ τ 4 2τ 2 τ ττ + 3(τ ) 2 4τ 2 )θ + 6τ 3 τ +4τ 3 2ττ + 4τ)] /[ ( 8τ 3 )θ 8 + (9τ 2 τ )θ 7 + (20τ 4 + 8ττ + 12τ 2 )θ 6 + ( 4τ 2 τ +36τ 3 8τ 2 4ττ )θ 5 ( 4ττ + 16τ 2 8τ 4 14τ 4τ 6τ 3 )θ 4 + (4τ 6τ 2 16τ 3 + 2ττ )θ 3 + (5 6τ 2 + 2τ + τ 4 )θ 2 + (2τ 3 + 2τ)θ + τ 2 ) 2 ]. We have investigated the Weingarten condition for the Gaussian curvature, Mean curvature and the second Gaussian curvature by taking τ = 1, under this condition we can give the following theorems. Theorem 3.1. Let Ψ be a tube surface in Minkowski 3-space E1 3 defined in (3.1) satisfying the Jacobi condition Ω(K,H) = 0 for the Gaussian curvature K and the mean curvature H of Ψ. Then, Ψ is a Weingarten surface. Proof. Let Ψ be a tube surface in E1 3 parametrized by (3.1) and satisfying Jacobi condition. Then, we have, differentiating K and H with respect to t, K H u v K H v u = 0 (3.2) K t = 1 2 [ 16τ3 τ θ 9 + (8τ 3 τ + 8τ 2 (τ ) 2 24τ 2 τ )θ 8 +(16τ 2 τ + 60τ 4 τ + 16τ(τ ) τ 2 τ )θ 7 +(152τ 3 τ 8τ 2 τ 4τ 2 (τ ) 2 + 8(τ ) 2 4τ 3 τ 4τ 2 τ + 8ττ + 24ττ )θ 6 +(124τ 2 τ 16ττ 8τ 2 τ 8ττ 24τ 4 τ 12τ 3 τ 8τ(τ ) 2 )θ 5 +(32ττ 4ττ 14τ 4τ 64τ 3 τ 24τ 2 τ 4(τ ) 2 + 2τ 2 τ )θ 4 +( 12ττ + 3τ 4 τ + 4ττ τ 54τ 2 τ )θ 3 + (8τ 3 τ 12ττ + 2τ )θ 2 (2τ + 7τ 2 τ )θ + 2ττ ]/((τθ + 1)(1 + 2τθ 2 + (τ + 2)θ)θ),

6 173 P. (Pospos) Tekin and F. Nejat Ekmekci: On Weingarten tube surfaces with null curve in Minkowski 3-space and H t = 1 4 [8τ3 τ θ τ 2 τ θ 6 + ( 4τ 2 τ + 16τ 3 τ )θ 5 + ( 8ττ + 48τ 2 τ 2τ 2 τ )θ 4 (48ττ 6τ 3 τ 4ττ + 4τ 2 τ )θ 3 + (τ 2 τ 16τ 2 τ + 17τ + 8ττ 2τ )θ 2 (2ττ 14ττ + 4τ )θ + τ 4τ ]/[(τθ + 1)(1 + 2τθ 2 + (τ + 2)θ], differentiating K and H with respect to θ, K θ = 1 2 [ 80τ4 θ 10 + ( 96τ 3 48τ τ 3 τ )θ 9 + (16τ τ τ 2 τ + 40τ 3 τ )θ 8 +(96τ 2 16τ 3 τ + 64τ 2 τ + 16τ τ τ ττ )θ 7 +(224τ 3 + 8ττ + 196τ 4 16τ 2 44τ 2 τ 16τ 5 12τ 3 τ )θ 6 +(4τ 2 24τ 2 τ 44τ 4 56τ + 152τ 3 16τ 5 40ττ 16τ )θ 5 +( 40τ 4 44τ 12τ + 2τ 2 τ 44τ τ 2 2τ 5 12ττ )θ 4 +( 20τ 2 + 8τ + 4ττ 32τ 3 8τ 4 )θ 3 + ( 10τ 3 τ 4 4τ + 2τ + 5 8τ 2 )θ 2 ( 2τ 3 4τ 2 )θ τ 2 ]/(θ 2 (1 + 2τθ 2 + (τ + 2)θ) 2 ), and H θ = 1 4 [32τ4 θ 7 + (40τ τ 4 )θ 6 + (32τ 4 + 8τ 3 )θ 5 ( 4τ 2 τ + 24τ τ 3 24τ 2 )θ 4 ( 4τ 2 τ + 80τ τ 3 8ττ )θ 3 + (34τ 8ττ 2τ 4τ 6τ 3 4ττ )θ τ 2τ 3τ 2 ]/[1 + 2τθ 2 + (τ + 2)θ] 2. From the above equations (3.2) is satisfied, and then, the surface Ψ is a Weingarten surface. Theorem 3.2. Let Ψ be a tube surface with non-degenerate second fundamental form in Minkowski 3-space E 3 1 satisfying the Jacobi condition Ω(K II,K) = 0 (3.3) for the second Gaussian curvature K II and the Gaussian curvature K. Then, the surface Ψ is a Weingarten surface. Proof. For the proof, we can use the similar way with the theorem 3.1. When we take the partial derivative of the Gaussian curvature K and the second Gaussian curvature K II, we can find the following equation Then, Ψ is a Weingarten tube surface. K t K II θ K K II = 0. (3.4) θ t References [1] Abdel-Aziz, H.S., Saad, M.K., Weingarten Timelike Tube Surfaces Around a Spacelike Curve, Int. Journal of Math. Analysis, Vol.5, no.25, , [2] Balgetir, H., Bektaş, M., Inoguchi, J., Null Bertrand curves in Minkowski 3- space and their Characterizations, Note di Matematica, 23, n.1, 7-13, [3] Dillen, F.and Kühnel W., Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 98, , [4] Doğan, F. Genelleştirilmiş Kanal Yüzeyleri, Doktora Tezi, Ankara, [5] Duggal, K. L., and Bejancu, A., Lightlike submanifolds of semi-riemannian manifolds and applications, Kluwer Academic, Dordrecht and Boston, Mass., 1996.

7 NTMSCI 3, No. 3, (2015) / [6] Lopez, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space, Mini-Course Taught at the Instituto de Matematica e Estatistica (IME-USP), University of Sao Paulo, Brasil, [7] O Neill, B. Semi Riemannian Geometry with Applications to Relativity, A. Press, 482 p., New York, [8] Ro, J. S. and Yoon, D. W., Tubes of Weingarten types in a Euclidean 3-space, J. Chungcheong Mathematical Society, 22(3), , [9] Sodsiri, W., Ruled surfaces of Weingarten type in Minkowski 3-space,PhD. thesis, Katholieke Universiteit Leuven, Belgium, [10] Stamou, G., Regelflachen vom Weingarten-typ, Colloq. Math. 79, 77-84, [11] Weingarten, J. Ueber eine Klasse auf einander abwickelbarer Flaachen, çjournal für die Reine und Angewadte Mathematik, 59; , [12] Weingarten, J. Ueber eine Flaachen, derer Normalen eine gegebene Flaacheberühren, Journal für die Reine und Angewadte Mathematik 62; 61-63, 1863.

Research Article Weingarten and Linear Weingarten Type Tubular Surfaces in E 3

Research Article Weingarten and Linear Weingarten Type Tubular Surfaces in E 3 Mathematical Problems in Engineering Volume 20, Article ID 9849, pages doi:0.55/20/9849 Research Article Weingarten and Linear Weingarten Type Tubular Surfaces in E 3 Yılmaz Tunçer, Dae Won Yoon, 2 and

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Smarandache Curves According to Bishop Frame in Euclidean 3-Space

Smarandache Curves According to Bishop Frame in Euclidean 3-Space Gen. Math. otes, Vol. 0, o., February 04, pp.50-66 ISS 9-784; Copyright c ICSRS Publication, 04 www.i-csrs.org Available free online at http://www.geman.in Smarache Curves According to Bishop Frame in

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Smarandache Curves and Applications According to Type-2 Bishop Frame in Euclidean 3-Space

Smarandache Curves and Applications According to Type-2 Bishop Frame in Euclidean 3-Space International J.Math. Combin. Vol.(6), -5 Smarandache Curves and Applications According to Type- Bishop Frame in Euclidean 3-Space Süha Yılmaz (Dokuz Eylül University, Buca Educational Faculty, 355, Buca-Izmir,

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

arxiv:1203.4830v1 [math.gm] 20 Mar 2012

arxiv:1203.4830v1 [math.gm] 20 Mar 2012 arxiv:10.480v1 [math.gm] 0 Mar 01 Special Smarache Curves According To Darboux Frame In E ÖZCAN BEKTAŞ Abstract SALİM YÜCE In this study, we determine some special Smarache curves according to Darboux

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Smarandache Curves of a Spacelike Curve According to the Bishop Frame of Type-2

Smarandache Curves of a Spacelike Curve According to the Bishop Frame of Type-2 International J.Math. Combin. Vol.4(016), 9-43 Smarache Curves of a Spacelike Curve According to the Bishop Frame of Type- Yasin Ünlütürk Department of Mathematics, Kırklareli University, 39100 Kırklareli,

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Geometry of the 2-sphere

Geometry of the 2-sphere Geometry of the 2-sphere October 28, 2 The metric The easiest way to find the metric of the 2-sphere (or the sphere in any dimension is to picture it as embedded in one higher dimension of Euclidean space,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Jordan Normal Forms for a Skew-Adjoint Operator in the Lorentzian Setting

Jordan Normal Forms for a Skew-Adjoint Operator in the Lorentzian Setting Jordan Normal Forms for a Skew-Adjoint Operator in the Lorentzian Setting Lillian Saunders Research Experience for Undergraduates California State University, San Bernardino San Bernardino, California

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα