TET CUM TRT 2018 ODIA - MATHS. 1. The founder of Bachpan Bachao Andolan is
|
|
- Αμάλθεια Κωνσταντίνου
- 5 χρόνια πριν
- Προβολές:
Transcript
1 TET CUM TRT 2018 ODIA - MATHS 1. The founder of Bachpan Bachao Andolan is 1. Shanta Sinha 2. Kailash Satyarthi 3. Aruna Roy 4. Anil Agarwal ΣεΣτ ΣεΜÙ ΞÙ Αϕ ΘÙΖτ ƒγοι Θι ΘÙΟδ ΥΞν 1. ΜÙϕΘÙ τ Ù 2. ΚΩÙω ΜιƒΥνιƒ 3. ΠÙ ςùµ 4. ±ο ΚνΞÙο 2. This book of ancient India has the love story of son of the founder of Sunga Dynasty 1. Swapnavasavadutta 2. Malavikagnimitra 3. Meghadoota 4. Ratnavali δκ ΞλΜι Θι ΘÙσfl ιθξ τ ΤΚ±τ ΚÙΘο Κ Θ ΚÙηΟ Ση ΟΥ ΒϕƒΥ Ëο 1. Ξκ ΞÙΜΞ ΘιΘÙ 2. ΤÙΖ ΚÙχ± ιςλ 3. ΤΚ ÁΘλ 4. ςι ÙΞ
2 3. This is not a Union Territory 1. Dadra and Nagar Haveli 2. Nagaland 3. Lakshadweep 4. Puducherry ΤιƒΥ Αγ κσœƒ Î±Υτ ς ΘΜλ( οωùθ 1. ΘÙιςÙ Τσflλ ΡÙΚν Ξ 2. ΡÙΚÙΩÙϕ 3. ΒΩγΜιæ 4. ε Μ 4. In 1939, Subhash Chandra Bose was elected as president of the congress party by defeating 1. Maulana Abul Kalam Azad 2. Pattabhi Sitaramayya 3. Jawaharlal Nehru 4. Gopala Krishna Gokhale 1939ο ΒΞ ς ΘÙσΚ ι ΣÙω Μϕƒς ΣÙυ ΚÙδ ςυ Κγ ι Θ ΩΞςÙΚ Θνϕ Θ χκκσγοùν 1. ΤΖΩÙ Ù ο ΚΩÙλ ΑΜÙι 2. ΣγΟÙ ΘÙςÙ ΤΥÙ 3. ΞΚνΩÙο Ρ 4. ΚÙΣÙΩ ωπ ΚÙΚ Ω
3 5. The reason for naming the virus as Ebola is 1. The vaccine used to prevent it 2. A river in Congo, one of the first place of out break 3. The first person who was contracted by the virus 4. The physician who first detected the virus»φ ΣÙΩÙµ Φτ λ ΣΥ ς Ι Ξςυχœ ΞκΣΘσΚÙ ΚÙςΠλ 1. Θ Θ χκ ΣΥτΣ ιƒυ Θ κè τ ΣΥν 2. ÿθτÿθ ο Σς Υ ΒΟιƒ ρζ ΚÙδ ΚÙ ΡÙγ τ Ι Ρƒ 3. ÿθτ ÿθ ο π ΥÙƒΥÙο ΘÙχΚκΣγΟ ΡΣ τ ΣΥν 4. ÿθο ÿ [ΥÙΚ ϕθ Ξς ]χ ΚηΟ ϕθ Τ ι Ξ τ ΣΥν
4 6. The headquarters of the Organization of the Petroleum Exporting Countries (OPEC) is situated in this city, country 1. Vienna, Austria 2. Kuwait City, Kuwait 3. Doha, Qatar 4. Baghdad, Iraq Σγ ςù Υλ ΓσflΤƒ ΜµŸλ ΡÙ Κ τ Τκ τ (OPEC) Θ Ω ΤΥΚλ Τϕ ρζ ΡΚςλ+ ΡÙ 1. Υτ Ù+ Αυƒ ΥÙ 2. œ Ξι ΡΚςλ+ œ Ξι 3. ΘÙ Ù+ ΚΘÙν 4. ΣÙχΘÙι+ ΧςÙχ 7. Good Governance Day is observed on the birthday of 1. Rajiv Gandhi 2. Lal Bahadur Sastri 3. Abdul Kalam 4. Atal Bihari Vajpayee ΒΞ τ [ϕθ ΡÙ Ζ+»ΡοΩÙγ ÿ [ ΡÙΖÙΚµ ΚÙηΟÙ [Ùλ 1. ςù π ΚÙϕƒó 2. ΩÙο ΣΚÁν ΜÙυƒ 3. κ ο ΚΩÙλ 4. Οο ΚÙ ΞÙϖΣÙµ
5 8. The longest river of Himachal Pradesh is 1. Jhelum 2. Beas 3. Chenab 4. Sutlej ΒΤÙεΜΩκ ς ΘΜιƒτ øζτù Ρƒ 1. ÀΩλ 2. ΥÙυ 3. Ùκ 4. ΜγΩϖ 9. Consider the following. A. Vamsadhara B. Indravati C. Pranahita D. Pennar The tributaries of Godavari river are 1. A and B 2. B, C and D 3. A, B and D 4. B and C θχκηοξσ [ ΚΞ± A. ΞλΜΘÙςÙ B. ΒϕƒςÙΞƒ C. ςùπ ΘÙ D. ΣηΠÙfl ΒΞσ ο ΚÙΘÙΞ τ ΖΡƒΚρ 1. A Τσflλ B 2. B, C Τσflλ D 3. A, B Τσflλ D 4. B Τσflλ C
6 10. The Nobel prize ceremonies take place annually in this city (except peace prize) 1. London 2. Stockholm 3. Geneva 4. New York Ιπ ΞÙςÙη λ ΡÙΣο Σ Κ Ζ ΒϕΘ ΡΚςιƒο ΤƒχΚÙ ΡÙΣοΣ Μι Θ ς( ΞΨδœ τ[ ν 1. ΒΩηΟτ 2. υοùχ Ùλ 3. ΞÙ 4. ÎΥÙνχ 11. This city of Andhra Pradesh is covered in the third list of Smart Cities announced by Government of India on Tirupati 2. Kakinada 3. Vijayawada 4. Visakhapatnam ΒϕƒΥ ς Αλ Αη ιθ [κ ΡΚςδΚ τ Íτ[ÙΞ Σγ Υ ο ΒΟλ Σσ[ Αϕƒςκ ς ΘΜ ΡΚςλ 1. ƒ κσƒ 2. ΚÙ ΡÙΟÙ 3. ΥΞÙΟÙ 4. ΜÙΚκ Σγ Πλ
7 12. In Central Cabinet, Minister of Environment, Forest and Climate Change is 1. Dr. Harsha Vardhan 2. Dr. Jitendra Singh 3. Ravi Shankar Prasad 4. Suresh Prabhu ΤιƒΥ Τϕƒ Μ Σ ο σflκ [λ+ ΚÙ Κρ Τσflλ ΞÙ± Ω ΤÙσ[ι [ ΤεΜν 1. ΟÙχΟν ν_ ΞνιΘτ 2. ΟÙχΟν Θϕƒς δ 3. ς ΜδΚν ςμùι 4. ςω ς 13. The red beacons (lights) on top of any VIP vehicle was banned in our country from this date. Ρλ ΡÙγ ο ςσωτù ΞνΚ τ ΞÙΚ δκ τ Ξκ ΖχœΚρ ΒϕΘ Θƒ ϕ Θ Ο ΜµΥκΣγΟ
8 14. World s largest Aircraft carrier built by U.S.A is named after 1. Theodore Roosevelt 2. Abraham Lincoln 3. George Washington 4. Gerald R.Ford Τ χκù ΞÙχ Υ Κκ Σ Υ ΤÙ ιƒσœ ΒΞ ΟΥ ΣΥν ΞχΚκΣγ ρζ 1. ƒ ΥÙ ΟÙν Ïυ Ξογ 2. Α ςκùλ δκτ 3. Ùνϖ ΞÙ δοτ 4. ςùογ Αν ΣÙνγ 15. This person was elected as vice chairman of the Press Trust of India (PTI) on N. Ravi 2. Vijay Kumar Chopra 3. Anil Agarwal 4. Jaswanth Singh ςυ ςυγ Α?κ ΒϕƒΥÙ τ ΠιΘ ΩΞςÙΚ ο Θνϕ Θ χκκσγοξν 1. Φτ ς 2. µ œτùν ΜÙκςÙ 3. ±ο ΚνΞÙο 4. υξϕι δ
9 16. The first Arab country to send an unmanned probe Hope to orbit Mars by Kuwait 2. Qatar 3. United Arab Emirates 4. Iran 2021 Αλ Αη σœρ ΜπΞÙµ ΚÙ Ζ σ Ξ λ Ùκ Φτ λ Α οωù Πχ ΚÙ Ζ κ ΞΘσœ ΘΥÙςÙΚ ρζ ÿθο ς Υ ΡÙ 1. œ Ξι 2. ΚιΘÙν 3. Ηχ Υ ς Φ ςγ Κρ 4. ΧςÙτ 17. This university lifted Maulana Abul Kalam Azad Trophy for the 23 rd time 1. Guru Nanak Dev University 2. Punjab University 3. Kurukshetra University 4. Delhi University ΤΖΩÙ Ù οκωùλ ΑΜÙι ΚÙκ Σ Υ 23 Ξ ÿ [ΥÙΚ ΒϕΘ ΣοΚ ΩχΚΨΚλ ΚκΣσ Υ 1. œ ΡÙ χ Θπ ΣοΚ ΩχΚΨΚλ 2. ΣφΜÙκ ΣοΚ ΩχΚΨΚλ 3. œ ε Μιƒς ΣοΚ ΩχΚΨΚλ 4. ο ΣοΚ ΩχΚΨΚλ
10 18. India Pacific islands sustainable development conference was organized on 25 th and 26 th May, 2017 at 1. Nauru 2. Cook Islands 3. Samova 4. Suva Τ ΤÙΘλ 2017ΑλΑη ο 25 Τσflλ 26 ΘƒΚ ο ΒϕƒΥ,Σ χ æ Κ τ ΩΥÙ ΞΖνε ΤÙΡÙ ΡΟιΘκΣγΟ ΒΟλ 1. ΡΖ 2. œχ æ Κρ 3. Μ ΤÙΞÙ 4. ΞÙ 19. A 200 year old National Museum was destroyed due to fire accident on at 1. London 2. Rio de Janeiro 3. Paris 4. Istanbul ο 200 Αη ΚÙΩ Θ Υ δκùγ ΥΚλ ΒϕΘ ΡΚςιƒο ΡΟϕΘ æ Σιƒο χκκσγο 1. ΒΩηΟτ 2. ΥÙ ± ςù 3. ΣÙ υ 4. ΒυΘÙτ ο
11 20. The country that has withdrawn from the Paris Climate Accord on is 1. Canada 2. U.S.A. 3. Brazil 4. Russia»ΣÙ υ ΞÙ± Ω ΙκΣϕΘιƒ ϕ µ ο Ω Υ ΡÙ 1. Κ ΟÙ 2. Τ χκ Ηχ Υ ΡÙ Κρ 3. ς ο 4. ςωυù
12
13 22. The first school for girl children of lower castes was started by 1. Jyothiba Pulle 2. Mahatma Gandhi 3. Vijayalakshmi Pandit 4. Durgabai Deshmuk θξœκ Ση œψϕ ΘΚfiχΚÙΚ ÿθο Σρ Υι ΘÙΟδ ΥΞν 1. ÙƒΣÙ κî Ω 2. ΤΚÙιΤÙ ΚÙϕƒ 3. ΥΩγ Ση γ 4. νκùσùµ Θωÿχ 23. One of the following belongs to thinking skills which is a category of life skills: 1. Coping with stress 2. Communication 3. Creative thinking 4. Interpersonal Relation ΞÙθχ Κι ƒ[τκ ο Ι ΣÙΚΤÙΚ θχκηοξσ ο Ιτfl ΜÙν ƒ[τκfiοτ ΘÙΟν ΟΥ 1. Τ ιθι Θ Φƒνχ ΚÙρfiλ ƒ[τ 2. ΘΚΞο ΘÙΟν 3. ΑχΚκÈνΞΤÙ ϕθ 4. Τ±ΘνΚfiχ Ο ΩÙ ΣςυΣς ΘÙΟν Κρ
14 24. Sundering the children with special needs from general schools is nothing but violation of human rights stated by 1. Benda 2. UNESCO 3. Christensen 4. Smith, Naisworth» [κ ι Θ ΞΚρ ΚÙηΟ œψϕ ΘΚ Ζ ΣÙ κσρ ϕ ΞflΣ ι Θο Τ±Θ ΤΚ Ζ flλ ΜΥΩÙœλµ Φτfl ΥΞν 1. ΣηΟÙ 2. Ÿ υ ΚÙ 3. υ Οτ]τ 4. υ ι+ Ρµυ ΞÙνι 25. The general type of register which is maintained in the school under Records and Registers is: 1. Laboratory Register 2. Library Book Register 3. Ledger 4. Logbook Σρ Κ ο νξ χκκσ λ ΑΞΠδΚρ+ Σƒ Ξ Κ ο ΣÙ Ξ ΚΥÙ κ Σƒ Ξ 1. ΑµΞΚκ Σƒ Ξ 2. Ëο ΩΥ Ëο Σƒ Ξ 3. ΣΥ ς 4. ƒ Μ œ κ κ ιθκλ
15 26. Both in Centre and state of Andhra Pradesh the Ministry of Education was named as 1. Ministry of Human Resource Development 2. Ministry of Health Resource Development 3. Ministry of Human Records Development 4. Ministry of Home Affairs ΤιƒΥ ς λ+ Αϕƒςκ ς ΘΜ ΤÙ Ωιƒ λ Κο ΤεΜΚλ ΒπΞÙfl ΣΥν ΤÙσ[λ ΜµΥκΣγ ρζ 1. Τ±ΘΞΖ ΤλΣÙγ ΤεΜΚλ 2. Α ςùχ Υ ΞΖ ΤλΣÙγ ΤεΜΚλ 3. Τ±Θ ΑΞΠ ΤλΣÙγ ΤεΜΚλ 4. ρ [ ΤεΜΚλ 27. The disease occurs due to the deformities in Chromosomes is 1. Cretinism 2. Hydrocephalus 3. Down s Syndrome 4. Phobia œ ςù ΤÙ ΜÙλΚ τ Ι δκσ[ ΤνΞÙο ΓσΣ λ ΡÙµ 1. ±]λ 2. γ ςù ΜΣÙΩυ 3. ΟΖτυ ηγ ςùλ 4.? ΣÙ ΥÙ
16 28. The year from which the Model Schools were started functioning in Andhra Pradesh State is Αϕƒςκ ς ΘΜ ΤÙ Ωιƒο ΤÙƒ κσρ Κρ ΜΥοΣΟι ΘÙΟδ Υ Αη Under this section of RTI Act, any officer rejects the application, denies giving information, giving wrong information, the complaint may be given directly to the State Information Commission: RTI ΜγΟιƒο Βκ τ θ ΦϕΘ ƒκù ΥÙΞ ηπκσι Θ ΓσΚ ΤflιΘÙ ΩÙ+ ΘΚΞο Θς ΤflιΘÙ ΩÙ+ ΘΞ[Ù ΘΚΞ Ωι ΘϕΘÙ ΩÙ ΤÙ Ω ΘΚΞο Α ΠΥιƒσœ Ρς ΥÙΚ ΚÙν ΘςΩÙλ (1) (1) (1) (1)
17 30. In the preparation of Question Paper - Reliability means: 1. To achieve the desired objectives 2. Obtaining the same mark even if it is valued by two different examiners 3. Specifying the accurate answers for evaluation 4. Convenient to conduct the exam evaluate and to interpret the results ÙιΘÙρ ΘΥÙ κ ο, ΡλΣΚιΘτ Τ ΦτΣ 1. λσι ΘχΚ ΡÙχΚδΚ Ζ ΟΘο 2. Βςη ΞflΣγΟ ΘνΞÙΖνΚΖÙο Τƒκ ΜµΥκΣγΟÙ λ Ι ς ΘΤÙ Τƒκ Ση ΣflΘο 3. Τƒκ ΜµΞΘσœ ο ΥΤÙ ΟΚ Ζχ œ κ Θο 4. Θν ΡΟιΘ λ+ Τƒκ ΜµΥ λ+ ÿ Κ Ζ Ζχ flξθσœλ Γσ[ΘÙΚ Β ιθο
18
19 32. In your class, one student is very kind, gentle and virtuous. All the students and teachers named him as Vivekananda. According to Freud his state of personality is 1. Id 2. Ego 3. Super Ego 4. Libido δκρ ΞœκΣ [ ο Ι ΤÙΠΞτ ΒςχΚλ+ Κη Υλ Τσflλ Ρο ΩÙ χκÿ ΟΥΞτ Σρ ρζ ι ΤÙΠΞνΚρ+ Α ΥνΚρ Ξ! ΞΚÙ ϕθν& Φ Ψχ τ[ ν? ςùµ τ Κ ιθκσ Ξ ΟΥ Αfi Τ Ω 1. Κλ 2. Θτÿ κ 3. Υν Θτÿ κ 4. ΣÙο Πν
20 33. In your class you are observing that Siddhartha is bullying every time. Which of the following method you adopt to rectify the undesirable behaviour - 1. Request the parents to provide counselling 2. Request the headmaster to provide counselling 3. Analyse the reason and provide counselling 4. Ask him to sit in the last bench. δκρ Ξœκ ο! ιθùνιθù& Φκ ΣÙ λ [ ςι τ flι Ξ Θ σfl ΡÙχœ»νΚρ λσιθκùθ ΒϕΘ ΡΟι Θ Υ Μ κσ ιθ øδκρ Τσ ΚÙρfiλ ÿ [ 1. Σσ [Ù ς ς ΞΨδœλΣ Ξη Θο 2. Θ Ω ΤΥÙ Υ ς ς ΞΨδœλΣ Ξη Θο 3. ΚÙςΠι Θκ ΣœιΘÙµϕ ς ΞΨδœΘο 4. ΞœκΣ [ τ Κ Ο Β χ Κ ο Ξ Τ λσ flθο
21 34. Avinash believes re-organisation of the perceptual field belongs to the process and product of thinking. This is related to the following theory. 1. The gestault theory 2. The behaviouristic learning theory 3. Bruner s theory of cognitive development 4. Freud Psycho-analytic theory of thinking ϕ ΚÙρfiλ Ασ[ο Ωιƒτ ς ΤκΣÙ ϕƒιθο ΜΥοÿ [ Τσflλ Ζ Οτ ΘÙΟν ΚÙη χœλ Φ Ùω Ρλ [Ùτ Β θχκù λ ΚÙγΣÙγ Οτ ΘÙΟν ΟΥ 1. ÿ Ξ Ξχ ΚÙγΣÙ 2. ΡΟι ΘΥ κσ Ο ΩÙ Κσ[ο ΚÙγΣÙ 3. Ï τ ΞΖνε χ ΚÙγΣÙ 4.?κςÙµ τ ϕθ Σσ Υ Ζ Υο ΣœκΣÙµ χ ΚÙγΣÙ
22 35. Rajesh revises the portion of syllabus periodically to strengthen his - 1. Short Term memory 2. Immediate memory 3. Long term memory 4. Sub Conscious memory ςù ω Θτ ΟΥ ΣÙΟιƒγΟι Θ χκ ρ ΣÙν Ξ ΜµΞ Ξ ΟΥ θχκηο λμι Θ Ξ κσ ιθ Θ [ 1. œfl ΥΚÙΩ ΞÙσ[ο 2. Ο ΞÙσ[ο 3. øηοκùω ΞÙσ[ο 4. Π Ρ Ω ΞÙσ[ο
23 36. Rekha did not like doing her homework. However her teacher started praising her for her performance in the class leaving her slackness in doing home work. She started being regular with home work in order to please her teacher. This is an example of 1. Negative reinforcement 2. Guidance 3. Positive reinforcement 4. No reinforcement γ κ ΣÙΟι Θ Φ ΞΘσœ ςκù λσ ο Ω Α Υν Ξρ γ κ ΣÙΟλ ΜµΞƒο ΚÙγ λ Ωγ Υκ ΣÙχ Κ ι Ξfi ΟΥ Ξœκ ΜÙΘ Υκ ΚΨι ΘÙΟδ Ùν Ξρ Θ Α Υ ς Τ θ χκ γ κ ΣÙΟλ ΜµΞƒο ÿ [ΥÙ Ι χκι Θ Κ Ο ιθùρ Β ΒΘσœ Φ ι χκùγ 1. Τ [ÿκ Ξ Óγ 2. Ξ ΚÙγ Θο 3. Ρς Ξ Óγ 4. Ξ Óγ Θο Βο Ω
24 37. Ratnakar is an intelligent student in class X. His classmate Ravi scolded him as idiot for not allowing him to copy from his answer sheet, with regard to IQ, Ravi is wrong because. 1. Ratnakar s IQ is Ravi s IQ is Ratnakar is intelligent 4. Idiots IQ is greater than 140 ςι ÙΚν ΣιΘÙλ Ξœκ ο Σ χœλ ηπ ρζ ΤÙΠΞτ Θ Οι ΘÙ Ζ ΣÙνι Φ Θ ΤƒχΚÙΘΘÙο ς Ξ!ÍΟτ& Φτfl ƒγ Ùτ ηπ Χ τσ ς τ ΜÙσΚρ ΘΞ[Ù Ξ Γ ±ο 1. ςι ÙΚ τ ηπ 70`89 2. ς τ ηπ Χ 90` ςι ÙΚν ηπ χκξτ 4. ÍΟνΚ τ ηπ Χ 140 Ο ƒκλ
25 38. Kamala was adjudged as a well adjusted girl by her teachers. One of the following characteristic is not related to her 1. Respecting herself and others 2. Absence of fault finding attitude 3. Flexibility in behaviour 4. An unrealistic perception of the world ΚΤΩÙ [ϕθ ΣÙ ιθκσù ρζ Ση Φ Α ΥνΚΖÙο œ κ ΟκΣ [Ùρ θχκηοξσ ο Ξfiχœι ΘÙΟν οωùθ Ση 1. Θτ Ÿλ [ ςÿλ ΤƒιΘο 2. œ [ΚÙ λ Τ κσùτ ΤΥσ[Ξρ 3. ΡΟι Θ ο Ξ Ζϕ ΚÙ χœλ Θτ Τ 4. ΩΚι Θχ œ ι η ΤΥσ[ Τ κσùτ Τ
26 39. According to Maslow s hierarchy of needs. The following statement is related to the most basic needs of human beings. 1. Ramana is doing yoga for self actualization 2. Pratap is struggling to become student leader 3. Gopi is hungry, he is in need of food 4. Sita is an orphan, craves for love ΤÙυ ΚÙ τ Θ ΞΚ τ Σ ιθζχ ΚÙρ ΚκΣ θχκηο ΞÙχ ΥδΚ ο Ιτfl Τ±Θ±τ κσ Οι Θ ΞΚfiΟτ ΘÙΟν ΟΥ 1. ΑτΤ ΜÙΘ χκùκ ςτπù ΥÙΚÙ Μµ [Ùτ 2. ΤÙΠΞνΚ τ Θ ΩΞ ÙΚ ΤÙ[ ςθùκ ΘÙΟνϕ ΣÙςÙ [Ùτ 3. ΚÙ χœ Σ κσθùο Ξ χœ Π Θ ΞκΣ [ 4. ΘÙ Ù ΘΥÙΚ Β κσθùο τ χκùκ Γδœ [Ùρ
27 40. Mr. Chandra Sekhar is class X English teacher. Every student likes him because, he 1. Encourages rote memory. 2. Allows them for group discussions 3. Engages himself in continuous lecturing 4. Liberal in assessment ƒ Μϕƒς ΜΚν ΣιΘÙλ Ξœκ Αδ Ω Α Υν Ιπ ΞÙ ΤÙΠΞ λ Ξ ς λ τ[ ν ΒΘσœχ ΚÙςΠλ Ξν 1. Τ κσùο ΞÙσ[ Ω ΕχΚκΣ ι [Ùν 2. œ χ ΚΩϕ ςυùο ο Σδœ ΚÙρΖ ΞÙµκΣ χ [Ùν 3. ΘÙΟνε ΥÙΚ ςυùσflξƒο Θτ Χ Σ ιƒχ ΚÙρ [Ùν 4. Τƒκ Ξƒο ΘÙςÙΖΤÙ ΞςÙΚ Β χ [Ùν
28 SA Maths Maths Content ( Tamil Medium) (41 to 80) 41. The population of a town increases by 20% every year of its population is 2,16,000 then its population 2 years ago is Ι ΡΚςιƒτ ΤχΚρ ΘÙ ΚΥÙ + Ξ Οϕ ΘÙflλ 20% ƒκ χ [ ϕρκςιƒτ Θσ ΣÙ ΘΥ ΤχΚρ ΘÙ Κ 2,16,000 Φ±ο 2 Ξ ΟδΚfiχœ ÿτ ϕρκςιƒτ ΤχΚρ ΘÙ Κ 1. 1,50, ,72, ,94, ,61, The compound interest calculated yearly at 10% on a certain sum of money, amounts to ` in the fifth year then the C.I for the fourth year on the same sum at the same rate is Ι œ κ γο ΘÙ Κχœ+ Ξ Οιƒσœ Ι ÿ [ 10% Ξγ Θλ ΚΠχ ΟκΣγ + Ηϕ Ξ ΟδΚ τ ΣÙ Α γ Ξγ ` Φ±ο Θ ΘÙ Κχœ+ Θ Ξγ Θιƒο ΡÙτΚÙΞ Ξ Οιƒτ ΣÙ Αœλ γ Ξγ ΥÙ 1. ` ` ` `
29 43. The compound ratio of squares of the ratio 5 : 6 and the reciprocal ratio of 25 : 42 is 5 : 6 τ ΞνχΚ Θλ Τσflλ 25 : 42 τ Θ Ω θ Θλ Α ΥΞσ τ γ Θλ 1. 7 : : : : The length of rectangle is increased by 20% and breadth is decreased by 10% then the percentage increasing in the area is Ι ΜπΞΚιƒτ øζι Θ 20% ƒκ ι + ΚΩι Θ 10% œ [ιθùο Θτ ΣςκΣΖ Υ λ ΜΘ Θλ 1. 6% 2. 8% 3. 10% 4. 15%
30 45. If x + 5 is the mean proportion between x + 2 and x + 9 then the value of x is x + 2 Τσflλ x + 9 Α ΥΞσ σœ Β Ο ΩÙ Β Ο Θ ΜΤτ x +5 Φ±ο x τ Τƒκ A person bought two articles for each ` He sold one article at a gain of 20% and other one at a loss of 10% then the percentage of gain on whole transaction is Ι ΡΣν Βςη ΣÙ γκ Ζ+ Ιπ ΞÙτ [Ÿλ ` 3000 χœ ΞÙδ Ùν Ι ΣÙ Ζ 20% ΒΩÙΣιƒ λ+ Τσ [Ù ΣÙ Ζ 10% ΡωΟιƒ λ σ[ùν Φ±ο ΤÙιΘιƒο Ξν ΟϕΘ ΒΩÙΣ ΜΘ Θλ 1. 15% 2. 10% 3. 8% 4. 5%
31 47. A card is randomly choosen from a pack of cards with numbers 1 to 200 then the probability of that card number is a perfect square is 1 ÿθο 200 Ξ ς Φη γ ΟΚρ ΟΥ Κγ ϕ + ΜΤΞÙµκ ÿ [ ο Ι γ Ο Φ χκκσ [ Φ±ο ϕθ γ Ο ΦηΠÙ Ι ÿ ΞνχΚ ΦηΠÙΚ Β κσθσκù ΚθΘΚ A card is drawn randomly from a well shuffled pack of cards then the probability of that card is red numbered card is Ρτœ œ χκκσγο Ι γ χκγ ϕ + ΜΤΞÙµκ ÿ [ ο Ι γ Φ χκκσγοùο+ ε γοù Ι Ξκ [ Φη γ ΟΥÙΚ Β κσθσκù ΚθΘΚ
32 49. The mean of 1, 7, 5, 3, 4 and 4 is m, the mean of 3, 2, 4, 2, 3, 3 and P is m 1 and median Q then the average of P and Q is 1, 7, 5, 3, 4 Τσflλ 4 Α ΥΞσ τ ΜςÙΜ m, Τ λ 3, 2, 4, 2, 3, 3 Τσflλ P Α ΥΞσ τ ΜςÙΜ m 1 Τ λ Β Ο Ω Ζ Q Φ±ο P Τσflλ Q τ ΜςÙΜ Class Interval Ξœκ Β Ο Ξ Cumulative frequency œ Κθ Ξη The modal class of the above data is ΤσΚηΟ Ξςιƒτ ÿκγ Ξœκ
33 51. The median of the observations 11, 12, 14, x 2, x+4, x+9, 32, 38 arranged in ascending order is 24 then the mean of the observation is 11, 12, 14, x 2, x+4, x+9, 32, 38 Φ λ ΓflΞ Μ ο Τϕ ρζ Σƒ Κ τ Β Ο Ω Ζ 24 Φ±ο κσƒ Κ τ ΜςÙΜ The mean deviation of the data 2, 9, 9, 3, 6, 9, 4 from the mean is 2, 9, 9, 3, 6, 9, 4 Φ λ ΞςδΚfiχœ ΜςÙΜ ϕ + ΜςÙΜ ΩχΚΤÙ
34 53. The standard deviation of the data 6, 5, 9, 13, 12, 8, 10 is 6, 5, 9, 13, 12, 8, 10 Φ λ ΞςδΚ τ ƒγο ΩχΚλ If the variance of the data 2, 4, 5, 6, 8, 17 is then variance of 4, 8, 10, 12, 16, 34 will be 2, 4, 5, 6, 8, 17 Φ λ ΞςδΚ τ ΩχΚΞνχΚ ΜςÙΜ Φ±ο 4, 8, 10, 12, 16, 34 Α ΥΞσ τ ΩχΚΞνχΚ ΜςÙΜ ( )
35 55. Cos 38 o Sec (90 o 2A) = 1 then the value of angle A is Cos 38 o Sec (90 o 2A) = 1 Φ±ο A τ ΚÙΠ Τƒκ o o o o 56. The length of the shadow of vertical tower on ground increases by 10m, when the altitude of the Sun changes from 45 o to 30 o then the height of the tower is (in meters) Ι Μδœι ΚÙ ςιƒτ Ψ τ øζτù + Υ Ù ΓσΣ ι λ ΚÙΠΤÙ 45 o ϕ 30 o χœ ΤÙflλ ΣÙ 10 ƒκ χ [ Φ±ο χ ΚÙ ςιƒτ Υςλ ( γο ο) 1. 10( 3+ 1) 2. 10( 3-1) 3. 5( 3-1) 4. 5( 3+ 1)
36 57. Given positive integers a and b there exists unique pair of integers α and γ satisfying a = bα + γ then γ lie between a = bα + γ Φ ρζξùfl+ Κÿ χκρ a Τσflλ b ΦτΣ Ξ α Τσflλ γ Φτ[ Θ±ιΘ Ù ÿ χκ Ζ ΚÙη ρζ Φ±ο γ τ Τƒκ ΒΞσ σ Ο Υ ΤŸλ 1. 0 < γ < b 2. 0 < γ b 3. 0 γ < b 4. 0 γ b 58. The least number which must be subtracted from 4215 to make it a perfect square Φ λ ΦηΠÙ ÿ ΞνχΚΤÙΚ ΤÙ[ Κ χκ Ξη Υ Κε Υ Φη
37 59. x + x- 1- x = 1 then the value of x is x + x- 1- x = 1Φ±ο x τ Τƒκ If log 4 log 2 log 3 (x 2009) = 0 then the value of x is log 4 log 2 log 3 (x 2009) = 0 Φ±ο x τ Τƒκ The value of τ Τƒκ
38 62. If the roots of the equation (b c) x 2 + (c a) x + (a b) = 0 are equal then the value of a + c b is (b c) x 2 + (c a) x + (a b) = 0 Φ λ ΜΤτΣÙγ τ ÍΩδΚρ ΜΤλ Φ±ο a + c τ Τƒκ b 63. No. of sub sets of a Set A = {x : xîn and 2 < x < 7} ΚΠλ A = {x : xîn Τσflλ 2 < x < 7}Φ±ο ΚΠλ A τ γκπδκ τ Φη χ Κ The number of integers lie between the squares of 63 and 64 is 63 Τσflλ 64 Α ΥΞσ τ ΞνχΚδΚ τ Β Ο ο ΤŸλ ÿ χκ τ Φη χ Κ
39 65. The trisection points of line joining (2, 6), ( 4, 8) is ρ Κρ (2, 6) Τσflλ ( 4, 8) Η Β Πχœλ ΚÙγ ι η Ο ÿεμτχ λ ρ Κρ æ8-4 öæ -10 ö ç, ç 2, è3 3 øè 3 ø æ8 4 öæ ö ç, ç, è3 3øè 3 3 ø æ -4 öæ 10 ö ç 0, ç -2, è 3 øè 3 ø æ 4 10 ç 0, öæ ç 2, ö è 3øè 3 ø 66. The quadrilateral which is formed by the points ( 7, 3), (5, 10), (15, 8) and (3, 5) is 1. Parallelogram 2. Square 3. Rectangle 4. Rhombus ( 7, 3), (5, 10), (15, 8) Τσflλ (3, 5) ρ ΚΖÙο ΓσΣ λ ΡÙσΚς Ξ Κ 1. Β ΠΚςλ 2. Μ ςλ 3. ΜπΞΚλ 4. ΜÙµΜ ςλ
40 67. If a x + b x + c = 0 then ax + bx+ c is equal to + + = Φ±ο ax bx 3 + c 3 χœ ΜΤΤÙ a x b x c 0 Τƒκ abc x abc x 3. 3abc x abc x 68. If a and b are the roots of the equation ax 2 + bx + c = 0 then the value of a 4 b 7 + a 7 b 4 is ax 2 + bx + c = 0 τ ÍΩδΚρ a, b Φ±ο a 4 b 7 + a 7 b 4 Τƒκ τ 3 bc ( 3ac- b ) a 4 bc ( 6ac- c ) a 4 bc ( 3ac- b ) a 4 ab ( 5ac- b ) c
41 69. If (K + 2), (4K 6) and (3K 2) are in Arithmetic progression then the product of 5 th and 10 th term is (K + 2), (4K 6) Τσflλ (3K 2) Α Υ Ξ γ ι ΘÙΟ ο ρζ Φ±ο 5 Ξ Τσflλ 10 Ξ flκ Κ τ Σ χκσσωτ If 3A + B = 18x 2 2xy + 2y 2 and A B = 2x 2 6xy + 2y 2 then the expression of A is 3A + B = 18x 2 2xy + 2y 2 ΚÙ Ξ A Α Τσflλ A B = 2x 2 6xy + 2y 2 Φ±ο 1. 5x 2 + 2xy + y x 2 2xy + y x 2 2xy + y x 2 2xy y 2
42 71. The perimeters of a square and a rectangle are equal. If the side of the square is 25m and the length of the rectangle is 30m, then the ratios of areas of square and rectangle are Ι Μ ςλ Τσflλ ΜπΞΚιƒτ σ[ζ Κρ ΜΤλ Μ ςιƒτ ΣχΚ Ζ 25 Τσflλ ΜπΞΚιƒτ øζ Ζ 30 Φ±ο Μ ςλ Τσflλ ΜπΞΚιƒτ ΣςκΣΖ Κ τ Θλ : : : : A toy is in the form of a cone mounted on hemisphere. If the diameter of the base and the height of the cone are 12cm and 8cm respectively then the surface area of the toy is (in cm 2 ) Ι ΖΥÙγ κ ΣÙ ΖÙ + ς ΚÙΖιƒτ λ Ξ Ξλ ρζξùfl Τϕ ρζ χ λ τ γολ Τσflλ Υςλ ÿ [ Υ 12 Μ Τσflλ 8 Μ Φ±ο κ ΣÙ τ ΘΖ ΣςκΣΖ ( Μ 2 - ο )
43 73. If the height of an equilateral triangle is x cm then its area is (in cm 2 ) Ι ΜΤΣχΚ ÿχ ΚÙΠιƒτ Υςλ x Μ Φ±ο Θτ ΣςκΣΖ ( Μ 2 - ο ) x x x 4 3 x The ratios of the radius and height of a cylinder is 3 : 2. If the radius 21cm then its volume is (cm 3 ) Ι Ζ τ Αςλ Τσflλ Υςιƒτ Θλ 3 : 2 Τ λ Θτ Αςλ 21 Μ Φ±ο Θτ Κ Ζ ( Μ 3 - ο )
44 75. AB, CD, PQ are perpendicular to BD. AB = x, CD = y and PQ = z then z is equal to AB, CD, PQ ΦτΣ Ξ BD χœ Ξ ςυκσγο Μδœι Κρ Τ λ AB = x, CD = y Τσflλ PQ = z Φ±ο z χœ ΜΤΤÙ x+ y xy xy y- x xy x+ y x- y xy
45 æ3 ö 76. The angles of a triangle are ç x then sum of two angles is (in degrees) o x - 30 o and è ø, ( ) æ1 ö ç x - 20 è2 ø o Ι ÿχ ΚÙΠιƒτ ΚÙΠδΚρ ç 3 x - 40 è2 ø, ( ) æ ö ç è2 ø Τσflλ 1 x - 20 ΤÙιΘλ ( ο) o Φ±ο Βςη ΚÙΠδΚ τ æ ö o x - 30 o 77. In a trapezium ABCD where AB P DC, diagonals AC, BD are intersect each other at the point O. If AB = 2CD then the ratio of areas of ΔAOB and ΔCOD is Μ ΞΚλ ABCD ο+ AB P DC Τσflλ AC, BD Φ λ Í Ω γοδκρ»oµ ο Ξγ χ ΚÙρ τ[ Τ λ AB = 2CD Φ±ο ΔAOB Τσflλ ΔCOD τ ΣςκΣΖ Κ τ Θλ 1. 1 : : : : 2
46 78. The hypotenuse of a right angled triangle is 6m more than twice of the shortest side. If the third side is 2m less than the hypotenuse then its perimeter is (in cm) Ι Μδ ΚÙΠ ÿχ ΚÙΠιƒτ ΚνΠΤÙ + λÿχ ΚÙΠιƒτ Κε Υ ΣχΚιƒτ Β ΤΟδ Κ Ο 6 ƒκλ Τ λ Íτ[ÙΞ ΣχΚΤÙ ΚνΠι Θ Ο 2 œ [ Φ±ο Θτ σ[ζ ( Μ - ο ) PQR is a triangle right angled at P and M is a point on QR such that PM ^ QR then PM 2 is equal to PQR Φ λ ÿχ ΚÙΠιƒο P Α Μδ ΚÙΠλ Τ λ PM ^ QR Φ ρζξùfl QR τ ρ M ρζ Φ±ο PM 2 χœ ΜΤΤÙ 1. QM PQ 2. PR PQ 3. QM MR 4. QM PM
47 80. If in ΔABC, DE P BC, AD = x, DB = x 2, AE = x + 2 and EC = x 1 then x is equal to ΔABC ο+ DE P BC, AD = x, DB = x 2, AE = x + 2 Τσflλ EC = x 1 Φ±ο x χœ ΜΤΤÙ
48 81. If f ( x) cos( log x) = then f æ1ö æ1ö ç f x ç y è ø è ø ê ( ) 2 1é æ xöù f xy + f ç ú = ë è yøû ( ) = cos( log ) Φ±ο f x x f ( x ) 3. f ( x) + f ( y) 4. f ( x) f ( y) f æ1ö æ1ö ç f x ç y è ø è ø ê ( ) 2 1é æ xöù f xy + f ç ú = ë è yøû 82. The domain of the function ( ) æ x ö f x = 4 - x + sin ç è 2x ø ( ) æ x ö f x = 4 - x + sin ç è 2x ø 1. [- 1, 1] Φ λ ΜÙν τ ΚΖλ 2. {- 1, 1} 3. { 0 } 4. {- 2, 2}
49 83. If A = é ù, B = é ù, C = é ù ê 3 0 ú ê 1 2 ú ê 3 4 ú ë û ë û ë û then A = é ù, B =, C = ê 3 0 ú ê 1 2 ú ê 3 4 ú ë û ë û ë û 1. AB = AC = 0 2. AB = 0, AC 0 3. AB 0, AC 0 4. AB 0, AC = a b c a -bc b -ca c -ab = abc 4. (a b) (b c) (c a) w 2+ w 1+ w = 1. w 2. w 2 3. a 2 + b
50 86. If x = cis α, y = cis β then xy 3 4 x = cis α, y = cis β Φ±ο xy i cos (3α + 4β) 2. 2i cos (3α 4β) 3. 2i sin (3α + 4β) 4. 2i sin (3α 4β) 1 - = 3 4 xy 1 - = xy 87. The solution of x+ 20+ x+ 4 = 4 x- 1 is x+ 20+ x+ 4 = 4 x- 1Φ λ ΜΤτΣÙγ τ æν 1. { 2 } 2. { 3 } 3. { 4 } 4. { 5 }
51 88. If α, β, γ are roots of = 0 then å æ 1 ö ç 2 èa ø = 3 2 x px qx r α, β, γ ΦτΣ Ξ x 3 + px 2 + qx + r = 0τ ÍΩδΚρ Φ±ο æ 1 ö èa ø å ç 2 = q 2-2 pr 2 r q - 3pq+ 3r p - 2q 2 r pq r If 2 nc3: nc 2 = 44 : 3 then n = 2 nc : nc = 44 : 3 Φ±ο n =
52 n 90. If the coefficients of x 7 and x 8 æ x ö in ç 2 + are equal then n = è 3 ø n æ x ö ç 2 + è 3 τ ο ø x7, x 8 τ œπκδκρ ΜΤλ Φ±ο n τ Τƒκ C1 C2 C3 Cn 91. C = 2 3 n æ3 ö ç è2 ø æ2 ö ç è3 ø æ5ö ç è3ø n n n n æ3ö ç è5ø
53 92. If the lines ax + hy + g = 0, hx + by + f = 0, gx+ fy+ c= 0 to be concurrent is ax + hy + g = 0, hx + by + f = 0, gx fy c 0 ρ Ξ χ ΚÙ Κρ Φ±ο 1. a + b + c = 0, f + g + h = 0 2. a 2 + b 2 + c 2 = 0, f 2 + g 2 + h 2 = 0 3. abc + 2fgh af 2 bg 2 ch 2 = 0, 4. af + bg + ch = = ΦτΣ Ξ Ι 93. The reflection of the point ( 1, 3) in the line 5x y 18 = 0 is 5x y 18= 0 Φ λ ΚÙγ ο ( 1, 3) Φ λ ρ τ Φƒ ςù κ 1. (2, 1) 2. (0, 0) 3. (9, 1) 4. ( 2, 3)
54 94. The equation to the pair of bisectors of angles between the pair of lines 2x 2 3xy + y 2 = 0 is 2x 2 3xy + y 2 = 0 Φ λ Ù ΚÙ Κ τ ΚÙΠ Ù Β ΜΤ Ξγ Κ τ ΜΤτΣÙ 1. 3x 2 + 2xy 3y 2 = x 2 2xy + 3y 2 = x 2 + 2xy + 3y 2 = x 2 2xy 3y 2 = The equation of the circle passing through (0, 0), (0, a), (a, 0) is (0, 0), (0, a), (a, 0) Φτ[ ρ Κ τ Ξ Υ Μο λ ΞγΟιƒτ ΜΤτΣÙ 1. x 2 + y 2 + ax + ay = 0 2. x 2 + y 2 ax ay = 0 3. x 2 + y 2 + 2ax + 2ay = 0 4. x 2 + y 2 = a 2 + b The pole of the line 2x 3y + 25 = 0 w.r. to x 2 + y 2 = 25 is 2x 3y + 25 = 0 Φ λ ΚÙγ σœ x 2 + y 2 = 25 Φτ[ ΞγΟι Θ ΣÙ ι Β Μκ ρ ÿ ( 1. (0, 3) 2. (1, 3) 3. ( 2, 3) 4. (2, 3)
55 97. The number of common tangents to the two circles x 2 + y 2 = 1 and x 2 + y 2 2x 6y + 6 = 0 is x 2 + y 2 = 1 Τσflλ x 2 + y 2 2x 6y + 6 = 0 Φ λ ΞγΟδΚ τ ΣÙ ΘÙ ΚÙ Κ τ Φη χ Κ The length of the latus rectum of the parabola y 2 + 8x 4y 4 = 0 is y 2 + 8x 4y 4 = 0 Φ λ ΣςΞ ΖΞΥιƒτ œ ΥΚΩιƒτ (latus rectum) øζλ
56 99. The eccentricity of the ellipse 9x 2 + 5y 2 30y = 0 is 9x 2 + 5y 2 30y = 0 Φ λ øρξγοιƒτ ΤΥχ ΚÙγΟλ (eccentricity) If the vertices of a triangle are (2, 3, 5), ( 1, 3, 2), (3, 5, 2) then the angles are (2, 3, 5), ( 1, 3, 2), (3, 5, 2) Φ λ ρ Κ Ζ ε ΚΖÙΚ ΟΥ ÿχ ΚÙΠιƒτ ΚÙΠδΚρ o, 30 o, 120 o 2. cos -, 90 o, cos o, 60 o, 90 o 4. cos -, 90 o, cos - 3
57 101. The equation of the plane through the points (1, 2, 2) ( 3, 1, 2) and perpendicular to the plane x + 2y 3z = 5 is (1, 2, 2) ( 3, 1, 2) Φ λ ρ Κρ Ξ ΥÙΚ Μο λ+ x + 2y 3z = 5 Φ λ ΘΖιƒσœ ΜδœιΘÙ ΤÙ ΘΖιƒτ ΜΤτΣÙ 1. x + 16y + 11z + 9 = 0 2. x + 16y 11z + 37 = 0 3. x + y + z 2 = 0 4. x 5y 3z = If A + B + C = 90 o then cos 2A + cos 2B + cos 2C = A + B + C = 90 o Φ±ο cos 2A + cos 2B + cos 2C = sin A sin B sin C sin A sin B sin C sin A sin B sin C 4. 4 sin A sin B sin C
58 103. If Tan æ x- 1ö æ x+ 2ö p ç + cot ç = è x- 2ø è x+ 1ø then x = Tan æ x- 1ö æ x+ 2ö p ç + cot ç = è x- 2ø è x+ 1ø Φ±ο x τ Τƒκ ± ± In a ΔABC, if a : b : c = 7 : 8 : 9 then cos A : cos B : cos C = ÿχ ΚÙΠλ ABC ο+ a : b : c = 7 : 8 : 9 Φ±ο cos A : cos B : cos C = 1. 7 : 9 : : 11 : : 19 : : 6 : 5
59 r1-r r2 -r r3 -r 105. In ΔABC, + + = a b c ÿχ ΚÙΠλ ABC ο+ 3 r1+ r2 + r r + r + r 2s r + r + r 4s r + r + r s r1-r r2 -r r -r + + = a b c uuur uuur 106. If D is the mid point of the side BC of ΔABC then AB + AC = ÿχ ΚÙΠλ ABC ο+ D ΦτΣ BC ΣχΚιƒτ ΤΥκ ρ Φ±ο AB 1. uuur AD 2. 2AD 3. 3AD 4. 4AD uuur uuur + AC =
60 107. If a = 3, b = 4 and a+ b = 1 then a- b = a = 3, b = 4 Τσflλ a b = 1 Φ±ο a- b = 108. If x a = 0, x b = c b then x = x a = 0, x b = c bφ±ο x = c a c- b a c a c- cb c a a- cb c a b- cb b a b b
61 109. ( a b) ( c d) = a c a d b c b d a c b d ad bc a c b d b c a d Lt x 0 2 ( ) xcos x- log 1+ x x = e 2
62 111. If the function f ( x) x = 0 then f ( o ) = f ( + ax) - ( -bx) log 1 log 1 = is continuous at x log( 1+ ax) -log( 1-bx) ( x) = Φ λ ΜÙνΣÙ x = 0 x ΒΟιƒο ΘÙΟν [ Φ±ο f ( o ) = 1. a b 2. a + b 3. log a + log b 4. log a log b 112. d æ 1+ sin x ö ç dxè 1- sin x ø = sin x 1 1- sin x 1 1+ cos x 1 1- cos x
63 If f ( a ) = 2, f ( a ) = 1, g( a ) = 1, g ( ) Lt x a ( ) ( ) - ( ) ( ) g x f a g a f x x- a = a = +2 then 1 1 f ( a ) = 2, f ( a ) = 1, g( a ) = 1, g ( a ) = +2 Φ±ο g( x) f ( a) - g( a) f ( x) Lt x a 1. 5 x- a = In a cube the percentage of increase in the side is 1. The percentage increase in volume is Ι Κ Μ ςιƒτ ΣχΚΤÙ Ι ΜΘ Θλ Υ λ ΣÙ Θτ Κ Ζ ο Υ λ ΜΘ Θλ
64 115. The equation of tangent to the curve y(x 2) (x 3) x+7 = 0 where the curve cuts x-axis is y(x 2) (x 3) x+7 = 0 Φ λ Ξ ΖΞ ςυù x- ε Μ Ξγ [ Φ±ο π Ξ ΖΞ ς τ ΘÙ ΚÙγ ΜΤτΣÙ 1. 20x + y 140 = 0 2. x 20y = x y = 0 4. x + 20y + 7 = ò 1 3 sin x cos x dx = tan x + c Tan x + c 2 c Tanx Tan x + c
65 117. ò 1 dx 2 2 4cos x+ 9sin x = ç 6 è2 ø Tan -1 æ Tan x ö + c 1 3 ç 3 è2 ø Tan -1 æ Tan x ö + c 1 3 ç 6 è5 ø Tan -1 æ Tan x ö + c 1 3 ç 6 è5 ø Sin -1 æ Sin x ö + c ò 2 5 x - x + dx = x
66 a ò a -x dx = ( ) pa 32 5pa 32 5pa pa The solution of x 2 x ( ) x 2 3 e cos y dx + 1- e cot y dy = 0 is x ( ) 3 e cos y dx + 1 e cot y dy x 1. Tan y = ( ) 3 - = 0 τ æν ce - 1 ce + 1 x 2. Tan y = ( ) 3 ce - 1 x 3. Tan y = ( ) 2 ce - 1 x 4. Cos y = ( ) 3
67 TET Cum TRT-2018 SA Maths Maths Methodology(TAMIL MEDIUM) (121 to 160) 121. Asking the students to verify the solution after solving the equation, inculcates one of these values 1. Utilitarian 2. Disciplinary 3. Cultural 4. Social ΤÙΠÙχΚνΚρ Ι ΜΤτΣÙγ σœ æν ΚηΟ [œ ιæν Ξ Μ ΣÙνχœλΣ flθο ÍΩλ ΞΖνχΚκΣ λ Τƒκ 1. ΣΥτΣÙγ Τƒκ 2. Ι χκ Τƒκ 3. ΚÙΩÙεΜÙς Τƒκ 4. ΜÍΚ Τƒκ
68 122. Mathematics is a way to settle in the mind a habit of reasoning, was defined by 1. Locke 2. Bertrand Russel 3. Aristotle 4. Bacon!!ΚÙςΠλ flθο Φτ λ Τ Τκ Σ ΣflΞΘσΚÙ Ξ Κ Θλ&& Φ Ξ ςυflιθξν 1. ΩÙχ Κ 2. Σνγςηγ ς]ο 3. υοù ο 4. ΣΚτ 123. The method that is economical in terms of time 1. Inductive 2. Synthetic 3. Analytic 4. Heuristic Ρςι Θ Μ χκ Θ λ ÿ [ 1. ƒξ ÿ [ 2. ΘÙœιΘ ÿ [ 3. ΣœιΘ ÿ [ 4. ΚηΟ ÿ [
69 124. The correct order of sequence (concrete to abstract) of learning experiences in Edgar Dale s cone of experience is 1. Pictorial, Direct, Abstract 2. Direct, Abstract, Pictorial 3. Abstract, Pictorial, Direct 4. Direct, Pictorial, Abstract ΦγΚγ Οο ΣΞχ λ Ξ ΜκΣ Σ κ ΣÙ ρ Ω ϕ Κ ιƒυο Ωχœ( Κσ[ο Ξ Μ 1. ΣΟ ΖχΚλ+ Ρς + Κ ιƒυο Ω 2. Ρς + Κ ιƒυο Ω+ ΣΟ ΖχΚλ 3. Κ ιƒυο Ω+ ΣΟ ΖχΚλ+ Ρς 4. Ρς + ΣΟ ΖχΚλ+ Κ ιƒυο Ω 125. Unit approach of lesson plan was designed by 1. Morrison 2. Herbart 3. Bloom 4. Gloverian ΣÙΟιƒγΟλ ΘΥÙ κ ο Ωœ œÿ [ Υ ÿκκσ ιƒυξν 1. ΤÙ Μτ 2. νσνγ 3. λ 4. œ ΖÙ Ξ Υτ
70 126. One of the following cannot be used in stating the objectives 1. should be clear 2. should be valid 3. should combine two specifications 4. should be attainable θχκηο ΞΚ ο Ιτfl œ χ ΚÙρΚ Ζ ΞÙχœΞƒο ΣΥτΣ ιθκσ Ξƒο Ω 1. Θ ΞÙΚ Β χκ Ξη λ 2. Γσ ΟΥΘÙΚ Β χκ Ξη λ 3. Βςη [κσλμδκρ Β χκ Ξη λ 4. ΜÙƒχΚ ΥΘÙΚ Β χκ Ξη λ 127. Siddantha Shiromani was written by this Mathematician 1. Aryabhatta 2. Bhaskaracharya-II 3. Euclid 4. Ramanujan!! ιθùϕθ ςùτ && Φ λ ιθκι Θ Φ ƒυ Κ Θ ΥΩ Νν 1. ΑνΥΣγΟÙ 2. ΣÙυΚςÙεΜÙνΥÙ`II 3. Îχ γ 4. ΒςÙΤÙ λ
71 128. One of the following is not a characteristic feature of topical method 1. gives comprehensive knowledge 2. child centered method 3. improves concentration 4. logical base θχκηοξσ ο Ιτfl Θ Ωκ ΞÙ ÿ [ τ œπùƒμυλ οωùθ 1. ÿ ΤΥÙ Ξ Θ [ 2. œψϕ Θ ΤΥ ÿ [ 3. ΚΞ ι Θ ƒκ χ [ 4. ΘνχΚ ΑΘÙςλ
72 129. Pythagoras theorem was written in the form of an equation, that is In ΔABC, ÐB = 90 o, AC 2 = AB 2 + BC 2 indicates this nature of mathematics 1. Disciplinary 2. Abstractness 3. Simplicity 4. Originality!!ΔABC ο ÐB = 90 o, AC 2 = AB 2 + BC 2 && Φ λ ΘÙΚςυ Θσ[ι Θ ΜΤτΣÙγ Ξ ο Φ λ ΣÙ Κ Θιƒτ ΒϕΘ Ση Σ fl [ 1. Ι χκλ 2. Κ ιƒυο Ση 3. Φ Τ 4. η Τ Θτ Τ
73 130. Pupil classifies the given geometrical figures this relates to this objective 1. Knowledge 2. Understanding 3. Application 4. Skill!!ΤÙΠΞτ Ξ Υο ΣΟδΚ Ζ Ξ ΚΣ ι [Ùτ ΦτΣ Βχœ χ ΚÙfiΟτ ΘÙΟν ΟΥ ϕ ΚÙρfiΘο 3. ΣΥτΣ ι Θο 4. ƒ[τ 131. In Hunter s score card of evaluating the textbook more weightage has been given to this dimension 1. Psychological soundness 2. Subject matter 3. Literary style 4. Learning exercise ΣÙΟκ ιθκι Θ Τƒκ ΜµŸλ! ηον Τƒκ Ση γ Ο&,ο ƒκ ÿχ Υι Ξλ ΞΨδΚκΣγΟ 1. Ζ Υο flƒιθτ Τ 2. ΣÙΟκ ΣÙ ρ 3. ΤÙ Ρ Ο 4. Κσ[ο Σ σ Κρ
74 132. One of the following is not an aim of Formative Evaluation 1. Testing pupils learning 2. Comparing the students 3. Improving learning atmosphere 4. Self evaluation by the teacher θχκηοξσ ο Ιτfl ΞΖν Ω Τƒκ γ τ ΡÙχΚλ οω 1. ΤÙΠÙχΚνΚ τ Κσ[ Ω ΜÙƒιΘ Θο 2. ΤÙΠÙχΚνΚ Ζ Ικ Οο 3. Κσ[ο θ Ω Υ ΤλΣ ι Θο 4. Α Υ τ Υ Τƒκ 133. The strategy that cannot be suggested for gifted children 1. enrichment of content 2. repetition of topic that were already taught 3. assigning project work 4. to solve challenging problems θχκηοξσ ο+ ιƒ[τ ΟΥ ΤÙΠΞνΚfiχœ ΣÙ ϕθùθ ιƒ 1. ΣÙΟκ ΣÙ Ζ ƒκκσ ι Θο 2. Κσ ιθ ΣÙΟκ ΣÙ Ζ η λ Κσ ιθο 3. ΜΥο ƒγοδκ Ζ ΞΨδœΘο 4. Κ ΚΠχœΚfiχœ æν ΚÙΠε ΜµΘο
75 134. In the context of development of Mathematics curriculum, the unuseful content in the syllabus, the topics depending on old concepts have to be deleted, was stated by 1. Secondary Education Commission ( ) 2. Cambridge Report Kothari Commission ( ) 4. National Policy of Education 1986 Κ Θχ Κ ΩƒγΟ Ξ Ξ Τκ Σ ΤλΣ ι Θ ο!!σùοκ ΣÙ ο Σ ΥÙΚΤσ[ Κ ι Κ Ζ+ Σ ΨΥ Κ ι Κ Ζ øχκ Ξη λ&& Φ χ Υ 1. Β Ο Ωχ Κο χœ (1952`53) 2. Κλ γϖ χ Κ (1963) 3. ΚÙιΘÙ Κο χœ (1964`66) 4. Θ Υ Κο χ ΚÙρ Κ (1986) 135. One of the following provides least concrete learning experience in Mathematics 1. Exhibits 2. Still pictures 3. Audio recording 4. Model Κ Θκ ΣÙΟιƒο+ Κχ œ [ϕθ ΚÙγ Ω Κσ[ο ΣΞι Θ κσ 1. ΚηΚÙγ 2. ΨσΣΟδΚρ 3. Ι κσƒ Κρ 4. ΤÙƒ Κρ
76 136. The lesson plan based on interrelationship among objectives, learning experiences and evaluation was proposed by 1. Bloom 2. Herbart 3. Morrison 4. Gloverian œ χ ΚÙρΚρ+ Κσ[ο ΣΞδΚρ Τσflλ Τƒκ Α ΥΞσ τ ΜΚι ΘÙΟν Σ ρζοχ ΥΞÙfl ΣÙΟιƒγΟι Θ ÿκκσ ιƒυξν 1. λ 2. νσνγ 3. ΤÙ ]τ 4. œ Ζ Ξ Υτ 137. The evaluation suitable to find the causes of learning difficulties 1. Formative 2. Summative 3. Diagnostic 4. Prognostic ΤÙΠÙχΚνΚ τ Κσ[ο Κ κσù Κfiχœ (learning difficulties) ΚÙςΠδΚ Ζ ΚÙΠ ΘœϕΘ Τƒκ 1. ΞΖν Ω 2. ΘÙœ Ω 3. œ [Υ 4. ÿτ
77 138. This method is based on psychological laws of learning (readiness, exercise, effect) 1. Project 2. Analytic 3. Synthetic 4. Deductive θχκηοξσ ο+ Ζ Υο Κσ[ο ƒκ τσ ΤϕΘ Κσ ιθο ÿ [ 1. ΜΥοƒγΟ ÿ [ 2. ΣœιΘ ÿ [ 3. ΘÙœιΘ ÿ [ 4. ƒ ΖχΚ ÿ [ 139. Pupil records the probable findings while tossing a coin number of times in a tabular form. The academic standard achieved here is 1. Problem solving 2. Connection 3. Reasoning and proof 4. Visualisation and representation ΤÙΠΞτ!!Ι ΡÙΠΥι Θ ΣΩÿ [ η γ Οχœλ Ζ Κ Ζ Σγ Υο Ξ ο Σƒ [Ùτ&&, Βδœ Ξτ Σσ[ Κο ιθςλ 1. ςε æνιθο 2. ΘÙΟν Κρ 3. ΚÙςΠλ flθο, Ï ιθο 4. ΚÙγ Σ ι Θο Τσflλ ΟΥÙΖλ ΚÙΠο
78 140. One among the following is a limitation of objective test 1. Diagnostic value 2. Broad content coverage 3. Reliability of scoring 4. Testing higher order mental abilities θχκηοξσ ο Ιτfl [ΞΥ Ù Θν τ Ξςλ ( œ [ΣÙ 1. œ [Υ Τƒκ 2. ƒκτù ΣÙΟκ ΣÙ Ζ Σσ κσ 3. Τƒκ Ση ΡλΣΚιΘτ Τ 4. Υν Ω Τ ι ƒ[τκ Ζ ΜÙƒιΘο 141. The laws of exponents are generalized with examples in this method 1. Inductive 2. Deductive 3. Analytic 4. Synthetic Βχ Κσ ιθο ÿ [ ο+ ΘÙςΠδΚ τ ÍΩλ χœ œ Κ τ ƒκ Ζ ΣÙ ΤΣ ιθ ÿ Ÿλ 1. ƒξ ÿ [ 2. ƒ ΖχΚÿ [ 3. ΣœιΘ ÿ [ 4. ΘÙœιΘ ÿ [
79 142. Some parts of curriculum topics related to geometry are introduced in the same class with a gap of 3-4 months, the method of curriculum organisation here is 1. Topical 2. Concentric 3. Spiral 4. Logical Ι ς Ξœκ ο+ 3`4 ΤÙΘ ΚÙΩ Β Ο Ξ ο Ξ Υ ο Ω ΣœƒΚ Ζ ÿκκσ ι λ Κ ΩιƒγΟ Ξ Ξ Τκ Βλÿ [ŸΟτ ΘÙΟν ΟΥ 1. Θ Ωκ ÿ [ 2. ΣÙ ΤΥ ÿ [ 3. ρ ÿ [ 4. ΘνχΚ ÿ [
80 143. To enable the pupil to become proficient in the four fundamental operations (+,,, ). The connected aim here is 1. Practical 2. Social 3. Disciplinary 4. Cultural ΤÙΠΞ + ΡÙτœ κσ Ο ΜΥοÿ [Κ ο (+,,, ) ƒ[ ΤλΣ ι Θο ΦτΣ Βϕ ΡÙχΚι Θ κσ ΟΥÙΚ ΚÙηΟ 1. Ρ Οÿ [ 2. ΜÍΚλ 3. Ι χκλ 4. ΚΩÙεΜÙςλ
81 144. The best suitable strategy to slow learners among the following 1. Responsibility of Maths club 2. Opportunity for independent learning 3. Enriched syllabus 4. Instruction is in the form of learning by using multiple senses θχκηοξσ ο+ ΤοΩ Κσ ΣÙ χκù (slow learners) ΘœϕΘ Ξ ÿ [ 1. Κ Θχ ΚΨΚ ΣÙflκ 2. ΥΤÙΚ Κσ[ χœ Ξ ΜµΘο 3. ƒκτù ΣÙΟκ ΣÙ ρ 4. Κσ ιθ ο Σο Ξfl ÈνΞΤÙ Ξ Κ Ζ ΣΥτΣ ι Θο 145. One of the topic does not belong to Applied Mathematics 1. Linear Programming 2. Statistics 3. Probability 4. Number theory θχκηοξσ ο ΣΥτΣÙγ Κ Θι Οτ ΘÙΟν οωùθ Ι Θ Ωκ 1. Ρ Υο ςωùχκλ 2. ρ Υο 3. ΚθΘΚ 4. Φη ΚÙγΣÙ
82 146. The four basic principles of problem solving were introduced by 1. Polya 2. Thales 3. Ptolemy 4. Euclid ςε æνιθ ο ΡÙτœ κσ Ο Θι ΞδΚ Ζ ÿκκσ ιƒυξν 1. ΣÙοΥÙ 2. Θου 3. ΟÙΩ 4. Îχ γ 147. One of the following learning experience is an example of contrived experience 1. Model 2. Still picture 3. Drama 4. Exhibits θχκù λ Κσ[ο ΣΞδΚ ο+ ΞÙχΚκΣγΟ ΓσΣ ιθκσγο( ΣΞιƒσœ ΘÙςΠλ 1. ΤÙƒ 2. Ψο ΣΟλ 3. ΡÙΟΚλ 4. ΚηΚÙγ Κρ
83 148. The Mathematical technique that is useful in orderly presentation of ideas and steps is 1. Oral work 2. Written work 3. Drill work 4. Supervised study ϕθ Κρ+ Σ ΩΚ Ζ Ξ Μ ÿ [ ο ΜΥοΣ ι ΞΘσœ ΣΥτΣ λ Κ Θ Ξ ÿ [ 1. ΞÙµ ΤÙ Σ 2. Φ ι κσ 3. Σ σ Σ 4. ΤσΣÙν Ξ Κσ[ο 149. Heuristic method was introduced by 1. Francis Bacon 2. Pestalozi 3. Aristotle 4. Armstrong ΚηΟ ÿ [ Υ ÿκκσ ιƒυξν 1. ςùτ υ ΣΚτ 2. ΣυΟÙΩ 3. υοù ο 4. ΑνλυγςÙδ
84 150. To honour the contributions of Sri Srinivasa Ramanujan to Mathematics, Government of India has declared this as the Year of Mathematics. ƒ ±ΞÙΜ ΒςÙΤÙ λ ΞνΚρ Κ Θιƒσœ Ασ Υ [κσù Μ ΞΚ τ ΞÙΚ ΒϕƒΥ ςμùδκλ ΒϕΘ Αη Ο!!Κ Θ Αη && Φ ιθ To solve problems in Arithmetic, The method of false position was used by this mathematician 1. Aryabhatta 2. Bhaskaracharya-II 3. Pythagoras 4. Ramanujan Φη Κ Θ ςεμ æνιθ ο The method of false position Η ΣΥτΣ ιƒυξν 1. ΑνΥΣγΟÙ 2. ΣÙυΚςÙεΜÙνΥÙ-II 3. ΘÙΚςυ 4. ΒςÙΤÙ λ
85 152. Continuous Comprehensive Evaluation emphasizes one of these aspects with respect to pupil 1. Only scholastic areas 2. Only non scholastic areas 3. Rote memorization 4. Overall development ΘÙΟν Τσflλ ÿ ΤΥÙ Τƒκ γ τ ÿχ ΥΤÙ Ιτfl 1. ΣÙΟκ ΣÙ ρκρ Τγ Τ 2. ΣÙΟκ ΣÙ Ζ Θ ς Τσ[ Ξ Τγ Τ 3. Τ κσùολ ΜµΘο 4. ÿ ΤΥÙ ΞΖνε 153. Pupil does oral calculation with speed and accuracy, this specification relates to the objective 1. knowledge 2. understanding 3. application 4. skill ΤÙΠΞτ ΞÙµ ΤÙ ΚΠχœΚ Ζ ΞΚΤÙΚ λ ο ΥΤÙΚ λ Μµ [Ùτ Φτ[ [κσλμλ ΒΘ Οτ ΘÙΟν ΟΥ ϕ χ ΚÙρfiΘο 3. ΣΥτΣ ι Θο 4. ƒ[τ
86 154. One of the following is not the use of Mathematics club 1. Proper use of leisure time 2. Substitution of class room learning 3. Opportunity to work in group 4. Inculcates the habit of self study θχκηοξσ ο Ιτfl Κ Θ ΚΨΚιƒτ ΣΥτ οω 1. ϑµ Ρςι Θ Μ ΥÙΚ ΣΥτΣ ιƒχ ΚÙρfiΘο 2. ΞœκΣ [ Κσ[ χœ ΤÙσflχΚσ[ο 3. œ ΞÙΚ Ξ Ω ΜµΥ ΞÙµκ 4. ΥΤÙΚ Σ χœλ ΣΨχΚι Θ ΤλΣ ι Θο 155. The test that measures attainment after a period of learning is called 1. Achievement test 2. Personality test 3. Projective test 4. Intelligence test ΚÙΩλ Κσ[ο Ρ Ο Σσ[ [œ Κσ[ο Ω Υ ΜÙΘ ΜµΥ Θ λ Θν 1. Ο ι Θν 2. Αfi Τι Θν 3. Κ ι ΞÙχΚ Θν 4. ηπ ι Θν
87 156. In the affective domain the highest level of objective is 1. Responding 2. Valuing 3. Organisation 4. Characterisation θχκηοξσ ο Πνε ΜÙν ΚΖιƒτ ƒκσγμ œ χ ΚÙΖÙ 1. ΩδœΘο 2. Τƒκ Θο 3. Ι δκ ΤιΘο 4. Ση ΞÙχΚο 157. Children learn to enjoy mathematics rather than fear it is a vision of 1. Kothari Commission ( ) 2. NPE NCF APSCF 2011!!œΨϕ ΘΚρ Κ Θι Θ ΣΥ οωùτο Μϕ ΘÙ_ΤÙΚ ΚσΚ Ξη λ&&, Φ λ ΣÙν Ξ ΚÙηΟ 1. ΚÙιΘÙ Κο œ ( ) 2. NPE NCF APSCF 2011
88 158. Explaining Mathematical logic, relates to this academic standard 1. Problem solving 2. Reasoning and proof 3. Communication 4. Connection!!Κ Θ ΘνχΚδΚ Ζ Ξ ιθο&&, ΦτΣ ΒχΚο Θςι Οτ ΘÙΟν ΟΥ 1. ςε æνιθο 2. ΚÙςΠλ flθο Τσflλ Ï ιθο 3. ΘΚΞο flθο 4. ΘÙΟν Κρ 159. Appreciate the works of Mathematicians, relates to this value 1. Practical value 2. Cultural value 3. Social value 4. Aesthetic value!!κ Θ ΝνΚ τ Μ ΞΚ Ζ ΣÙσflΘο&&, ΦτΣ ΒλΤƒκ Σε ΜÙνϕΘ 1. Ρ Οÿ [ Τƒκ 2. ΚΩÙεΜÙς Τƒκ 3. ΜÍΚ Τƒκ 4. ΨœΠν Τƒκ
89 160. The number system was called as Arithmetica by 1. Greeks 2. Sumerians 3. Egyptians 4. Chinese Φη Τκ Σ!! ι Τ ΚÙ&& Φ ΨιΘΞνΚρ 1. ςχκνκρ 2. Τ ΥτΚρ 3. Φ κƒυνκρ 4. νκρ
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes
Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Π.Μ.Σ. «ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ» «Εφαρμογή
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY
GRADE TRIALS EXAMINATION AUGUST 05 MATHEMATICS PAPER Time: 3 hours Examiners: Miss Eastes, Mrs. Jacobsz, Mrs. Dwyer 50 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY. Read the questions carefully.
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΘ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2018 22 ΑΠΡΙΛΙΟΥ 2018 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016
Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Saint Thomas the Apostle Catholic Academy September 20, 2017
Saint Thomas the Apostle Catholic Academy September 20, 2017 WHAT IS TERRA NOVA? Terra Nova is a norm-reference nationally standardized achievement test. Nationally standardized means that the test was
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0
Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ - ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) "ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ" 2 η ΚΑΤΕΥΘΥΝΣΗ
2. ÀΥυ. 1. Θ θρù. 3. Αϕƒςκ ς ΘΜλ 4. ΚνΡÙΟΚÙ. TET Cum TRT-2018 LP - TAMIL. ςχκ ΡÙΚ Κιƒτ Υχ ΚΟ ρ. ςδκηπƒγ Σ[ ΞΚρ ΜςΠÙΩΥλ
TET Cum TRT-2018 LP - TAMIL 1. The Sun God of Greek Civilization was 1. Apollo 2. Zeus 3. Athena 4. Poseidon ςχκ ΡÙΚ Κιƒτ Υχ ΚΟ ρ 1. κσο ΩÙ 2. ÀΥυ 3. Γ Θ Ù 4. ΣÙ ΟÙτ 2. Ranganathittu Bird Sanctuary is
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
2nd Training Workshop of scientists- practitioners in the juvenile judicial system Volos, EVALUATION REPORT
2nd Training Workshop of scientists- practitioners in the juvenile judicial system Volos, 26-6-2016 Can anyone hear me? The participation of juveniles in juvenile justice. EVALUATION REPORT 80 professionals
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Trigonometry 1.TRIGONOMETRIC RATIOS
Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΕΘΝΩΝ ΣΧΕΣΕΩΝ & ΟΙΚΟΝΟΜΙΑΣ
ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΕΘΝΩΝ ΣΧΕΣΕΩΝ & ΟΙΚΟΝΟΜΙΑΣ Ενότητα 1β: Principles of PS Ιφιγένεια Μαχίλη Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
COMPLEX NUMBERS. 1. A number of the form.
COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called
Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα
[ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
is like multiplying by the conversion factor of. Dividing by 2π gives you the
Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives