Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ"

Transcript

1 Εαρινό εξάμηνο Χ. Χαραλάμπους

2 Έργα Στοιχεία Δεδομένα Φαινόμενα ή Σφαιρικά Οπτικά Κατοπτρικά Στοιχεία Μουσικής Βιβλίο περί διαιρέσεων Πορίσματα Κωνικά Τόποι προς επιφάνειες Ψευδάρια Μηχανική Περί βαρέων και ελαφρών σωμάτων

3

4

5 Ευκλείδης Έργα Στοιχεία Δεδομένα Φαινόμενα ή Σφαιρικά Οπτικά Κατοπτρικά Στοιχεία Μουσικής Βιβλίο περί διαιρέσεων Πορίσματα Κωνικά Τόποι προς επιφάνειες Ψευδάρια Μηχανική Περί βαρέων και ελαφρών σωμάτων

6 Συλλογή από 13 βιβλία-κεφάλαια: Παρουσιάζονται με λογική σειρά οι βάσεις για τα στοιχειώδη μαθηματικά της εποχής: οι βάσεις για την αριθμητική (θεωρία αριθμών), για την γεωμετρία (σημεία, ευθείες, επίπεδα, κύκλοι, σφαίρες) και για την γεωμετρική άλγεβρα. Το περιεχόμενο των Στοιχείων του Ευκλείδη στηρίχτηκε κατά ένα μεγάλο μέρος στο έργο προηγούμενων μαθηματικών. Όμως η διάταξη (σειρά) των προτάσεων (φαίνεται να) οφείλεται στον Ευκλείδη όπως και πολλές από τις αποδείξεις.

7 Ύπαρξη άλλων «Στοιχείων» Ο Ιπποκράτης της Χίου (~470 π.χ 410 π.χ.) είχε γράψει και αυτός (νωρίτερα) «Στοιχεία», όπως και άλλοι μαθηματικοί. Τα «Στοιχεία» του Ευκλείδη ξεχώρισαν από τις παλαιότερες εργασίες χάρις στη λογική δομή και μαθηματική αυστηρότητα τους. Έτσι τα παλαιότερα δεν αναπαράχθηκαν και σώζονται μόνο μέσα από τα «Στοιχεία» του Ευκλείδη.

8 Τα βιβλία 1-6 αναφέρονται στη στοιχειώδη γεωμετρία του επιπέδου Τα βιβλία 7-9 αναφέρονται στη θεωρία των αριθμών. Το βιβλίο 10 αναφέρεται στους άρρητους. Τα βιβλία αναφέρονται στη στερεομετρία.

9 Κάποια από τα Μαθηματικά αποτελέσματα που περιέχονται στα 13 βιβλία των Στοιχείων αποδίδονται σε μαθηματικούς που έζησαν πριν τον Ευκλείδη. Στους Πυθαγόρειους και κυρίως στον Αρχύτα τον Ταραντίνο ( π.χ.) «περιστερά» βιβλία 1,2,6,7,8,9,11 Εύδοξος από την Κνίδο ( π.χ.) βιβλία 5, 12 Θεαίτητος ο Αθηναίος( π.χ.) βιβλία 10,13

10 Βιβλίο 1: αξιωματική θεμελίωση της Γεωμετρίας με 23 ορισμούς, 5 αιτήματα και 9 κοινές έννοιες, (δηλαδή τα αιτήματα και κοινές έννοιες αποτελούν αυτά που σήμερα θα λέγαμε στα αξιώματα). Ακολουθούν οι προτάσεις. Το βιβλίο τελειώνει με την απόδειξη του Πυθαγορείου Θεωρήματος και του αντιστρόφου του. Βιβλίο 2: Θεωρήματα της Γεωμετρικής Άλγεβρας (αποδείξεις αλγεβρικών ταυτοτήτων όπως a(b+c)=ab+ac με χρήση εμβαδών). Βιβλίο 3: Ιδιότητες κύκλων

11 Βιβλίο 4: Κατασκευές (με κανόνα και διαβήτη) κανονικών πολυγώνων, (3,4,5,6 πλευρές). Τελειώνει με τη κατασκευή του κανονικού 15 γωνου. Βιβλία 5 και 6: θεωρία των αναλογιών του Ευδόξου και προτάσεις Γεωμετρικής Άλγεβρας και ομοιότητα τριγώνων. Βιβλία 7,8,9: Θεωρία Αριθμών

12 Βιβλίο 10: (το μεγαλύτερο και το δυσκολότερο). Με τη σημερινή ορολογία: επεκτάσεις σωμάτων βαθμού 2 και 4 πάνω από τους ρητούς, (θέμα παρουσίασης). Βιβλίο 11: Βασικά Θεωρήματα στερεομετρίας. Βιβλίο 12: όγκους πυραμίδας, κώνου και σφαίρας. Βιβλίο 13: πλατωνικά στερεά. Για κάθε ένα από αυτά υπολογίζει λόγο ακμής με ακτίνα περιγεγραμμένης σφαίρας.

13 Παρατήρηση για τα κατασκευάσιμα κανονικά πολύγωνα: Το επόμενο κανονικό πολύγωνο μετά τον Ευκλείδη κατασκευάσθηκε το 1796 από τον Gauss ( ): το κανονικό 17 γωνο. Υπάρχουν άλλα κατασκευάσιμα πολύγωνα? (Θέμα παρουσίασης)

14 Αἰτήματα (Βιβλίο 1) α. Αιτήσθω ἀπὸ παντὸς σημείου ἐπὶ πᾶν σημεῖον εὐθεῖαν γραμμὴν ἀγαγεῖν. β. Καὶ πεπερασμένην εὐθεῖαν κατὰ τὸ συνεχὲς ἐπ' εὐθείας ἐκβαλεῖν. γ. Καὶ παντὶ κέντρῳ καὶ διαστήματι κύκλον γράφεσθαι. δ. Καὶ πάσας τὰς ὀρθὰς γωνίας ἴσας ἀλλήλαις εἶναι. ε. Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ' ἄπειρον συμπίπτειν, ἐφ' ἃ μέρη εἰσὶν αἱ τῶν δύοὀρθῶν ἐλάσσονες.

15 Ορισμός 10 (ορθών γωνιών): όταν μία ευθεία τέμνει μία άλλη έτσι ώστε οι εφεξής γωνίες να είναι ίσες, τότε οι γωνίες αυτές λέγονται ορθές και οι ευθείες κάθετες η μία προς την άλλη Αίτημα 4: όλες οι ορθές γωνίες είναι ίσες η μία προς την άλλη

16 Αίτημα 5: Αν μία ευθεία τέμνει δύο άλλες και σχηματίζει με αυτές ένα ζεύγος «εντός και επί τα αυτά» γωνιών με άθροισμα μικρότερο από δύο ορθές, τότε οι ευθείες τέμνονται προς το μέρος που είναι αυτές οι γωνίες. Ορισμός 23: Παράλληλες είναι οι ευθείες που ανήκουν στο ίδιο επίπεδο και που δεν τέμνονται

17 Πρόταση 1, βιβλίο 1

18 Δίνεται το ΑΒ κατασκευή κύκλου με κέντρο το Α, κύκλου με κέντρο το Β (ακτίνα ΑΒ) έστω C το σημείο τομής. ABC είναι ισόπλευρο τρίγωνο. Χρησιμοποιεί: 1. Αίτημα 3 (κατασκευή κύκλου) 2. Αίτημα 1 (κατασκευή ευθύγραμμου τμήματος) 3. Κοινή έννοια 1 (ίσα προς τρίτο και μεταξύ τους ίσα)

19 Πρόταση 32, βιβλίο 1 Το άθροισμα των γωνιών ενός τριγώνου είναι ίσο με δύο ορθές

20 Πρόταση 47, (Πυθαγόρειο Θεώρημα)

21 Στο παραπάνω σχήμα: ΑΒΔ=ΒΓΖ, ΑΒΔ=1/2 κόκκινου ΒΔΛΜ, ΒΓΖ=1/2 ΒΖΗΑ Άρα ΒΖΗΑ=κόκκινο ΒΔΛΜ ΒΖΗΑ+ΑΓΚΘ=ΒΓΕΔ ΑΓΚΘ=κόκκινο ΛΜΓΕ

22 Θέμα παρουσίαση ή μέρους παρουσίασης Ποιες προτάσεις χρειάστηκαν στην απόδειξη της πρότασης 47? Φτιάξτε ένα διάγραμμα που να δείχνει τις εξαρτήσεις. Αντίστοιχο διάγραμμα για τη πρόταση 48 (αντίστροφο του Πυθαγορείου)

23 Τι σημαίνει εμβαδόν? (δεν είναι ανάμεσα στους ορισμούς!

24 Γεωμετρική Άλγεβρα Βιβλίο 2 (γενικευμένο παράδειγμα) a (b+c+d)= a b+ a c +a d

25

26 Βιβλίο 2

27 Ερμηνεία: τμήμα =ΑΒ=α, ΑΒDC τετράγωνο, χωρίζουμεαβσεαηκαιηβ. θέλουμε το x=ah να είναι τέτοιο ώστε HBDΚ =HGFA. Λύση: Έστω Ε το μισό του AC, ΕF=EB AFGH τετράγωνο τότε ΑΗ=x

28 Η προηγούμενη Πρόταση δίνει Τη γεωμετρική επίλυση δευτεροβάθμιας εξίσωσης. Ποια είναι η κατηγορία εξισώσεων δευτέρου βαθμού που μπορούν να επιλυθούν γεωμετρικά σύμφωνα με αυτή τη μέθοδο? Υπάρχουν άλλα τέτοια παραδείγματα στα Στοιχεία του Ευκλείδη?

29 Βιβλίο 7 Βιβλίο 9 Θεωρία Αριθμών

30 «Αν δοθεί οποιοδήποτε πλήθος πρώτων αριθμών τότε υπάρχουν πάντα περισσότεροι από αυτό το πλήθος» Ορισμός 12: πρώτος λέγεται ο αριθμός που μετριέται μόνο από τη μονάδα Απόδειξη με γενικευμένο παράδειγμα (δίνονται 3 πρώτοι και αποδεικνύεται ότι υπάρχει τέταρτος) και με εις άτοπον απαγωγή.

31 a: A= d : D 2 2

32 Είναι το 5 ο αίτημα όντως αίτημα και όχι πρόταση?

33 Αν μία ευθεία τέμνει δύο άλλες και σχηματίζει με αυτές ένα ζεύγος «εντός και επί τα αυτά» γωνιών με άθροισμα μικρότερο από δύο ορθές, τότε οι ευθείες τέμνονται προς το μέρος που είναι αυτές οι γωνίες.

34 μήπως στη πραγματικότητα το 5 ο αίτημα προκύπτει από τα άλλα 4 αιτήματα και μπορεί να παραληφθεί? το 5 ο αίτημα είναι ισοδύναμο με τα εξής: στο επίπεδο, απόσημείοεκτόςευθείαςδιέρχεταιμόνομία παράλληλος, (μίαευθείαπουδεντέμνειτηναρχική) οι γωνίες σε ένα τρίγωνο έχουν άθροισμα δύο ορθές γωνίες. (και πολλές άλλες προτάσεις που αφορούν παράλληλες ευθείες)

35 Το πέμπτο αίτημα είναι γνωστό και ως αίτημα των παραλλήλων. ΓιανααποδείξειοSaccheri ( ) το πέμπτο αίτημα εφάρμοσε τη μέθοδο της επαγωγής σε άτοπο. Δηλαδή προσπάθησε να απορρίψει τις εξής προτάσεις: Από σημείο εκτός ευθείας δεν μπορούμε να φέρουμε ευθεία παράλληλη προς την ευθεία Από σημείο εκτός ευθείας μπορούμε να φέρουμε περισσότερες από μία ευθεία παράλληλες προς την ευθεία.

36 Ο Saccheri απέδειξε ότι η παραπάνω πρόταση οδηγεί σε άτοπο με τη χρήση του δεύτερου αιτήματος. (β αίτημα: Καὶ πεπερασμένην εὐθεῖαν κατὰ τὸ συνεχὲς ἐπ' εὐθείας ἐκβαλεῖν)

37 Καινούρια γεωμετρία Gauss (1810?), 1832 Bolyai, 1829 Lobachevsky Υπερβολική γεωμετρία: Στο επίπεδο, από σημείο εκτός ευθείας διέρχονται δύο ευθείες που δεν τέμνουν την αρχική

38 Υπερβολική γεωμετρία: στο επίπεδο, από σημείο εκτός ευθείας διέρχονται δύο ευθείες που δεν τέμνουν την αρχική (δηλαδή οι δύο ευθείες είναι «παράλληλες» προς την αρχική) Ισχύει ότι το άθροισμα των γωνιών ενός τριγώνου είναι μικρότερο των δύο ορθών και ότι τα όμοια τρίγωνα είναι ίσα!

39 Gauss

40 Lobachevsky

41 Bolyai

42 Μοντέλο του Poincare ( ) για την Υπερβολική Γεωμετρία: Υπερβολικό επίπεδο: σημεία στο εσωτερικό κύκλου Ευθείες στο Υπερβολικό επίπεδο: διάμετροι, και τόξα άλλων κύκλων που τέμνουν κάθετα τον αρχικό. Παραπάνω βλέπουμε 2 ευθείες που τέμνονται και είναι «παράλληλες» προς τρίτη

43 Escher και το υπερβολικό επίπεδο. Στο έργο «Παράδεισος και Κόλαση» (1960) Όλοι οι άγγελοι και όλοι οι διάβολοι είναι ίσοι.

44 Riemann ( ) Υπερβολική γεωμετρία, (1854) Δεν υπάρχουν παράλληλες ευθείες. Είναι αναγκαία η τροποποίηση του δεύτερου αιτήματος, (βλ. Saccheri) ως εξής: Κάθε ευθεία γραμμή έχει το ίδιο πεπερασμένο μήκος. Το άθροισμα των γωνιών ενός τριγώνου είναι μεγαλύτερο των δύο ορθών

45 Μοντέλο Ελλειπτικής Γεωμετρίας (Klein ) Ηεπιφάνειαμίαςσφαίρας: τα αντιδιαμετρικά σημεία ταυτίζονται και αντιστοιχούν σε ένα ελλειπτικό σημείο ευθείες είναι οι «μέγιστοι κύκλοι» της σφαίρας (που έχουν ακτίνα όσο η ακτίνα της σφαίρας)

46 Στη Θεωρία των αναλλοίωτων ο Hilbert το 1888 απέδειξε θεώρημα ύπαρξης πεπερασμένου σύνολο γεννητόρων Gordan : Das ist nicht Mathematik. Das ist Theologie. (απορρίπτοντας την πρώτη φορά την εργασία στο Math. Annalen) Συλλογή 23 προβλημάτων το 1900 στο διεθνές συνέδριο σο Παρίσι (υπόθεση του Riemmann, Goldbach) Πανεπιστήμιο του Göttingen από το Ph.D., (Felix Bernstein, Hermann Weyl Richard Courant, Erich Hecke, ) επηρέασε Ernst Zermelo, John von Neumann, Emmy Noether.

47 Στα «Στοιχεία» του Ευκλείδη υπάρχουν κάποια κενά και ελλείψεις (χρειάζονται και άλλοι ορισμοί και αξιώματα.) ενδεικτικά πρόταση 1, βιβλίο 1: Για τη κατασκευή ισόπλευρου τριγώνου. Γιατίοιδύοκύκλοιτέμνονται? Πολλές αποδείξεις βασίζονται στη διαίσθηση ή στο σχήμα. Αυτό έγινε περισσότερο αντιληπτό με την ανακάλυψη των μη Ευκλείδειων Γεωμετριών.

48 Πλήρης αξιωματοποίηση της Ευκλείδειας γεωμετρίας επιχειρήθηκε από τον Hilbert το 1899 στο βιβλίο του Grundlagen der Geometrie (βάσεις της Γεωμετρίας). Πρότεινε 21 αξιώματα: αξιώματα σχέσεων, διάταξης, ισότητας, συνέχειας και το αξίωμα των παραλλήλων. Άφησε τις έννοιες του σημείου, ευθείας, επίπεδο χωρίς να τις ορίσει. Καθόρισε όμως τις μεταξύ τους σχέσεις. Συνολικά χρησιμοποίησε 9 «πρωταρχικές έννοιες» από τις οποίες 6 οι βασικές σχέσεις (όπως ανήκει και ισότητα). Το 1902 αποδείχτηκε ότι ένα από τα 21 αξιώματα ήταν περιττό.

49 1920: πρόγραμμα του Hilbert =«μεταμαθηματικά». Ήθελε να δείξει ότι 1. Όλα τα μαθηματικά παράγονται από ένα σωστά διαλεγμένο πεπερασμένο σύνολο αξιωμάτων και 2. Ένα τέτοιο σύνολο αξιωμάτων μπορεί να αποδειχθεί ότι είναι συνεπές όμως το 1931 ο Godel με το Θεώρημα της μη πληρότητας απέδειξε ότι είναι αδύνατο να αποδειχθεί η συνέπειαή ασυνέπεια.

50 Θέμα Παρουσίασης: 23 προβλήματα του Hilbert.

51

52 Για παρουσίαση Θεμελίωση των πραγματικών αριθμών.

53 Ασκήσεις Να αποδείξετε την πρόταση 2.11, [Στοιχεία] Να χρησιμοποιήσετε τη πρόταση 2.11 για να βρείτε τη γραφικά τη λύση της δευτεροβάθμιας εξίσωσης Η επόμενη πρόταση περιγράφει τον τρόπο εύρεσης του κέντρου δοθέντος κύκλου. Να κάνετε το αντίστοιχο σχεδιάγραμμα και να αποδείξετε (σύγχρονα) την αντίστοιχη πρόταση.

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 20.03.14 Χ. Χαραλάμπους Είναι το 5 ο αίτημα όντως αίτημα και όχι πρόταση? Η πρώτη φορά που το αίτημα χρησιμοποιείται στα Στοιχεία είναι στην απόδειξη της Πρότασης 29. ( Η Πρόταση 29

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 14.03.12 Χ. Χαραλάμπους Πριν: Σύμφωνα με την πυθαγόρεια αντιμετώπιση η διαγώνιος και η ακμή τετραγώνου δεν είναι συγκρίσιμα. Ορισμός Ευδόξου: δύο μεγέθη σχηματίζουν λόγο όταν (ακέραιο)

Διαβάστε περισσότερα

Κεφάλαιο 10 Γεωμετρικές κατασκευές Στα αιτήματα του Ευκλείδη περιλαμβάνονται μόνο τρία που αναφέρονται στη δυνατότητα κατασκευής ενός σχήματος. Ηιτήσθω από παντός σημείου επί παν σημείον ευθείαν γραμμήν

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Η αξιωματική μέθοδος. Η γένεση της αξιωματικής μεθόδου στην κλασσική Ελληνική αρχαιότητα Η ιδέα της αρχής στην Ελληνική φιλοσοφική σκέψη

Η αξιωματική μέθοδος. Η γένεση της αξιωματικής μεθόδου στην κλασσική Ελληνική αρχαιότητα Η ιδέα της αρχής στην Ελληνική φιλοσοφική σκέψη Π Α Ρ Α Ρ Τ Η Μ Α Α Παράρτημα A Η αξιωματική μέθοδος Η αξιωματική μέθοδος είναι ένας τρόπος κατασκευής μιας επιστημονικής θεωρίας, κατά τον οποίο ορισμένες προτάσεις (τα λεγόμενα αξιώματα ή αιτήματα) λαμβάνονται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012 Εαρινό εξάμηνο 2012 17.05.12 Χ. Χαραλάμπους (1791-1858) 1858) Peacock: «Treatise on Algebra»(1830) και αργότερα μετά το 1839 την «αριθμητική άλγεβρα» και στην «συμβολική άλγεβρα». «αριθμητική άλγεβρα»:

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Βασίλειος Παπαντωνίου Ομ. Καθηγητής Πανεπιστημίου Πατρών bipapant@math.upatras.gr Επίκεντρο της παρουσίασης Η εξέλιξη της μαθηματικής σκέψης

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

1 Dodecaeder 3 7 5 11 9. 2 12 4 10 6. 8 Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Dodecaeder Copyright 1998-2005 Gijs Korthals

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 1: Εισαγωγικά. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε.

Τεχνικό Σχέδιο. Ενότητα 1: Εισαγωγικά. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 1: Εισαγωγικά Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Η αξιωματική θεμελίωση της Ευκλείδειας γεωμετρίας κατά Hilbert στο πνεύμα των Στοιχείων του Ευκλείδη»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Η αξιωματική θεμελίωση της Ευκλείδειας γεωμετρίας κατά Hilbert στο πνεύμα των Στοιχείων του Ευκλείδη» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Η αξιωματική θεμελίωση της Ευκλείδειας γεωμετρίας κατά Hilbert στο πνεύμα των Στοιχείων του Ευκλείδη» ΓΑΛΙΟΥΔΑΚΗΣ ΕΜΜΑΝΟΥΗΛ Α.Μ. 200815 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΝΕΓΡΕΠΟΝΤΗΣ ΣΤΥΛΙΑΝΟΣ ΑΘΗΝΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Η Λογική της Γεωμετρίας

Η Λογική της Γεωμετρίας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Η Λογική της Γεωμετρίας Η αποκρισιμότητα της Elementary Geometry Για τους σκοπούς της παρουσίασης της 25/01/2011. Αριστοτέλης Παναγιωτόπουλος Ναταλία Κωτσάνη Ευκλείδης «Στοιχεία»

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 8.03.12 Χ. Χαραλάμπους Θαλής ο Μιλήσιος ( 630-550π.Χ.) Πυθαγόρας o Σάμιος (570-490) Ζήνωνας ο Ελεάτης ( 490-430) Δημόκριτος o Αβδηρίτης (c. 460-370) Πλάτων (427-347 π.χ.) Ιστορικές

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

1 m z. 1 mz. 1 mz M 1, 2 M 1

1 m z. 1 mz. 1 mz M 1, 2 M 1 Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjklz ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

Δημήτρης Ντρίζος Σχολικός Σύμβουλος Μαθηματικών Τρικάλων και Καρδίτσας Ιστορικό Σημείωμα

Δημήτρης Ντρίζος Σχολικός Σύμβουλος Μαθηματικών Τρικάλων και Καρδίτσας Ιστορικό Σημείωμα ΓΕΩΜΕΤΡΙΚΗ ΕΡΕΥΝΑ ΠΑΝΩ ΣΤΗ ΘΕΩΡΙΑ ΤΩΝ ΠΑΡΑΛΛΗΛΩΝ ΤΟΥ N. LOBACHEVSKY Δημήτρης Ντρίζος Σχολικός Σύμβουλος Μαθηματικών Τρικάλων και Καρδίτσας drizosdim@yahoo.gr Ιστορικό Σημείωμα Η θεωρία περί των παραλλήλων

Διαβάστε περισσότερα

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ

Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας.

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας. ΣΤΕΡΕΑ ΜΑΘΗΜΑ 12 ΑΝΑΚΕΦΑΛΑΙΩΣΗ 1. Αν τυχαία πυραμίδα τμηθεί με επίπεδο παράλληλο στη βάση της, έχουμε: KA/KA' = KB/KB' = ΚΓ/ΚΓ' = ΚΗ/Κ'Η' = λ και ΑΒΓ Α'Β'Γ' με λόγο ομοιότητας λ. 2. Μέτρηση κανονικής πυραμίδας:

Διαβάστε περισσότερα

: :

: : ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2008 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ Πειραματικό υμνάσιο Αγίων Αναργύρων Τάξη Μάιος 8 ΘΕΜΑΤΑ ΡΑΠΤΩΝ ΠΡΟΑΩΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 8 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ : ΘΕΩΡΙΑ Έστω η εξίσωση δευτέρου βαθμού : a με a β γ (). α) Ποια παράσταση λέγεται

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων)

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) Μαθηματικά αντικείμενα Έννοιες Ιδιότητες (θεωρήματα, πορίσματα) Σχέσεις Ενέργειες Διαδικασίες Αναπαραστάσεις

Διαβάστε περισσότερα

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 26.02.14 Χ. Χαραλάμπους 14 ο πρόβλημα (βρίσκεται στο Μουσείο Καλών Τεχνών της Μόσχας από το 1893 μ.χ.) «μετάφραση των συμβόλων: Εάν σου πουν: μία κομμένη πυραμίδα με ύψος 6, με βάση

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο 13: ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Θεωρούµε ένα επίπεδο p, µια κλειστή πολυγωνική γραµµή του p και µια ευθεία ε που έχει µε το p ένα µόνο κοινό σηµείο. Από κάθε σηµείο

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα -εξεταστέα

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του Ανδρέας Ιωάννου Κασσέτας ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του 1. Υπάρχει αριθµός τέτοιος ώστε εάν τον υψώσεις στο τετράγωνο να αυξηθεί

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα